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1. Introduction

Accordingly to modern digital technology in control communications and optic fiber,
unmanned underwater vehicles (UUV) are usually controlled digitally. In the case of
remotely operated vehicles (ROV), partial control systems are useful, for instance for the
roll-pitch stabilization, as long as the main modes of motion are performed basically by
teleoperation. In the case of autonomous underwater vehicles (AUV) on the contrary, the
control of modes is complete, it means, the advance, the immersion and the roll-pitch
stabilization are carried out automatically with a large degree of self-decision both in
guidance and control.

In all cases, digital communications between the controller, the guide system and the
navigation system are often affected by a pure delay in the control action, which correctively
manipulates the vehicle behavior with lateness through their thrusters. Generally speaking,
the delay is variable because of the commonly sophisticated nature of protocols involved
in the usual communication standards, for instance in the well-widespread protocols
RS422/485. In many cases, the delay problem is much more complex and embraces a
pure delay for the sensor instruments and other quite different ones for the controller and
guidance communications. Moreover, sensors may have different delays each one, due to
different hardware and baud rates in data transmission.

Pure delays can influence significantly the stability of UUV’s, principally in fast motions
like in the modes of pitch and roll, causing, in extreme fall, the capsize of the vehicle.
Additionally, the well-known strong interaction among the modes in the dynamics of UUV’s
may cause large oscillations of the pitch modes that are induced by acelerations in the
advance mode. Thus, complex control systems for the whole 6-degrees-of freedom (DOF)
dynamics are much more preferable than many single-mode controllers.
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Dealing with pure delays in the controller design, a Smith-predictor solution stays in mind
at the first place. However, the needs of a precise model to construct the predictor upon
the usually uncertain and potentially unstable dynamics of an UUV, makes this alternative
quite unfeasible (Leonard and Abba, 2012). On the other way, simple controllers like for
instance PID controllers, are viable to be tuned with less dynamics information but generally
can not counteract by itself the undesirable effects of relatively large pure delays. Adaptive
controllers had proved to work properly in these scenarios with many advantages (Jordán
and Bustamante, 2011). Nevertheless, the roll played by pure delays in the stability and
performance of control systems for underwater vehicles is much less dealt with in the
specialized literature.

In this Chapter we focus the design of a 6-degrees-of-freedom adaptive controller for UUV’s
directly in the sample-time domain. The controller pertains to the class of speed gradient
adaptive control systems. This controller was developed in (Jordán and Bustamante, 2011)
and shows clearly advantages in stability over the same digital speed-gradient controller
which is first designed in continuous time and finally translated to discrete time. One starts
from the fact that the UUV dynamics, together with the control communication link in the
feedback, involves a considerable delay. In this work, we depart from a hypothesis that an
optimal sampling time for the control stability should have some upper limit for the stability
in the presence of pure delays, disturbances in the samples and rapid desired maneuvers.
To support our hypothesis, we close the analysis with a classification of certain influence
variables on the stability and performance of the proposed digital adaptive control system.

2. UUV dynamics

Let η= [x, y, z, ϕ, θ, ψ]
T

be the generalized position vector of the UUV referred to an
earth-fixed coordinate system termed O′, with displacements x, y, z, and rotation angles
ϕ, θ, ψ about these directions, respectively. The motions associated to the elements of η are
referred to as surge, sway, heave, roll, pitch and yaw, respectively.

Additionally let v= [u, v, w, p, q, r]
T

be the generalized rate vector referred on a vehicle-fixed
coordinate system termed O, oriented according to its main axes with translation rates u, v, w
and angular rates p, q, r about these directions, respectively.

The vehicle dynamics with a time delay in the communication system, is described by the
ODE (cf. Jordán and Bustamante, 2009a; cf. Fossen, 1994)

.
v=M

−1
(

−C[v]v−D[|v|]v−g[η] + τc + τ(t − Td)
)

(1)

.
η=J[η](v+vc). (2)

Here M, C and D are the inertia, the Coriolis-centripetal and the drag matrices, respectively
and J is the matrix expressing the transformation from the inertial frame to the vehicle-fixed
frame. Moreover, g is the restoration force due to buoyancy and weight, τ is the generalized
propulsion force whose action is delayed Td seconds, τc is a generalized perturbation force
(for instance due to cable tugs in ROV’s) and vc is a velocity perturbation (for instance the
fluid current in ROV’s/AUV’s), all of them applied to O.
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From now on, brackets are employed to indicate functional dependence and parenthesis to
denote common factor. Besides vectors are indicated in bold, variables in italics and matrices
in capital letters.

Notice from (1) the nonlinear dependence of C, D and g with the states v and η.

Moreover, we will concentrate henceforth on disturbed measures ηδ and vδ, and not on
exogenous perturbations τc and vc, so we have set τc=vc=0 throughout the Chapter. For
more explanations about the influence of τc and vc on adaptive guidance systems see (Jordán
and Bustamante, 2008; Jordán and Bustamante 2007), respectively.

3. Sampled-data behavior

For the continuous-time dynamics there exists an associated exact sampled-data dynamics
described by the set of sequences {η[ti], v[ti]}= {ηti

,vti
} for the states η[t] and v[t] at sample

times ti with a sampling rate h. When measures are affected with noise values {δηtn
,δvtn

},

we use {ηδ[ti],vδ[ti]}=
{

ηδti

,vδti

}

= {ηtn
+δηtn

,vtn
+δvtn

} instead.

Since the pure delay period is supposed to be originated in the control communication
system, we will assume in some particular scenarios that Td in (1), satisfies

Td = d h = d0 h + δd h, (3)

which is saying that d is a variable integer, while d0 is a constant positive integer and δd

a sign-undefined integer representing a perturbation that fulfills d0 ≥ |δd| ≥ 0 and d can
range between 0 and 2d0. Another feature of the communication hardware is that the sample
times ti of the instrument (from Gyro and DVL for instance) are indicated together with the
samples, and so, when these are transmitted to the controller, the calculation of d is possible.

Now, let us rewrite the ODE (1)-(2) in a more compact form

v̇ = M
−1

p[η,v]+M
−1

τ (4)

η̇ = q[η,v], (5)

with p and q being Lipschitz vector functions located at the right-hand memberships of the
(1) and (2), respectively. Here no exogenous perturbation was considered as agreed above.

For further analysis, we can state a model-based predictor for one step or more steps ahead.
To this end it might employ high order approximators like Adams-Bashforth types, though
for perturbed states a simple Euler approximator is more convenient (Jordán and Bustamante,
2009b). So

vn+1 = vtn
+δvtn

+hM
−1

(

pδtn
+τn−d

)

(6)

ηn+1 = ηtn
+δηtn

+hqδtn
, (7)

where ηn+1 and vn+1 are one-step-ahead predictions. Herein it is valid with (1)-(2)
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pδtn
= −

6

∑
i=1

Ci. × Cvin
vδtn

−Dlvδtn
−

6

∑
i=1

Dqi |viδtn
|vδtn

−B1 g1n
−B2 g2n

(8)

qδtn
= Jδtn

vδtn
(9)

where Cvin
means Cvi [vδtn

], g1n
and g2n

mean g1[ηδtn
] and g2[ηδtn

] respectively, Jδtn
means

J[ηδtn
] and vitn

is an element of vtn . Additionally, the matricial product ".×" in (8) means an
element-by-element product between the matrices to both sides. Besides, the control action
τ is retained one sampling period h by a sample holder, so it is valid τn=τtn . We finally
remark that since p, q and r are Lipschitz continuous in the attraction domains in v and η,
then the samples, predictions and local errors all yield bounded.

4. Predictions

The accuracy of one-step-ahead predictions (6)-(7) with known perfect model and without
perturbation is defined by the local model errors as

εvn+1 = vδtn+1
−vn+1 (10)

εηn+1 = ηδtn+1
−ηn+1. (11)

with εηn+1 , εvn+1 ∈ O[h] and O being such a function that f [x] ∈ O[x] means that there exists
a neighborhood of x around null such that f [x]/x is bounded inside the neighborhood.

We have also the goal to predict states counteracting the negative influence of a delay in
them. In order to be able to produce a prediction of many steps in advance based upon the
last past information known, we can employ (6)-(7) tied in succession in many links of first
order.

So we attempt to construct the state predictions ηn+1 and vn+1 taken the sample at tn−d as
the unique support to predict at tn. We start with

vn−d+1=vδtn−d
+hM−1

(

rδn−d
+τn−d

)

, (12)

where vδtn−d
is the last sample known at the current time, M is some known lower matrix of

M and
rj=

6

∑
i=1

Ui. × Cvij
vj+U7vj+

6

∑
i=1

U7+i|vij
|vj+U14g1j

+U15 g2j
, (13)

where the matrices Ui will account for every unknown system matrix in pδtn
in (8) with some

appropriate value. We will return to these matrices Ui´s later in the controller design.

As there is no information of the sample at tn−d+1, the next prediction is with (12) included

vn−d+2=vδtn−d
+hM

−1

(rn−d+1+τn−d+1) +hM
−1 (

rδn−d
+ τn−d

)

. (14)
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It is noticing the difference between rδn−d
and rn−d+1 from the procedence of their variables,

namely rδn−d
is based upon the samples vδn−d

and ηδn−d
, while rn−d+1 is based upon the

predictions vn−d+1 and ηn−d+1.

For control purposes, the prediction for tn+1 will be necessary. This is

vn+1 = vδt
n−d

+hM
−1

d

∑
i=1

(rn+1−i+τn+1−i) +hM
−1 (

rδn−d
+τn−d

)

, (15)

ηn+1 = ηδt
n−d

+h

d

∑
i=1

qn+1−i+hqδn−d
. (16)

The same consideration between qδn−d
and qn−d+i (for i > 0) mentioned before can be said

as in the comparison made between rδn−d
and rn−d+i (for i > 0) with respect to samples and

predictions.

As the so-called local truncation error of the Euler method is bounded, it is for v

α0(h, δηti
,δvti

) = max
ti>0

∣

∣

∣

∣

vδti

−vi+1

h
−M

−1
(

rδi
+τi

)

∣

∣

∣

∣

, (17)

and since the Method is consistent, α0(h, 0, 0) goes to zero as h tends to zero, then global
error εvn+1 has a bound

|εvn+1 | ≤

(

δvtn−d
−

α0(h, δηti
,δvti

)

κv

)

e
κv(

T
d
h
+1)h, (18)

where κv is the Lipshitz constant of M
−1 (p[η,v]+τ). The same is said for η, where there

exists a Lipshitz constant κη of q[η,v] and it is valid

∣

∣εηn+1

∣

∣≤

(

δηtn−d
−

β0(h, δηti
,δvti

)

κη

)

e
κη(

T
d
h
+1)h, (19)

and

β0(h, δηti
,δvti

) = max
ti>0

∣

∣

∣

∣

ηδti

−ηi+1

h
−qδi

∣

∣

∣

∣

. (20)

Clearly from (18) and (19), for any Td > 0, the convergence of the predictions is ensured for
h tending to zero and with δη, δv uniformly null.
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5. Design of the controller

Let the control system in Fig. 1 be taken as the basic structure for the next development. The
guide system therein generates references in time, denoted by ηr(t), of a geometric path in
the 6-DOF with some desired kinematic, termed vr(ηr(t)), over it. Additionally, it is assumed
that the disturbances δηtn and δvtn acting on the samples are uniformly bounded.

We now postulate a functional of the path error energy

Qtn =
∽

η
T

tn

∽

ηtn
+

∽

v

T

tn

∽

vtn , (21)

with (see Jordán and Bustamante, 2011)

∽

ηtn
= ηtn−ηrtn

= ηn + εn−ηrtn
(22)

∽

vtn = vtn−J
−1

tn
η̇rtn

+J
−1

tn
Kp

∽

ηtn
=vtn+εvn

−J
−1

tn
η̇rtn

+J
−1

tn
Kp

∽

ηtn
, (23)

where Kp = K
T

p ≥ 0 is a design gain matrix affecting the geometric path errors. Clearly, if
∽

ηtn
≡0, then by (23) and (2), it yields vtn−vrtn

≡0.

Figure 1. Digital adaptive control system of an UUV with sample disturbances and pure time delay in the control communication

link

Then, replacing (6) and (7) in (22) for tn+1 one gets

∽

ηtn+1
=ηn+1+εn+1−ηrtn+1

=ηn+hqn+εn+εn+1−ηrtn+1
. (24)

Similarly, (6) and (7) in (23) for tn+1 one obtains

∽

vtn+1 = vtn+1−J
−1

tn+1
η̇rtn+1

+J
−1

tn+1
Kp

∽

ηtn+1
= (25)

= vn+hM
−1 (

rδn−d
+τn−d

)

+εvn
+εvn+1−J

−1

tn+1
η̇rtn+1

+J
−1

tn+1Kp
∽

ηtn+1
.
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The control goal is to construct the force τn so as to minimize Qtn asymptotically, with
∆Qtn := Qtn+1 − Qtn < 0

∆Qtn =
∽

η

T

tn+1

∽

ηtn+1
+

∽

v

T

tn+1

∽

vtn+1−
∽

η

T

tn

∽

ηtn
−

∽

v

T

tn

∽

vtn . (26)

Bearing in mind the presence of disturbances and model uncertainties, the practical goal
would be at least that {∆Qtn} decrease so as to ultimately remain bounded for tn → ∞. The
problem is now to construct the control action τn in such a way that this goal be achieved.

With (24), (25) and (21) in (26), one gets

∆Qtn =
((

I − hJtn J
−1

n Kp

)

ηn+hJtn

∽

vtn−hJtn
εvn−hJtn J

−1

n η̇rtn
− (27)

− hJtn J
−1

n Kp(εηn−ηrtn
) + εηn+εηn+1−ηrtn+1

)2
−

−
(

ηn+εηn−ηrtn

)2
+

+
(

vn+hM
−1

(rn+τn) + εvn+εvn+1−J
−1

tn+1
η̇rtn+1

+J
−1

tn+1
Kp

∽

ηtn+1

)2
−

−
(

vn+εvn−J
−1

tn+1
η̇rtn

+J
−1

tn
Kp

∽

ηtn

)2
.

The desired properties of (27) can be conferred through a suitable selection of τn. In
(Jordán and Bustamante, 2011) a flexible methodology for constructing τn was proposed
and could serve to support this control objective. We will briefly review it and add the
proper modifications attending the particularities of the pure-delay case.

Analyzing (27) we can conveniently split the control thrust τn into two terms as

τn = τ1n
+τ2n

, (28)

We notice that the choice

τ1n
=− Kvvn−

1

h
M

(

−J
−1

n+1η̇rtn+1
+J

−1

n+1Kp
∽

ηn+1

)

(29)

is the most convenient to compensate some sign-undefinite terms in (27) and to propitiate a

negative definite term in vn. Herein Kv = K
T

v ≥ 0 being another design matrix like Kp, but
affecting the kinematic errors.
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Thus

∆Qtn =
((

I − hJtn J
−1

n Kp

)

ηn

)2
−η

2
n
+

((

I − hM
−1

Kv

)

vn

)2

−v
2

n− (30)

−

(

J
−1

tn
η̇rtn

+J
−1

tn
Kp

∽

ηtn

)2

− η
2

rtn
+

(

−hJtn εvn−hJtn J
−1

n Kpεηn+εηn+εηn+1

)2

+

+2ε
T

ηn
ηrtn

−ε
2

ηn
+

(

εvn
+εv

n+1
−∆J

−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)2

−ε
2
vn
+

+2
((

I − hJtn J
−1

n Kp

)

ηn

)T (

−hJtn εvn−hJtn J
−1

n Kpεηn+

+εηn+εηn+1

)

− 2η
T

n

(

εηn−ηrtn

)

+2
((

I − hM
−1

Kv

)

vn

)T

(

εvn
+εv

n+1
−∆J

−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)

+

+
(

hM
−1

(pn−rn)
)T (

εvn
+εv

n+1
−∆J

−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)

−

−v
T

n
εvn

+
(

hJtn

∽

vtn+hJtn J
−1

n η̇rtn
+hJtn J

−1

n Kpηrtn
−ηrtn+1

)2

+

+2
((

I − hJtn J
−1

n Kp

)

ηn

)T (

hJtn

∽

vtn+hJtn J
−1

n η̇rtn
+hJtn J

−1

n Kpηrtn
−ηrtn+1

)

+

+
(

hM
−1

(pn−rn)
)2

+2
((

I − hM
−1

Kv

)

vn

)T
hM

−1

(pn−rn )−

−2v
T
n

(

−J
−1

tn
η̇rtn

+J
−1

tn
Kp

∽

ηtn

)

+
(

hM
−1

τn2

)2
+

+2
(

vn+hM
−1

(pn−rn) +εvn
+εvn+1−∆J

−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)T

hM
−1

τn2

where pn is defined as in pδtn
but with predictions vn and ηn instead of vtn and ηtn ,

respectively. Similarly Jn stays for J[ηn]. Additionally ∆J
−1

n+1 = J
−1

tn+1
− J

−1

n+1.

Finally, as seen in (30), the unique remaining design variable is τn2 .

A glance into (30) let us identify sign-undefinite terms which can not be compensated with
τn2 , precisely because they are functions of unknown global prediction errors εη , εv, and ∆J.
We can group them into the function
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f∆Q
1
[εηn ,εvn ] =

(

−hJtn εvn−hJtn J
−1

n Kpεηn+εηn+εηn+1

)2

+2ε
T

ηn
ηrtn

−ε
2

ηn
+ (31)

+
(

εvn+εvn+1−∆J
−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)2
−ε

2

vn
+

+2
((

I − hJtn J
−1

n Kp

)

ηn

)T (

−hJtn εvn−hJtn J
−1

n Kpεηn+

+εηn+εηn+1

)

+2
((

I − hM
−1

Kv

)

vn

)T

(

εvn+εvn+1−∆J
−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)

+

+
(

hM
−1

(pn−rn)
)T (

εvn+εvn+1−∆J
−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)

−

−v
T

n εvn+2
(

εvn+εvn+1−∆J
−1

n+1η̇rtn+1
+∆J

−1

n+1Kp
∽

ηtn+1

)T

hM
−1

τn2

which is consistent with εηn , εvn . So we have

∆Qtn=
((

I−hJtn J
−1
n Kp

)

ηn

)2

−η
2
n+

((

I−hM
−1

Kv

)

vn

)2

−v
2
n−

(

J
−1
tn

η̇rtn
−J

−1
tn+1

Kp
∽

ηtn

)2

−η
2
rtn

+

+ f∆Q1
[εηn ,εvn ]+a

(

hM
−1

τn2

)2

+b
T
n

(

hM
−1

τn2

)

+cn , (32)

where the last three terms conform a complete quadratic polynomial in τn2 with coefficients

a = h
2

(33)

bn = 2h(I−hK
∗

v)vn+2hM
−1

(pn−rn) (34)

cn =
(

hJtn

∽

vtn+hJtn J
−1

n η̇rtn
+hJtn J

−1

n Kpηrtn
−ηrtn+1

)2

+ (35)

+2
((

I − hJtn J
−1

n Kp

)

ηn

)T (

hJtn

∽

vtn+hJtn J
−1

n η̇rtn
+hJtn J

−1

n Kpηrtn
−ηrtn+1

)

+

+
(

hM
−1

(pn−rn)
)2

+2
((

I − hM
−1

Kv

)

vn

)T

hM
−1

(pn−rn)−

−2v
T

n

(

−J
−1

tn
η̇rtn

+J
−1

tn
Kp

∽

ηtn

)

,

with K
∗

v being an auxiliary matrix equal to K
∗

v = M
−1

Kv.

Clearly, for eliminating these terms we need to implement one of the roots of the polynomial,
it is

τ2n
=M





−bn

2a
±

1

2a

√

b
T

nbn−4acn

6
1



 , (36)
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with 1 a vector with all elements equal one. However, there are some variables and
parameters in these coefficients that are not known. So we can approximate them to

ā = h
2

(37)

bn = 2h(I−hK
∗

v)vn (38)

c̄n =
(

hJn
∽

vn+hη̇rtn
+hKpηrtn

−ηrtn+1

)2

+ (39)

+2
((

I − hKp
)

ηn
)T (

hJn
∽

vn+hη̇rtn
+hKpηrtn

−ηrtn+1

)

+

−2v
T

n

(

−J
−1

n η̇rtn
+J

−1

n Kp
∽

ηn

)

.

Finally we get the second component of τn in an implementable way

τ2n
=M





−bn

2ā
±

1

2ā

√

b
T

nbn−4ācn

6
1



 . (40)

Introducing the expression of τn the functional remains

∆Qtn=
((

I−hJtn J
−1
n Kp

)

ηn

)2

−η
2
n+

((

I−hM
−1

Kv

)

vn

)2

−v
2
n−

(

J
−1
tn

η̇rtn
−J

−1
tn+1

Kp
∽

ηtn

)2

−η
2
rtn

+

+ f∆Q1
[εηn ,εvn ]+ f∆Q2

[εηn ,εvn ], (41)

where the new error f∆Q2
is

f∆Q2
[εηn ,εvn ] = h

(

bn−bn

)T





−bn

2ā
±

1

2ā

√

b
T

b−4ac̄

6
1



+ (cn − cn) = (42)

=
M

−1
(pn−rn)

T
(

2h(I−hK
∗

v)vn+2hM
−1
(pn−rn)

)

2h
+

+
M

−1
(pn−rn)

T

2h

√

b
T

b−4ac̄

6
1+ (cn − cn) .

The properties of the error functions f∆Q1
and f∆Q2

and their influence in the stability of the
control system is analyzed later. Previous to this task, we will illustrate the way we generate
the matrices Ui’s so as to calculate the variables ri in (13).
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6. Adaptive laws

The adaptation of the control behaviour to the unknown vehicle dynamics occurs by the
permanent actualization of the controller matrices Ui.

Let the following adaptive law be valid for i = 1, ..., 15

Uin+1

∆
= Uin

− Γi
∂∆Qtn

∂Ui
, (43)

with a gain matrix Γi = Γ
T

i ≥ 0 and
∂∆Qtn

∂Uin
being a gradient matrix for Uin

.

First we can define an expression for the gradient matrix upon ∆Qtn
in (30) but considering

that M is known. This expression is referred to the ideal gradient matrix

∂∆Qtn

∂Ui
= −2h

2
M

−T
(

M
−1

τ2n

)

(

∂rn

∂Ui

)T

− (44)

−2h
2
M

−T

M
−1
(pn−rn)

(

∂rn

∂Ui

)T

−

−2hM
−T

(I − hK
∗

v)
∽

vn

(

∂rn

∂Ui

)T

.

Now, in order to be able to implement adaptive laws like (43) we have to replace the unknown
M in (44) by its lower bound M. In this way, we can generate implementable gradient

matrices which will denote by
∂∆Qtn

∂Ui
with

∂∆Qtn

∂Ui
= −2h

2
M

−T
(

M
−1

τ2n

)

(

∂rn

∂Ui

)T

− (45)

−2h
2
M

−T

M
−1
(pn−rn)

(

∂rn

∂Ui

)T

−

−2hM
−T

(I − hK
∗

v)
∽

vn

(

∂rn

∂Ui

)T

,

and the property

∂∆Qtn

∂Ui
=

∂∆Qtn

∂Ui
+ ∆Uin

, (46)

where

∆Uin
= δM−2 Ain

+ δM−1 Bin
, (47)
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and δM−2 =
(

M
−T

M
−1

− M
−T

M
−1
)

≥ 0 and δM−1 =
(

M
−1

− M
−1
)

≥ 0. Here Ain
and Bin

are

sampled state functions obtained from (44) after extracting of the common factors δM−2 and
δM−1 , respectively.

It is worth noticing that ∆Qtn and ∆Qtn
, satisfy convexity properties in the space of elements

of the Ui’s.

Moreover, with (46) in mind we can conclude for any pair of values of Ui, say U
′

i and U
′′

i , it
is valid

∆Qtn (U
′

i )− ∆Qtn (U
′′

i ) ≤
∂∆Qtn (U

′′

i )

∂Ui

(

U
′

i − U
′′

i

)

≤ (48)

≤
∂∆Qtn

(U
′′

i )

∂Ui

(

U
′

i − U
′′

i

)

. (49)

This feature will be useful in the next analysis.

In summary, the practical laws which conform the digital adaptive controller are

Uin+1

∆
= Uin

− Γi
∂∆Qtn

∂Ui
. (50)

Finally, it is seen from (45) that also here the noisy measures ηδtn
and vδtn

will propagate into

the adaptive laws
∂∆Qtn

∂Ui
.

7. Stability analysis

It is worth noticing that the two first terms in (41) can satisfy
((

I − hJtn J
−1

n Kp

)

ηn

)2

−η
2

n < 0

by proper selection of Kp and the following two terms can fulfill
((

I − hM
−1

Kv

)

vn

)2

−v

2

n <

0 by proper selection of Kv and so the sign of ∆Qtn for any trajectories
∽

ηtn
and

∽

vtn and initial
conditions of them would be depending of error functions f∆Q1

and f∆Q2
only.

According to (18) and (19), we can argue that f∆Q1
in (31) and f∆Q2

in (42) are consistent with
εη and εv, it is, in absence of disturbances, they go to zero for h tending to zero. On the other
hand, by existing disturbances δηtn and δvtn , and any value of h, the maximal global errors
are proportional to the disturbances. Clearly, the more extensive the pure dead time Td, the
larger the magnitude of f∆Q1

and f∆Q2
, and this dependence is exponential.

To focus the stability problem in more detail, let first the controller matrices Ui’s to take
the values U

∗

i ’s. So, using these constant system matrices in (1), a fixed controller can be
designed.

For this particular controller we consider the resulting ∆Q
∗

tn
from (30) accomplishing
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∆Q∗
tn
=
((

I−hJtn J
−1
n Kp

)

ηn

)2

−η
2
n+

((

I−hM
−1

Kv

)

vn

)
2

−v
2
n−

(

J
−1
tn

η̇rtn
−J

−1
tn+1

Kp
∽

ηtn

)2

−η
2
rtn

+

+ f ∗
∆Q [εηn ,εvn δηtn ,δvtn ,M

−1
M], (51)

where f ∗
∆Qn

is the sum of f∆Q1
and f∆Q2

obtained from (31) and (42), but with the condition
pn=rn

f ∗
∆Qn

= f∆Q1n
[pn=rn] + f∆Q2n

[pn=rn]. (52)

Later, a norm of f ∗
∆Qn

will be indicated.

Since εηn+1 , εvn+1 , δη, δv ∈ l∞. Additionally, M
−1

M is bounded. Thus, one concludes f ∗
∆Qn

∈

l∞ as well.

So, it is noticing that ∆Q
∗

tn
< 0, at least in an attraction domain equal to

B =
{

∽

ηtn
,
∽

vtn ∈ R6 ∩ B∗
0

}

, (53)

with B∗
0 a residual set around zero

B∗
0=

{

∽

ηtn
,
∽

vtn∈R
6/∆Q

∗

tn
− f ∗

∆Qn
≤ 0

}

(54)

and with the design matrices satisfying the conditions

2
Jn J

−1

tn

h
> Kp > 0 (55)

2

h
I > K∗

v ≥ 0, (56)

which is equivalent to

2

h
M ≥

2

h
M > Kv ≥ 0. (57)

The residual set B
∗

0 depends not only on εηn+1 and εvn+1 and the measure noises δηtn and δvtn ,

but also on M
−1

M. In consequence, B
∗

0 becomes the null point at the limit when h → 0, δηtn ,
δvtn → 0 and M = M.
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7.1. Stability proof

The problem of stability of the adaptive control system is addressed in the sequel. Let a
Lyapunov function be

Vtn
= Qtn

+
1

2

15

∑
i=1

6

∑
j=1

(

∼
u

T

j

)

in+1

Γ−1
i

(

∼
u j

)

in+1

− (58)

−
1

2

15

∑
i=1

6

∑
j=1

(

∼
u

T

j

)

in

Γ−1
i

(

∼
u j

)

in

,

with
(

∼
u j

)

in

=

(

uj−u
∗

j

)

in

, where uj and u
∗

j are vectors corresponding to the column j of

the adaptive controller matrix Ui and its corresponding one U
∗

i in the fixed controller,
respectively. Then the differences ∆Vtn

= Vtn+1 − Vtn
can be bounded as follows

∆Vtn
= ∆Qtn

+
1

2

15

∑
i=1

6

∑
j=1

(

∆u
T
j

)

in

Γ
−1

i

(

(

∼
u j

)

in+1

+

(

∼
u j

)

in

)

(59)

= ∆Qtn
+

15

∑
i=1

6

∑
j=1

(

∆u
T

j

)

in

Γ
−1

i

(

∼
u j

)

in

−

−
1

2

15

∑
i=1

6

∑
j=1

(

∆u
T

j

)

in

Γ
−1

i

(

∆uj

)

in

≤ ∆Qtn
−

15

∑
i=1

6

∑
j=1

(

∂∆Qtn

∂uj

)T
(

∼
u j

)

in

≤ ∆Qtn
−

15

∑
i=1

6

∑
j=1

(

∂∆Qtn

∂uj

)T
(

∼
u j

)

in

≤ ∆Q∗
tn
< 0 in B ∩ B∗

0 ,

with
(

∆uj

)

in

a column vector of
(

Uin+1
−Uin

)

.

The column vector
(

∆uj

)

in

at the first inequality was replaced by the column vector

−Γi

(

∂∆Qtn

∂uj

)

and then by −Γi

(

∂∆Qtn

∂uj

)

in the right member according to (46) and (48)-(49).

So in the second and third inequality, the convexity property of ∆Qtn
in (48) was applied for

any pair
(

U′
= Uin

, U′′
= U

∗

i

)

.

This analysis has proved convergence of the error paths when real square root exist from
√

b
T

nbn−4āc̄n of (40).
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If on the contrary 4āc̄n > b
T

nbn occurs at some time tn, one chooses the real part of the
complex roots in (40). So a suboptimal control action is employed instead equal to

τ2n
=
−1

2a
M

−1
bn=

−M
−1

h
(I − hK∗

v)
∽

vtn , (60)

and yields a new functional ∆Q∗∗
tn

in

∆Vtn ≤ ∆Q
∗∗

tn
= ∆Q

∗

tn
+ c̄n −

1

4h2
b

T

nbn<0 in B ∩ B
∗∗

0 , (61)

where ∆Q
∗

tn
is (51) with a real root of (40) and B

∗∗

0 is a new residual set. It is worth noticing

that the positive quantity

(

c̄n − 1
4h2 b

T

nbn

)

can be reduced by choosing h small. Nevertheless,

B
∗∗

0 results larger than B
∗

0 in (59), since its dimension depends not only on εηn+1 and εvn+1 but

also on the magnitude of

(

c̄n − 1
4h2 b

T

nbn

)

.

This closes the stability and convergence proof.

7.2. Variable boundness

With respect to the boundness of the adaptive matrices Ui´s it is seen from (45) that the
gradients are bounded. Also the third term is more dominant than the remainder ones for h

small (h << 1), and so, the kinematic error
∽

vtn influences the intensity and sign of ∂∆Qtn
/∂Ui

more significantly than the others. From (43) one concludes than the increasing of |Ui| may
not be avoided long term, however some robust modification techniques like a projection
zone can be employed to achieve boundness. This is not developed here. The author can
consult for instance (Ioannou and Sun, 1996).

7.3. Instability for large sampling time and pure delay

Broadly speaking, the influence of the analyzed parameters will play a role in the instability
when the chosen h is something large, even smaller than one, because the quadratic terms
rise a turn off dominant in the error function f ∗

∆Qn
.

The study of this phenomenon is rather complex. It involves the function ∆Q
∗

tn
in (51) and

f ∗
∆Qn

in (52).

Qualitatively speaking, when

f ∗
∆Qn

<−
((

I−hJtn J
−1
n Kp

)

ηn

)2

+η
2
n−

((

I−hM
−1

Kv

)

vn

)
2

+v
2
n+

(

J
−1
tn

η̇rtn
−J

−1
tn+1

Kp
∽

ηtn

)2

+η
2
rtn

, (62)

the path trajectories may not be bounded into a residual set because the domain for the
initial conditions in this situation is partially repulsive. So, depending on the particular
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initial conditions and for h >> 0, or similarly for Td large, the adaptive control system may
turn unstable.

In conclusion, when comparing two digital controllers, the sensitivity of the stability to h
and indirectly the presence of large pure delays in the dynamics, is fundamental to draw out
robust properties and finally to range them.

8. Adaptive control algorithm

The adaptive control algorithm can be summarized as follows.

Preliminaries:

1) Estimate a lower bound M , for instance M = Mb (Jordán & Bustamante, 2011),

2) Select a sampling time h as small as possible,

3) Choose design gain matrices Kp and Kv according to (56)-(57), and simultaneously in order

to reduce f ∗
∆Qn

and ∆Q
∗

tn
(see related commentary in previous section),

4) Define the adaptive gain matrices Γi (usually Γi = αi I with αi > 0),

5) Stipulate the desired sampled-data path references for the geometric and kinematic
trajectories in 6 DOF´s: ηrtn

and vrtn
, respectively (see related commentary in previous

section),

Continuously at each sample point:

6) Calculate the control thrust τn with components τ1n
in (29) and τ2n

(40) (or (60)),
respectively,

7) Calculate the adaptive controller matrices (44) with the lower bound M instead of M,

Long-term tuning:

7) Redefine Kp, Kv and h in order to achieve optimal tracking performance.

Remark

For the present approach, we can summarize the different steps carried out in this Chapter
after the control design in order to determine its convergence properties and performance of
the control system:

a) Establishment of the adaptive laws for the designed controller using a lower bound of M
(Section 6),

b) Stability and convergence analysis of the control system to a residual set dependent of the
sign-undefinite terms f∆Q1

and f∆Q2
in (31) and (42), respectively, which depend on the pure

dead-time Td (Section 7). Moreover, the conjoint incidence of local model errors εηn+1 and

εvn+1 , measure noises δηtn and δvtn , and the product M
−1

M in the the convergence of state

trajectories to a residual set B
∗

0 is illustrated in (Section 7.1).
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c) Proof of boundness of the adaptive controller matrices Ui’s and the way to ensure this
(Section 7.2),

d) Analysis of a stability condition involving both huge sampling times and a large pure
delays (Section 7.3).

9. Case study

With the end of illustrating the features of our control system approach, we simulate a
path-tracking problem in 6 DOF´s for an underwater vehicle in a planar motion with some
sporadic immersions to the floor.

A continuous-time model of a fully-maneuverable underwater vehicle is employed for the
numerical simulations and a pure dead time in the control transmission was included. Details
of this dynamics are given in (Jordán & Bustamante, 2009a).

We present the simulation of the adaptive control algorithm summarized in the previous
section for an immersion in the depth (motion in the heave modus z) with translations aside
in the modes surge x and sway y simultaneously.

Fig. 2 illustrates the evolution of the six controlled modes of the UUV in the
descending. The initial conditions of the UUV at t0 were η(0)=[1.1; 1.1; 1.1; 0.1; 0.1; 0.1] and
v(0)=[0.1; 0.1; 0.1; 0.1; 0.1; 0.1]. The design matrices were set in Kp = Kv = I. The sampling
period was selected h = 0.1 s.

It is seen that after a short transient, which is not longer than 7 s, the UUV is positioned at the
coordinates to the start point. Then it begins to the maneuver of descending. In the meantime
the matrices Ui’s are adapted and the path tracking result asymptotically convergent with
unappreciated stationary errors. The predictors are sufficiently accurate during the evolution
of the states.

In the simulation, between 20 s and 30 s, it can be seen a high interaction between the
traslational modes which are tracked (namely: x, y, z) and the rotational modes which are
regulated about zero only (namely: ϕ, θ, ψ). In the last ones, it one observes a significant
variation of these magnitudes. However, this is reasonable considering the dynamics with
large dead-times we are dealing with.

10. Conclusions

Often in complex digital control systems, for instance digital adaptive controllers in
conjugation with complex dynamics with high degree of state interaction, the role played
by the sampling time h is the algid point in the stability and control performance analysis.
This is so because of the potential instability that may occur by improperly selected large
h. This phenomenon is commonly magnified when a dead time is present. In any case, the
appearance of perturbations and delays together in the dynamics makes the problem difficult
to seize and comprehend.

An important example which meets these particularities is found in the control problem
represented by the guidance of UUV´s in 6 DOF´s, which was taken here as case study.
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Figure 2. Evolution of the behaviour of a simulated UUV with adaptive control in all its modes.

Taking into consideration the hole of information caused by the presence of a pure delay in
the adaptive control, we employs a filter for estimation of the actual state vector based on past
measures together with a set of adaptive control matrices available over the delay period. The
control end in the design is the minimization of certain incremental functional of the path
energies of the geometric and kinematic errors. The control action can be then computed
from predictions, as well as from the updating of the adaptive laws which succeeds with a
support of filtered data at any discrete time.

We relate the stability and control performance with certain sign non-definite terms that are
present in the final incremental functional of energy. From therein it can be concluded about
the existence of an attraction domain and a residual set. This last one is influenced in size by
the local errors of predictions, the perturbations δ in the measurements and the pure discrete
delay d. It was clearly shown, that the presence of d does affect exponentially in magnitude
the size of the prediction errors, which may be critical for the control stability if h is not
selected sufficiently small.
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