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1. Introduction 

The human genome is one of the most complex molecular structures ever seen in nature. Its 

extraordinary information content has revealed a surprising mosaicims between coding and 

non-coding sequences [1-4]. This highly regionalized structure introduces complex patterns 

for understanding the gene structure and repetitive DNA sequence composition providing a 

new scenario to study biological process such as Lentivirus cDNA integration into host 

genome. In the field of genome analysis, bioinformatics provides the key connection 

between all different forms of data gathered by new high-throughput techniques such as 

systematic sequencing, expression arrays, and high throughput screenings among others. 

Although the success of bioinformatics in the genome analysis is undeniable, in some cases 

has complicated the relationship of computation with experimental biology. There is a need 

to attend to our pressing needs of bioinformatics applications without forgetting other, 

perhaps less evident but equally important, aspects of computation in biology. 

The study of particular systems is the source of inspiration that guides the formation of 

general ideas from specific cases to general principles. Therefore the systemic approach 

extends towards the study of fundamental biological questions, such as gene assembly, 

protein folding and the nature of functional specificity. Such issues extend beyond the 

current perception of bioinformatics as a support discipline and address aspects of 

biological complexity, including the simulation of molecular interaction networks.  

2. An overview to human genome 

The genome coding regions are defined, in part, by an alternative series of motifs 

responsible for a variety of functions that take place on the DNA and RNA sequences, such 

as, gene regulation, RNA transcription, RNA splicing, and DNA methylation. For example, 
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sequencing of the human genome revealed a controversial number of interrupted genes 

(25,000-32,000) with their regulatory sequences [1, 2] representing about 2% of the genome. 

These genes are immersed in a giant sea of different types of non-coding sequences which 

make up around 98% of the genome. The non-coding regions are characterized by many 

kinds of repetitive DNA sequences, where almost 10.6% of the human genome consists of 

Alu sequences, a type of SINE (short interspersed elements) sequence [3]. [Alu] elements are 

not randomly distributed throughout the genome but rather are biased toward gene-rich 

regions [5]. They can act as insertional mutagens and the vast majority appears to be 

genetically inert (6). LINES, MIR, MER, LTRs, DNA transposons, and introns are other kinds 

of noncoding sequences, which together conform about 86% of the genome. In addition, 

some of these sequences are overlapped one to another, for example, the CpG islands (CGI), 

which complicates analysis of the genomic landscape. In turn, each chromosome is 

characterized by some particular properties of structure and function.  

3. Human lentiviral integration 

The two closely related human lentiviruses HIV-1 and HIV-2 are responsible for the 21th 

century AIDS pandemic [7-9]. Most current therapeutic approaches use combinations of 

antiviral drugs that inhibit activities of viral enzymes such as reverse transcriptase, protease 

and integrase; nevertheless none of those have succeeded in controlling infection [10-12]. 

One option to overcome the problem is to explore new therapies that include the study of 

the integration dynamics of human Lentiviruses because it would permit to understand the 

underpinnings behinds of alterations of cellular homeostasis when a cell is infected [13]. 

Additionally, analysis of integration process is important in HIV-induced disease and in 

Lentivirus-based gene therapy [14]. 

Integration is a crucial step in the life cycle of retrovirus permitting the incorporation of viral 

cDNA into the host genome [15-17]. cDNA integration is mediated by the virally encoded 

integrase enzyme and other viral and cellular proteins in a molecular complex called the pre-

integration complex (PIC) [18]. One cellular factor involved in HIV targeting is the lens 

epithelium-derived growth factor (LEDGF) [19, 20], which binds to both HIV-1 integrase and 

chromatin, tethering the viral integration machinery to chromatin [21]. HIV-1 integration has 

been extensively studied using a wide array of molecular biology, biochemistry and structural 

biology approaches [22]. However, is critical to directly identify the viral distribution inside 

human genome in order to understand at genomic level the relationship between the 

composition and topology of chromatin and the target site selection. 

As shown by previous studies, the preferences in target site selection for integration are not 

entirely random [23-26]; being pronounced favored and disfavored chromosomal regions 

which differ among retroviruses [27]. These preferential regions of host genomes are 

characterized by having a high frequency of integrational events, as known as “hotspot” 

and are distributed along the genome of host cell [28, 29]. In HIV-1, most of proviruses are 

localized into transcriptionally active regions not only in exons and introns, but also in 

sequences around start transcription sites [30, 31].  
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An additional related study performed by Felice et al, 2009 [32] compared and contrasted 

the chromosomal integration patterns between gamma retrovirus (Moloney Leukemia virus, 

MLV) and Lentivirus (human immunodeficiency virus type 1, HIV-1), finding that gamma-

retroviral, but not lentiviral vectors, integrate in genomic regions enriched in cell-type 

specific subsets of transcription factors binding sites (TFBSs), independently from their 

relative position with respect to genes and transcription start sites. Therefore, is proposed 

that TFBSs could be differential genomic determinants of retroviral target site selection in 

the human genome.  

Several in vitro and in vivo studies have shown that HIV-1 integrate predominantly in active 

transcription units and in genome zones with high gene density, high frequency of Alu 

elements, low content of CpG islands and open chromatin regions [33]. Notwithstanding 

this evidence, the identification of particular characteristics of local chromatin that facilitate 

integration in a wider genomic manner still remains to be elucidated.  

The objective of the this chapter is to show the main results that our group of investigation 

have obtained of statistically testing those genomic variables that define a preferred 

genomic environment for human lentiviral integration and localize them in specific 

chromosome loci; moreover in the construction of gene/protein interaction networks among 

those cellular genes located around several Lentivirus integration sites in naturally infected 

humans as a systemic approach to better understand the lentiviral integration process. 

To test our hypothesis we conducted in silico studies of the integration profile in the 

genomic DNA of peripheral blood mononuclear cells (PBMCs) and macrophages for both 

human Lentiviruses (HIV-1 and HIV-2) in a window size analysis of 100K. The statistical 

analyses included several genomic variables such as the chromosomal loci, the numbers of 

CpG Island, protein coding genes, transcripts and also the distribution of SINEs, LINEs, 

LTRs and others; moreover the exploration genomic regions in which epigenetics 

mechanisms would be associated with the integration process. Together, the results allow us 

to propose common genomic environments that favor the target chromatin zones for both 

human Lentiviruses. 

4. Data mining and statistical analyses 

A total of 352 human genome sequences flanking the 5’LTR of human Lentiviruses (176 

sequences of HIV-1 [27] and 176 of HIV-2 [33] were obtained from GenBank (NCBI) under 

accession numbers: CL529260 to CL529766 (HIV-1) and DQ632388 to DQ632563 (HIV-2). 

Using the  BLAST algorithm  (NCBI; http://blast.ncbi.nlm.nih.gov/Blast.cgi), the sequences 

were aligned to the draft human genome (hg18) and those that met the following criteria 

were considered authentic integration sites: (i) contained the terminal 3’ end of the HIV-1 or 

HIV-2 LTR; (ii) had matching genomic DNA within five bp of the end of the viral LTR; (iii) 

had at least 95% homology to human genomic sequence across the entire sequenced region; 

(iv) matched a single human genetic locus with at least 95% homology across the entire 

sequenced region (v) had minimum size of 50 bp. 
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BLAST of NCBI and the BLAT algorithm of the Genome Browser (University of California, 

Santa Cruz, Human Genome Project) (http://www.genome.ucsc.edu/) were used to obtain 

information about coding protein genes (RefSeq), transcripts, CpG islands and repetitive 

elements. Additional genomic information included molecular process and molecular 

function, was obtained from Gene Ontology (GO) (http://www.geneontology.org/index.shtml), 

GenCard (http://www.genecards.org/cgi-bin/carddisp.pl) and Gene Entrez 

(http://www.ncbi.nlm.nih.gov/ncbi/geneentrez). The chromosomal localization of the HIV-1 and 

HIV-2 proviruses was identified using the G pattern banding of each chromosome, as 

proposed by the Paris Conference (1971) [35], with updating of 850 times resolution. As the 

highest number of HIV-1 and HIV-2 proviruses was recorded on chromosome 17, an 

extensive characterization of its chromatin structure was performed including the genomic 

information available  in several  platforms of the Genome Browser: shows the CpG islands 

and distribution of its methylation; of histone H3 in the Lysine 4 and 27 methylation data 

obtained from ENCODE Histone modification by University of Washington CHIP-seq; 

Nucleosoma occupancy probabilities from A375 by Washington University and DNase1 

hypersensitivity (ENCODE University of Washington) in GM12878 cells. All statistical 

analyses were performed using STATISTICA 7 [35]. The Mann-Whitney test (Wilcoxon 

rank) was used to establish differences between HIV-1 and HIV-2 chromosomal integration. 

Differences in function, molecular process and cell localization were analyzed using the t-

test for independent samples. The Kolgomorov-Smirnov test was used for determining 

normality of data. In order to avoid an erroneous significance level for multiple comparisons 

a Bonferroni correction test was applied. To calculate the significant association among CpG 

numbers, genes numbers and integrations multiple regression analyses were performed. 

CpG numbers and genes per Mpb per chromosomes were determined from the NCBI and 

Ensemble databases (update 2010).  

5. Patterns of provirus distribution 

No significant differences were observed in the integration lymphocytic profiles between 

HIV-1 and HIV-2 (p>0.05, Mann-Whitney test). The integrational events for both human 

Lentiviruses were recorded in all chromosomes except the Y (figure 1). However, significant 

differences between the number of HIV-1 and HIV-2 provirus were observed for 

chromosomes 4, 8, 9, 11 and 16 (p<0.05, X2 test). Most of the total integrations (39/352) 

occurred in chromosome 17 (figure 1). A tendency to a differential distribution of provirus 

towards telomeric and subtelomeric regions of the most of human chromosomes was 

observed. In this sense, other authors showed that centromeric alphoid repeat regions are 

disfavored as integration sites [36]. Although proviruses were observed in all chromosomes, 

we identified some chromatin regions with only HIV-1 integrations in chromosomes 4, 6 

and 9 and only HIV-2 in chromosome 21. 

5.1. Functional characterization of genes flanking integration sites 

The ontology of genes hosting HIV integrations events were analyzed using G.O (Gene 

Ontology from NCBI). 83% (146/176) of HIV-1 and 77% (135/176) of HIV-2 integrations 
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occurred close to chromatin regions containing protein coding genes (p>0.05, t-student test). 

In a 100Kb extension of chromatin that harbored both HIV-1 and HIV-2 proviruses no 

differences were observed for the gene functional categories (p>0.05, Bonferoni´s correction). 

According to molecular function, 46% of HIV-1 integrations and 57% of HIV-2 were 

associated with molecular binding, while 19% and 18% respectively occurred in regions that 

code for genes associated with enzymatic function (figure 2a). Otherwise an exploring about 

the biological process revealed a preferential integration in a collection of genes involved in 

metabolism and gene expression for HIV-1 (36%) and HIV-2 (37%) (p>0.05, Bonferoni´s 

correction) (figure 2b).  

 

Figure 1. Chromosomal loci where 352 HIV-1 and HIV-2 cDNA have integrated into the human 

genome. Localization  of chromosomal sequences matching both lentivirus are indicated in the 

graphics. Upper for each chromosome. Blue lines identify HIV-2 integrations and red lines identify 

HIV-1 integrations. 

5.2. Distribution of the repetitive elements flanking integration sites 

A low number of repetitive elements including SINEs, LINEs and LTRs were identified 

associated with provirus in an extension of 100Kb of flanking host chromatin. In general, 

there were no differences in the distribution of repetitive elements categories (SINEs, LINEs 

and LTRs) between HIV-1 and HIV-2 integrations (p>0.05, X2 test). Our results showed that 
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both lentiviruses had a preferential integration close to Alu elements which correspond to 

SINEs. Within LINEs, differences among L1, L2 and L3 were recorded. The other class of 

repetitive elements like LTR, simple repeats and low complexity represented a minor 

proportion of the integration associated chromatin (figure 3). 

 

Figure 2. Functional characterization of the coding protein genes located in genome regions around 100 

kb of human lentivirus. (a) Molecular function by GO of genes associated with HIV-1 and HIV-2 

integration. (b) Biological process by GO of genes associated with HIV-1 and HIV-2 integration. Blue 

blocks correspond to HIV-1. Red blocks to HIV-2 

5.3. Definition of the common genomic environment of integrations 

As the integration do not follow a random model [23-25], some characteristics of the 

chromatin associated with regions with high level of provirus integration, support the 

hypothesis that a preferential integration is conditioned by structural and functional states 

of local chromatin; these states are defined by several genomic variables which were studied 

in this work, and together would define genomic environments.  
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The results of multiple-regression analysis conducted on the HIV-1 and HIV-2 data sets 

showed that there were differential distributions of CpG island, genes, and Alu elements 

that together conditioned a specific genomic environment per chromosome (R2=0.91, 

p<0.05). Gene density was the independent variable contributed most in the prediction of 

the dependent variable (integrations) due to the highest regression coefficients (B= 0.83; 

p<0.05). The highest relative likelihood of hosting a lentiviral integration event in the human 

genome was registered in chromosome 17 (figure 4a). To test that integration events are 

favored by gene-rich regions in all chromosomes, a comparison between those variables was 

done indicating that a high gene density in chromatin regions determine a favorable 

environment for integration, even when the chromosome 17 is excluded  (Figure 4b). 

Because chromosome 17 registered the highest percentage of Lentiviral integration events, a 

detailed analysis of chromatin structure correlating several variables that give data about 

the cellular chromatin status was performed. In general the distal chromatin regions of p 

and q arms showed similarities in the distribution of methylation in CpG islands, 

methylation in several lysine residues of histone H3 (K4, K27 and K36) and variable levels of 

open chromatin and nucleosome occupancy (figure  5a and b). 

 

Figure 3. Frequencies of several repetitive elements associated with regions of 100 kb around the HIV-1 

and HIV-2 proviruses. SINEs, short interspersed nuclear element; LINEs, long interspersed nuclear 

element. 

Experimental studies have demonstrated that regulatory regions in general and promoters 

in particular, tend to be DNase sensitive and are target for integration of the majority of 

retroviruses [37, 38]. In 2006, the complete nucleotide sequence of chromosome 17 was 

published [39]. This chromosome is rich in protein coding genes, having the second highest 

gene density in the genome, (16.2 genes per Mb), with a relative excess of short interspersed 

elements (SINEs, 22.3%) and a deficit of long interspersed elements (LINEs, 14.4%). 

Likewise, this chromosome has high average CpG content (45.5%) and high euchromatin 
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density [39] (figure 6). Our statistical analysis determined that chromosome 17 had the 

highest number of integrations, mainly concentrate towards the telomeres of both arms.  

 

Figure 4. Multiple-regression analysis among gene density, CpG island number, and frequency of HIV-

1 and HIV-2 proviruses including every human chromosome. A high statistical correlation is observed 

mainly for chromosome 17. (a) Analysis including all human chromosomes. (b) The same analysis but 

excluding chromosome 17. 

The most relevant relationship was related to the conformational state of chromatin 

including the nucleosomes occupancy, methylation of CpG Islands, DNase hypersensitive 

regions and transcriptionally active genes that are found in open-decondensed chromatin 

regions. These regions provide the environment for DNA regulatory processes such as DNA 

replication, repairs and transcription. Albanese et al. (2008) [40], found histone and IN 

acetylation may favor integration by tethering the virus to acetylated/decondensed regions 

of the chromatin. We concluded that the structural characteristics and the epigenetic 

modifications observed in those regions with high frequency of cDNA viral integrations 

would synergistically configure a local “genomic environment” that facilitates the target site 

selection during the retroviral integration. 

5.4. Construction of HIV-1 gene/protein networks  

Host-virus interactions is a complex level of systems information that permits a thorough 

understanding of how the virus exploits the host cell and uses the cellular machinery to 

integrate into host genome. Recently, the HIV-1 Human Protein Interaction Database 

(HHPID) registered 3959 interactions among 1452 human proteins and nineteen HIV 

proteins (fifteen of them structural and four intermediate proteins) [41].  
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Figure 5. Flash image of the Genome Browser showing the distribution of several characteristics of the 

chromatin along 9.5 Mb of the p and q arm representing 25% of chromosome 17. (a) p arm, (b) q arm. 

The figure shows the GC percentage for each: 5pb (black), refseq Genes (black), CpG islands (several 

tones of gray), levels of open chromatin (ENCODE, Duke) in GM12878 cells with DNasel and FAIRE 

(Formaldehyde Assisted Isolation of Regulatory Elements) (black), DNase1 hypersensitivity (ENCODE, 

University of Washington) in GM12878 cells (gray), pk (sites identified as signal peaks within FDR 0.5% 

hypersensitive zones), Hspots (zones identified using the HotSpot algorithm), and predicted 

nucleosome occupancy in A375 cells (black peaks). 

Previous studies have identified most of human cell pathways been disturbed by at least 

one interaction with an HIV-1 protein during the virus life cycle [42-44]. Those interactions 

are of two types: either direct, via host cell protein-viral proteins or indirect, such as 

regulatory interactions that alter expression of human genes [45, 46]; the signaling network 

cc-cytokine is both disrupted and exploited by HIV at various stages of infection. 22 

candidates human class E proteins were connected into coherent network by 43 different 

protein-protein interactions, in which AIP1 play a key role in linking complexes that act 
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early (TSG101/ESCRT-I) and late (CHMP4/ESCRT-III) in the HIV infection pathways [47, 

49]. Monocyte/macrophage infection is characterized by a viral dynamic substantially 

different from that of T lymphocytes. In fact, in vivo HIV infection of activated CD4-T 

lymphocytes accounts for the majority of the daily production of virus particles. However, a 

large number of lymphocytes are in a resting state, thus unable to sustain a complete and 

productive virus life cycle, and contribute only minimally to the daily virus production [50-

52]. Because of the limited HIV-induced cytopathic effect and of their ability to accumulate 

high levels of HIV particles in intracellular compartments, HIV-infected macrophages serve 

as a potentially important reservoir, and as “Trojan horses” exploited by the virus to favor 

its dissemination in different tissues. [53, 54]. 

Cytoscape v.2.63 [55] was also used to construct a gene expression network from two kinds 

of files: The first one from gene expression profiles as a text file (.pvals) that were imported 

of expression data microarray experiments (GEO profiles, NCBI). The second, as data 

annotation in text files (.sif) that corresponds to each one gene-gene interactions (online 

databases). In the first one, gene expression values were collected from the microarray data 

series GSE19236 composed by two Agilent platforms (GPL6480 and GPL6848) with 48 

samples of monocytes to macrophages, macrophages and dendritic cells. These are available 

from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO) repository (accession number GEO: GSE19236) and for our analysis, we selected all 

macrophages expression samples (GSM476720, GSM476721, GSM476722, GSM476723, 

GSM476724, GSM476725). To identify which genes were significant among samples in 

microarrays; considering a p-value< 0.001 as significant, an ANOVA test was calculated. 

Additionally, a Hierarchical clustering analysis of the samples using Euclidean Distance 

Method and mean linking were performed. MultiExperiment Viewer v4.1 [56] was applied 

to make the corresponding statistical analyses. Using data from BOND (Biomolecular 

Network Data Bank, http://bond.unleashedinformatics.com/Action), BioGird (Biological 

General Repository for Interaction Datasets, http://thebiogrid.org/), KEEG (Kyoto 

Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/), available online, a new 

file with the interaction data of 28 genes located close to integration sites was constructed.  

Cytoscape v2.6 was used for visualizing and analyzing the genetic interaction networks 

among 28 human macrophages genes and their interactions. BiNGO v2.6 plugin (Biological 

Networks Gene Ontology tool) was used to determine which Gene Ontology (GO) terms are 

significantly overrepresented in a set of genes. A hypergeometric test was applied to 

determine which categories were significantly represented (p-value< 0.01); significant value 

was adjusted for multiple hypotheses testing using the Bonferroni Family-wise error rate 

correction [57]. The network topology parameters were calculated using Network Analyzer 

plug-in, which includes network diameter, the number of connected pairs of nodes and 

average number of neighbors; it also analyses node degrees, shortest paths, clustering 

coefficients, and topological coefficients (Max Planck Institute Informatik).  

To identify active sub-networks as highly connected regions of the main network we used j 

ActiveModules plug-in that grouped genes according with significant p-values of gene 

expression over particular subsets of samples. The result shows active modules, listed 
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according to the number of nodes, and an associated Z-score. An active module with Z-

scores greater than 3.0 indicated significant response upon the conditions of the experiment. 

We kept the standard default values, as being the most effective for initial analyses (58). 

 

Figure 6. (A). Interaction values of 28 genes of human macrophages interrupted by HIV-1 cDNA 

integration. (B). Gene expression network in non HIV-1 infected macrophage. Visualization of gene 

network composed by 28 genes located close to regions with high frequency of HIV-1 provirus in 

human macrophages. These genes interact with 1202 genes through 2770 interactions. The network was 

constructed using Cytoscape. Each node corresponds to a gene and edges represent interactions among 

genes. The color gradient represents the expression values 

Eleven thousand and seven hundred and thirteen (11,713) significant genes of 41,000 probes 

were clustered in two significant different groups of cells; one of them included only 
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dendritic cells, meanwhile the second grouped monocyte to macrophages and macrophages 

which are sharing similar gene expression patterns. A total of 2,770 interactions among 28 

genes which were located closed to HIV-1 proviruses in human macrophages were 

recorded. AKT3 was gene with highest number of interactions (456), followed by FLT1 (381), 

STAT5A (356) and AXIN1 (328) (figure 6a). In contrast ZNF36, DYRK1A and RBMS3 genes 

had the lowest number of gene interactions. The normal macrophage gene network showed 

tree components: the main cluster composed by 26 macrophages genes and its interactions 

and two minor clusters in which ZNF36 gene was the central node with five interactions; 

and STX1A as central node with twelve interactions (Figure 6a).  

To further identify active sub-networks inside the main gene network, we performed an 

expression clustering analysis using p-values calculated by comparison of gene level 

expression among five macrophage samples. We found 5 subnetworks, in which the most 

significant active module was integrated by 222 genes with a score of 3.15 (p<0.01). Within 

them 12 genes related with provirus integration sites were found: AXIN1, NFAT5, STAT5A, 

FLT1, AKT3, HTT, RIPK2, DGCR8, WWOX, NRG1, DYRK1A and SLC2A14 (figure 6b). 

The GO functional significant categories in this active module showed enrichment for 

positive regulation of biological process and cell proliferation. Most of the genes identified 

in this sub-network were associated with cellular pathways that play significant role by 

modulating cell signaling networks including Wnt signaling, MAPK signaling and ErbB 

signaling.  

5.5. Effects on normal macrophage gene networks by HIV-1 integration 

In order to better understand the alteration of macrophages homeostasis by the HIV-1 

integration, our analyses were focused to simulate what are the effects of viral cDNA 

integration in the alteration of several gene expression networks in human macrophage. In 

general the topology of non-infected macrophage network gene was dramatically changed 

by the HIV-1 integration events that lead to turned off the expression of five genes by the 

integration of proviral cDNA (Figure 7).  

The evaluation of the several topological parameters such as clustering coefficient, shortest 

paths, network heterogeneity, the centralization, average number of neighbors and 

characteristic path length, showed a changed in the values of HIV-1 macrophage infected 

gene network, compared with normal macrophage network. The non- altered network was 

more condensed, had more number of interactions, was wide open rich in shortest paths 

and also was composed by one major component and two minor clusters being more 

heterogeneous and multi-functional (table 1). 

Statistical differences between the topology states of two networks were registered for 

topological coefficients, closeness centrality and neighborhood connectivity distribution 

(Kolgomorov-Smirnov test p<0.05), but not in average clustering coefficient distribution. 

These results indicate that normal network was significantly more central and densely 

connected in comparison with that of HIV-1 macrophage infected network.  
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Figure 7. Effects in the topology gene expression network in macrophage by HIV-1 integration. (A) 

Normal macrophage genes expression network. (B) HIV-1 integration network when five macrophage 

genes were turned off. 

 

Parameter Normal macrophage HIV-1 infected macrophage 

Clustering coefficient 0.30 0.04 

Connected components 3 3 

Shortest paths 94% 90% 

Network heterogeneity 5.63 3.75 

Centralization 0.34 0.21 

Avg. number of neighbors 4.2 2.70 

Characteristic path length 3.30 4.13 

Table 1. Comparison of network parameter values in normal and HIV-1 infected macrophages. 

Using Random network plugin by Cytoscape we found the Clustering Coefficient of the 

non-infected Network and simulated infected Network in comparison with those generated 

at random showed not statistical differences (Kruskal-Wallis test, P= 0.317). The data 

confirmed that the topology of both reported networks have a strong support that the 

simulation of our gene network is valid.  

We test our hypothesis that integration HIV-1 generate disturbs in the gene expression 

having a global effect in cellular networks and essential biological pathways. The enriched 

GO terms were categorized for normal and infected macrophages networks to identify the 

functional cellular change by HIV-1 integration. From all the GO categories covered by the 

28 macrophages genes and its interactions, we have listed the ten most significant categories 

of the enriched GO terms in table 2. 

The Gene Ontology (GO) enrichment analysis that normal network was composed by 423 

significant functional categories of a total of 1190. These individual significant categories 
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could be further classified into two major groups; cell function regulation and signaling of 

biological process. In contrast HIV-1 infected macrophage gene network was enriched with 

10 significant functional categories of a total of 40. The significantly overrepresented 

categories indicated that this emergent new gene network was composed by genes involved 

in metabolic process and DNA repair process.  

In this study we simulated at systemic level, the alterations of cellular pathways when HIV 

provirus integrates into genes by turning them off and produce dysregulation of several 

local signaling pathways. One of the target gene associated with HIV-1 integration was 

AKT3, also called PKB, which is a serine/threonine protein kinase family member. It is 

involved in a wide range of biological processes including cell proliferation, differentiation, 

apoptosis, stimulating cell growth, and regulating other biological responses (59, 60). Also, it 

have been identified playing important roles of regulation in the G2/M transition of the  

cell cycle.  

 

Normal Network p-value b HIV-1 infected Network p-value b 

Signal transduction [GO-ID: 

7165] 

3,90E-123 Biopolymer biosynthetic process 

[GO-ID: 43284] 

6,27E-05 

Cell communication [GO-ID: 

7154] 

4,63E-120 Metabolic process [GO-ID: 8152] 8,00E-05 

Positive regulation of cellular 

process [GO-ID: 51242] 

1,39E-95 Macromolecule biosynthetic process 

[GO-ID: 9059] 

1,40E-03 

Positive regulation of 

biological process [GO-ID: 

48518] 

1,93E-92 Biosynthetic process [GO-ID: 9058] 2,43E-03 

Biological regulation [GO-ID: 

65007] 

1,45E-88 alcohol metabolic process [GO-ID: 

6066] 

3,19E-03 

Intracellular signaling cascade 

[GO-ID: 7242] 

1,40E-86 Maintenance of fidelity during 

DNA-dependent DNA replication 

[GO-ID: 45005] 

6,24E-03 

Regulation of cellular process 

[GO-ID: 51244] 

2,29E-85 Mismatch repair [GO-ID: 6298] 6,24E-03 

Regulation of biological 

process [GO-ID: 50791] 

2,65E-84 Furaldehyde metabolic process [GO-

ID: 33859] 

6,68E-03 

Phosphate metabolic process 

[GO-ID: 6796] 

3,01E-80 Age-dependent response to reactive 

oxygen species during chronological 

cell aging [GO-ID: 1320] 

6,68E-03 

phosphorus metabolic process 

[GO-ID: 6793] 

3,01E-80 oxidation reduction [GO-ID: 55114] 6,90E-03 

a. The description of the gene ontology biological processes and the corresponding gene ontology identifiers are given. 

b. p-Value calculated as an  exponential function. 

Table 2. The top 10 of significant biological process of normal and HIV-1 infected macrophages 

networks a.  
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AKT3 via JNK interacts with NFTA and Jun that are targets for the HIV-1 macrophage 

integration network and are included in the mitogen-activated protein kinase (MAPK) 

cascade which perform essential functions such as proliferation, survival and inflammation, 

apoptosis in all cell types. This pathway is associated with others that include the 

phosphatidylinositol signaling system, Wnt signaling pathway, ERK5 pathway, P53 

signaling pathway. (61-63). According with these previous data, we propose that, when 

AKT3 is turned off by HIV-1 integration, the cross talk with others is disrupted leading to a 

signaling dysfunction of metabolic associated pathways. When AKT3 was inactive the direct 

interaction with MKK7 produce a disruption of JNK and after with JUN that would result in 

a non activation by phosphorilation of apoptotic and cell cycle process. On the other hand 

inactivation of the MAPK pathway in both macrophages and dendritic cells leads to 

inhibition of proinflammatory cytokine secretion, downregulation of co-stimulatory 

molecules such as CD80 and CD86, and ineffective T cell priming. The net result is an 

impaired innate and adaptive immune response (64, 65). 

Recently it have been reported that HIV-1 infection triggers the activation of the PI3K/Akt 

cell survival pathway in primary human macrophages as reflected by decreased PTEN 

protein expression and increased Akt kinase activity and renders these cells resistant to 

cytotoxic insults (54, 61, 64, 65). As result of HIV-1 integration close to AKT3, PTEN, AKT1 

and 2, FOXO 1 and MDM2 that are included into the macrophage gene network, would 

expected a disruption of the apoptotic process. 

6. Conclusions 

We can conclude that a general effect of HIV-1 integrations in macrophages DNA is to 

disrupt several signaling pathways that control the normal cell homeostasis. Comparison 

between normal and infected macrophages of top 10 GO function categories showed the 

dramatic change of one non-infected macrophage whose main cellular functions are devoted 

to maintain a cell signaling crucial functions, to one infected in which the most important 

function are macromolecular biosynthetic process, maintenance of fidelity during DNA-

dependent DNA replication, mismatch repair, age-dependent response to reactive oxygen 

species during chronological cell aging and oxidation reduction. As HIV infected 

macrophage is an abnormal reservoir in which the metabolic cascades are altered, it is 

possible to propose that the metabolism of macrophage adapt to perform survival functions 

where the apoptotic process is interrupted and a SOS metabolism make that the macrophage 

change of its life style       

In silico studies are based upon statistical calculations which permit the drawing of 

generalizations about a biological process; however since some variables could affecting the in 

toto process, in order to get a real history of Lentivirus integration it would be important to 

consider that there is another factors, including physiological process and cellular 

compartments that would be influencing the in vivo integration site selection. Some of these are 

cell-cycle phase, the transcriptional state of the cell, the topology of chromosomal DNA, cell 

type infected, and presence of co-helper molecules during the PIC complex conformation 
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By providing these new testable hypotheses we hope that our results will accelerate 

experimental efforts to define a reliable disturbing in the gene complex relationship by 

lentivirus integration in PBMC and macrophages which are critical immune cells 

responsible for a wide range of immune functions and play multifaceted roles in HIV 

pathogenesis 

Author details 

Felipe García-Vallejo 

Physiological Sciences Department, Scientific Director of the Laboratory of Molecular Biology and 

Pathogenesis, School of Basic Sciences, Health Sciences Faculty, Universidad del Valle, Cali, 

Colombia 

Martha Cecilia Domínguez 

Laboratory of Molecular Biology and Pathogenesis, School of Basic Sciences, Health Sciences Faculty, 

Universidad del Valle, Cali, Colombia 

7. References 

[1] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar 

K,Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L,  

Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, 

Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al. 

(2001) Initial sequencing and analysis of the human genome. Nature. 409:860–921. 

[2] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, 

Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, 

Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, 

Zhang J, Miklos G.L. Gabor, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, 

Zinder N, et al. (2001) The sequence of the human genome. Science. 291:1304–1351. 

[3] International human genome sequencing consortium. (2004) Finishing the euchromatic 

sequence of the human genome. Nature. 431: 931-945. 

[4] Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, 

Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, 

Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, 

Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, 

Strausberg RL, et al 2007 The diploid genome sequence of an individual human. PLoS 

Biol. 5:e254. 

[5] Versteeg R, van Schaik BDC, van Batenburg MF, Roos M, Monajemi R, Caron H, 

Bussemaker HJ, van Kampen AHC (2003) The human transcriptome map reveals 

extremes in gene density, intron length, GC content, and repeat pattern for domains of 

highly and weakly expressed genes. Genome Research 13:1998-2004. 

[6] DeCerbo J, Carmichael GG (2005) SINEs point to abundant editing in the human 

genome. Genome Biology. 216:1-4. 



 
Systemic Approach to the Genome Integration Process of Human Lentivirus 71 

[7] United Nations AIDS Program on HIV/AIDS (2008). Report of the Global AIDS. 

UNAIDS/UN. 

[8] Simon V, Ho DD.and Karim QA (2007) HIV/AIDS Epidemiology, Pathogenesis, 

Prevention and Treatment. Lancet. 368: 489-504 

[9] Inciardi J.A. and Williams M.L Editor’s introduction: (2005) The global epidemiology of 

HIV and AIDS. AIDS Care. 17 (suppl 1): S1–8 

[10] Balakrishnan S (2009)  Alternative paths in HIV-1 targeted human signal  transduction 

pathways. BMC Genomics. 10 (Suppl 3), S30 

[11] Wang YJ, McKenna PM, Hrin R, Felock P, Lu M, Jones KG, Coburn CA and Grobler JA 

(2010) Assessment of the susceptibility of mutant HIV-1 to antiviral agents. J. virol 

methods. 165: 230-237. 

[12] Hanson K and Hicks C (2006) New antiretroviral drugs. Current HIV/AIDS Rep. 3: 93-

101. 

[13] Moore J.P. and Stevenson M : New Targets for Inhibitors of HIV-1 Replication. Nature 

Rev. 2000; 1: 40-49. 

[14] Cereseto A, and  Giacca M (2004) Integration site selection by retroviruses. AIDS Rev 6: 

13-21. 

[15] Coffin J.M: Retroviridae and their replication In Virology, ed. B.N. Fields et al., Raven 

Press, New York, 1996, pp. 1767–1848.  

[16] Sierra S, Kupfer B and Kaiser R (2005) Basics of the virology of HIV-1 and its 

replication. J. Clin. Virol. 34: 233-244 

[17] Hindmarsh P, Leis J (1999) Retroviral DNA integration. Microbiol mol. biol. rev. 63: 836-

84 

[18] Van Maele B, Busschots K, Vandekerckhove L, Christ F, and Debyser Z  (2006)  Cellular 

co-factors of VIH-1 integration. Trends biochem. sci. 31: 98–105. 

[19] Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S. and Hoffmann C 

(2005) Genome-wide analysis of retroviral DNA integration. Na.t rev. microbiol. 3: 848-58. 

[20] Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR and Bushman F 

(2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat. med. 11: 1287-9. 

[21] Ciuffi A (2008)  Mechanisms governing lentivirus integration site selection. Curr. gene. 

ther. 8: 419-29. 

[22] Lewinski M, Yamashita M, Emerman M, Ciuffi A, Marshall H, and Crawford G (2006)  

Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection. 

PLoS pathog. 2: 0611-0622 

[23] Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, Milne TA, Wang GG, Shun MC, 

Allis CD, Engelman A and Hughes SH  (2010)  Lens epithelium-derived growth factor 

fusion proteins redirect HIV-1 DNA integration. Proc. natl. acad. sci. USA. 107: 3135-40  

[24] Jordan A, Defechereux P, Verdin E  (2001) The site of HIV-1 integration in the human 

genome determines basal transcriptional activity and response to Tat transactivation. 

The EMBO J. 20: 1726-1738 

[25] Wu X, Li Y, Crise B, Burgess S.M (2003) Transcription start regions in the human 

genome are favored targets for MLV integration. Science. 300: 1749-1751 



 

Bioinformatics 72 

[26] Hematti P, Hong BK, Ferguson C, Adler R, Hanawa H, Sellers S, Ingeborg E (2004)  

Distinct Genomic Integration of MLV and SIV Vectors in Primate Hematopoietic Stem 

and Progenitor Cells. PLoS Biol. 2: E423 

[27] Rick SM, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD 

(2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site 

preferences. PLoS Biol .2: 1127-1137 

[28] Maxfield L, Fraize C, Coffin JM (2005) Relationship between retroviral DNA-integration-

site selection and host cell transcription. Proc natl. acad. Sci USA. 102: 1436-1441 

[29] Soto J, Peña A, Salcedo M, Domínguez MC, Sánchez A, García-Vallejo F (2010) 

Caracterización Genómica de la Integración In vitro del VIH-1 en células mononucleares 

de sangre periférica, macrófagos, y células T de Jurkat. Infectio. 14: 20-30 

[30] Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002)  HIV-1 integration 

in the human genome favors active genes and local hotspots. Cell. 110: 521–529 

[31] Derse D, Crise B, Li Y, Princler G, Stewart C, Connor F, Hughes H, Munroe D, Wu X ( 

2007)  HTLV-1 integration target sites in the human genome: comparison with other 

retroviruses. J. virol. 81: 6731-6741 

[32] Felice B, Cattoglio C, Cittaro D, Testa A, Miccio A, Ferrari G, Luzi L, Recchia A,  

Malivio, F (2009) Transcription Factors Binding Sites Are Genetic Determinants of 

Retroviral Integration in the Human Genome. PLoS One. 4: e4571 

[33] MacNeil A, Sankale JL, Meloni S, Sarr A, Mboup S,  Kanki P (2006)  Genomic Sites of 

Human Immunodeficiency Virus Type 2 (HIV-2) Integration: Similarities to HIV-1 In 

Vitro and Possible Differences In Vivo. J. virol. 80: 7316–7321 

[34] PARIS CONFERENCE. Supplement (1975) Standardization in human cytogenetic. 

Cytogenet. Cell Genet. 1971; 15: 203-238 

[35] STATSOFT, INC: STATISTICA (data analysis software system), 2004, version 7. 

Available on: www.statsoft.com 

[36] Carteau S, Hoffmann C, Bushman F (1998)  Chromosome structure and human 

immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a 

disfavored target. J. virol. 72: 4005–4014. 

[37] Taganov KD, Cuesta I, Daniel R, Cirillo LA, Katz RA (2004)  Integrase specific 

enhancement and suppression of retroviral DNA integration by compacted chromatin 

structure in vitro. J. virol. 78: 5848–5855. 

[38] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, 

Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A  (2004) International 

Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the 

human genome. Nature. 431: 931-945 

[39] Zodyl MC, Garber M, Adams D, Sharpe T, Harrow J, Ames R, Nicholson C  (2006)  

DNA sequence of human chromosome 17 and analysis of rearrangement in the human 

lineage. Nature. 440: 1045-1049 

[40] Albanese A, Arosio D, Terreni M, Cereseto A (2008)  HIV-1 Pre-Integration Complexes 

Selectively Target Decondensed Chromatin in the Nuclear Periphery. PLoS one. 3: 

e2413. doi:10.1371/journal.pone.0002413 



 
Systemic Approach to the Genome Integration Process of Human Lentivirus 73 

[41] Fu W, Sanders-Beer BE, Katz KS, Maglott DR, Pruitt KD, Ptak RG (2009) Human 

immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic 

acid. res. 37(Database issue):D417-22 

[42] Song, G, Ouyang G, Bao S  (2005)  The activation of Akt/PKB signaling pathway and cell 

survival. J. cell. mol. med. 9 (1): 59-71. 

[43] Balakrishnan S, Tastan O, Carbonell J, Klein-Seetharaman J (2009) Alternative paths in 

HIV-1 targeted human signal transduction pathways. BMC Genomics. 10 (Suppl. 3):S30. 

[44] Fu W, Sanders-Beer BE, Katz KS, Maglott DR, Pruitt KD, Ptak RG (2009) Human 

immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic 

acids res. 37: D417–D422. 

[45] Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics 

in vivo: virion clearance rate, infected cell lifespan, and viral generation time. Science. 

271 (5255):1582–1586. 

[46] Sirskyj D, Thèze J, Kumar A, Kryworuchko M (2008) Disruption of the cc cytokine 

network in T cells during HIV infection. Cytokine. 43 (1): 1–14. 

[47] von Schwedler UK, Stuchell M, Müller B, Ward DM, Chung HY, Morita E, Wang HE, 

Davis T, He GP, Cimbora DM, Scott A, Kräusslich HG, Kaplan J, Morham SG, 

Sundquist WI (2003) The protein network of HIV budding. Cell. 114 (6): 701–713. 

[48] Bandyopadhyay S, Kelley R, Ideker T (2006) Discovering regulated networks during 

HIV-1 latency and reactivation. Pac. symp. biocomput. 354–366. 

[49] Chun T, Carruth LM, Finzi D (1997) Quantification of latent tissue reservoirs and total 

body viral load in HIV-1 infection. Nature. 387:83–188. 

[50] Bagnarelli P, Valenza S, Menzo R, Sampaolesi PE, Varaldo L, Butini M, Montoni CF, 

Perno S, Aquaro A, Mathez D (1996) Dynamics and modulation of human 

immunodeficiency virus type 1 transcripts in vitro and in vivo. J. virol. 70 (11):7603–7613. 

[51] Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics 

in vivo: virion clearance rate, infected cell lifespan, and viral generation time. Science. 

271(5255):1582–1586. 

[52] Gendelman HE, Orenstein JM, Baca LM, Weiser B, Burger H, Kalter DC, Meltzer MS 

(1989) The macrophage in the persistence and pathogenesis of HIV infection. AIDS. 

3:475–495. 

[53]  Herbein G, Gras G, Khan KA, Abbas W (2010) Macrophage signaling in HIV-1 

infection. Retrovirology. 9:7–34. 

[54] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski 

B, Ideker T (2003) Cytoscape: a software environment for integrated models of 

biomolecular interaction networks. Genome res. 13 (11):2498–2504. 

[55] Saeed A, Bhagabati NK, Braisted JC, Liang W, Sharov W, Howe V, Li J, Thiagarajan M, 

White JA, Quackenbush J, (2006) TM4 microarray software suite. Methods enzymol. 

411:134–193. 

[56] Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plug-in to assess 

overrepresentation of gene ontology categories in biological networks. Bioinformatics. 

21 (16):3448–3449. 



 

Bioinformatics 74 

[57] Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and 

signalling circuits in molecular interaction networks. Bioinformatics. 18:S233–S240. 

[58] Maxfield L, Fraize C, Coffin JM (2005) Relationship between retroviral DNAintegration- 

site selection and host cell transcription. Proc natl acad.sci. 102 (5):1436–1441. 

[59] Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration 

in the human genome favors active genes and local hotspots. Cell. 110 (4):521–529. 

[60] Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ  (1994) JNK1: a 

protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-

Jun activation domain. Cell. 76:1025–1037. 

[61] Mordret G, (1993)  MAP kinase: a node connecting multiple pathways. Biol. cell. 79:193–

207. 

[62] Rao KM, (2001) MAP kinase activation in macrophages. J. Leukoc. Biol. 69 (1):3–10. 

[63] Osaki M, Oshimura M, Ito M ( 2004)  PI3K-Akt pathway: its functions and alterations in 

human cancer. Apoptosis. 9 (6):667–676. 

[64] Chugh P, Bradel-Tretheway B, Monteiro-Filho CM, Planelles V, Maggirwar SB, 

Dewhurst S, Kim B (2008) Akt inhibitors as an HIV-1 infected macrophagespecific anti-

viral therapy. Retrovirology. 5:11. 


