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1. Introduction

An option written on an underlying asset (e.g., stock) confers on its holder the right to receive

a certain payoff before or on a certain (expiration) date T. The payoff f (·) is a function of

the price of the underlying asset at the time of exercise (i.e., claiming the payoff), or more

generally, a functional of the asset price path up to the time of exercise. We focus here

on European options, for which exercise is allowable only at T, which are different from

American options, for which early exercise at any time before T is also allowed. For example,

the holder of a European call (resp. put) option has the right to buy (resp. sell) the underlying

asset at T at a certain (strike) price K. Denoting by ST the asset price at T, the payoff of the

option is f (ST), with f (S) = (S − K)+ and (K − S)+ for a call and put, respectively.

Black & Scholes [1] made seminal contributions to the theory of option pricing and hedging

by modeling the asset price as a geometric Brownian motion and assuming that (i) the market

has a risk-free asset with constant rate of return r, (ii) no transaction costs are imposed

on the sale or purchase of assets, (iii) there are no limits on short selling, and (iv) trading

occurs continuously. Specifically, the asset price St at time t satisfies the stochastic differential

equation

dSt = αSt dt + σSt dWt, S0 > 0, (1)

where α ∈ R and σ > 0 are the mean and standard deviation (or volatility) of the asset’s

return, and {Wt, t ≥ 0} is a standard Brownian motion (with W0 = 0) on some filtered

probability space (Ω,F , {Ft, t ≥ 0}, P). The absence of transaction fees permits the

construction of a continuously rebalanced portfolio consisting of ∓Δ unit of the asset for every

±1 unit of the European option such that its rate of return equals the risk-free rate r, where

Δ = ∂c/∂S (resp. ∂p/∂S) for a call (resp. put) whose price is c (resp. p). By requiring this

portfolio to be self-financing (in the sense that all subsequent rebalancing is financed entirely by

the initial capital and, if necessary, by short selling the risk-free asset) and to perfectly replicate

the outcome of the European option at expiration, Black & Scholes [1] have shown that the
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“fair” value of the option in the absence of arbitrage opportunities is the initial amount of

capital Ê{e−rT f (ST)}, where Ê denotes expectation under the equivalent martingale measure

(with respect to which St has drift α = r). Instead of considering geometric Brownian motion

St = S0 exp{(r − σ2/2)t + σWt}, it is convenient to work directly with Brownian motion Wt.

The fact that σWt and Wσ2t have the same distribution suggests the change of variables

s = σ2(t − T), z = log(S/K)− (ρ − 1/2)s (2)

with ρ = r/σ2. The Black-Scholes option pricing formulas Ê{e−r(T−t) f (ST) | St = S} are

given explicitly by c(s, z) = Keρs[ez−s/2Φ(z/
√−s − √−s) − Φ(z/

√−s)] for the call and

p(s, z) = Keρs[Φ(−z/
√−s) − ez−s/2Φ(−{z/

√−s − √−s})] for the put, where Φ is the

standard normal distribution function. Correspondingly, the option deltas are Δ(s, z) =
±Φ(±{z/

√−s −√−s}) with + for the call and − for the put.

In the presence of transaction costs, perfect hedging of a European option is not possible

(since it results in an infinite turnover of the underlying asset and is, therefore, ruinously

expensive) and trading in an option involves an essential element of risk. This hedging risk

can be characterized as the difference between the realized cash flow from a hedging strategy

which uses the initial option premium to trade in the underlying asset and bond, and the

desired option payoff at maturity. By embedding option hedging within the framework

of portfolio selection introduced by Magill & Constantinides [12] and Davis & Norman

[13], Hodges & Neuberger [15] used a risk-averse utility function to assess this shortfall

(or “replication error”) and formulated the option hedging problem as one of maximizing

the investor’s expected utility of terminal wealth. This involves the value functions of two

singular stochastic control problems, for trading in the market with and without a (short or

long) position in the option, and the optimal hedge is given by the difference in the trading

strategies corresponding to these two problems. The nature of the optimal hedge is that an

investor with an option position should rebalance his portfolio only when the number of units

of the asset falls “too far” out of line. For the negative exponential utility function, Davis et

al. [14], Clewlow & Hodges [11], and Zakamouline [20] have developed numerical methods

to compute the optimal hedge by making use of discrete-time dynamic programming on an

approximating binomial tree for the asset price; see Kushner & Dupuis [3] for the general

theory of Markov chain approximations for continuous-time processes and their use in the

numerical solution of optimal stopping and control problems. More recently, Lai & Lim

[18] introduced a new numerical method for solving the singular stochastic control problems

associated with utility maximization, yielding a much simpler algorithm to compute the buy

and sell boundaries and value functions in the utility-based approach.

The new method is motivated by the equivalence between singular stochastic control and

optimal stopping, which was first observed in the pioneering work of Bather & Chernoff [10]

on the problem of controlling the motion of a spaceship relative to its target on a finite horizon

with an infinite amount of fuel and has since been established for the general class of bounded

variation follower problems by Karatzas & Shreve [7, 8], Karatzas & Wang [9] and Boetius

[2]. By transforming the original singular stochastic control problem to an optimal stopping

problem associated with a Dynkin game, the solution can be computed by applying standard

backward induction to an approximating Bernoulli walk. Lai & Lim [18] showed how this

backward induction algorithm can be modified, by making use of finite difference methods
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if necessary, for the more general singular stochastic control problem of option hedging even

though it is not reducible to an equivalent optimal stopping problem because of the presence

of additional value functions.

In Section 2, we review the equivalence theory between singular stochastic control and

optimal stopping. We also outline the development of the computational schemes of Lai

& Lim [18] to solve stochastic control problems that are equivalent to optimal stopping. In

Section 3, we introduce the utility-based option hedging problem, outline how the algorithm

in Section 2 can be modified to solve stochastic control problems for which equivalence does

not exist, and provide numerical examples to illustrate the use of the coupled backward

induction algorithm to compute the optimal buy and sell boundaries of a short European

call option. We conclude in Section 4.

2. Singular stochastic control and optimal stopping

Bather & Chernoff [10] pioneered the study of singular stochastic control in their analysis of

the problem of controlling the motion of a spaceship relative to its target on a finite horizon

with an infinite amount of fuel. A key idea in their analysis is the reduction of the stochastic

control problem to an optimal stopping problem via a change of variables. This spaceship

control problem is an example of a bounded variation follower problem and the equivalence

between singular stochastic control and optimal stopping has since been established for a

general class of bounded variation follower problems by Karatzas & Shreve [7, 8], Karatzas

& Wang [9] and Boetius [2]. In this section, we review this equivalence for a particular

formulation of the bounded variation follower problem in which the control ξ+ − ξ− is

not applied additively to the Brownian motion {Zu} and outline the backward induction

algorithm for solving the equivalent Dynkin game.

2.1. A bounded variation follower problem and its equivalent optimal stopping

problem

Suppose that the state process S = {St, t ≥ 0} representing the underlying stochastic

environment (in the absence of control) is given by (1). In our subsequent application to

option hedging, S represents the price of the asset underlying the option, whereas in other

applications such as to the problem of reversible investment by Guo & Tomecek [21], S

represents an economic indicator reflecting demand for a certain commodity. A singular

control process is given by a pair (ξ+, ξ−) of adapted, nondecreasing, LCRL processes such

that dξ+ and dξ− are supported on disjoint subsets. We are interested in problems with a

finite time horizon, i.e., we consider the time interval [0, T] for some terminal time T ∈ (0, ∞).
Given any times 0 ≤ s ≤ t ≤ T, ξ+t+ − ξ+s and ξ−t+ − ξ−s represent the cumulative increase

and decrease, respectively, in control level resulting from the controller’s decisions over the

time interval [s, t], with ξ+0 = ξ−0 = 0. The total control value is therefore given by the finite

variation process

xt = x0 + ξ+t − ξ−t . (3)

A pair (ξ+, ξ−) is an admissible singular control if, in addition to the above requirements,

xt ∈ I for all t ∈ [0, T], where I is an open, possibly unbounded interval of R and I is its

closure.

105Singular Stochastic Control in Option Hedging with Transaction Costs
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Let F(t, S, x), κ±(t, S) and G(S, x) be sufficiently smooth functions, with F and G representing

the running and terminal reward, respectively, and κ± the costs of exerting control. The goal

of the controller is to maximize an objective function of the form:

Jt,S,x(ξ
+, ξ−) = Et,S,x

{

∫ T

t
e−r(u−t)F(u, Su, xu) du −

∫

[t,T)
e−r(u−t)κ+(u, Su) dξ+u

−
∫

[t,T)
e−r(u−t)κ−(u, Su) dξ−u + e−r(T−t)G(ST , xT)

}

,

where Et,S,x denotes conditional expectation given St = S and xt = x. The value function of

the stochastic control problem is

V(t, S, x) = sup
(ξ+ ,ξ−)∈At,x

Jt,S,x(ξ
+, ξ−), (t, S, x) ∈ [0, T]× (0, ∞)× I , (4)

where At,x denotes the set of all admissible controls which satisfy xt = x.

We derive formally the Hamilton-Jacobi-Bellman equation associated with the stochastic

control problem (4), which provides key insights into the nature of the optimal control.

Consider, for now, a smaller set Ak
t,x of admissible controls such that ξ± are absolutely

continuous processes, i.e., dξ±t = �
±
t dt with 0 ≤ �

+
t , �−t ≤ k < ∞. Under this restriction,

the value function (4) becomes

Vk(t, S, x) = sup
(�+ ,�−)∈Ak

t,x

Jk
t,S,x(�

+, �−), (t, S, x) ∈ [0, T]× (0, ∞)× I ,

where

Jk
t,S,x(�

+, �−)

= Et,S,x

{

∫ T

t
e−r(u−t)[F(u, Su, xu)− κ+(u, Su)�

+
u − κ−(u, Su)�

−
u

]

du + e−r(T−t)G(ST , xT)

}

.

Since the infinitesimal generator of the stochastic system comprising (1) and dxt = (�+t −
�
−
t ) dt (corresponding to (3) for absolutely continuous ξ±) is

αS
∂

∂S
+

σ2S2

2

∂2

∂S2
+ (�+ − �

−)
∂

∂x
,

the Bellman equation for Vk(t, S, x) is

max
0≤�+ ,�−≤k

{[

Lt,S + (�+ − �
−)

∂

∂x

]

Vk(t, S, x) + F(t, S, x)− κ+(t, S)�+ − κ−(t, S)�−
}

= 0,

where

Lt,S =
∂

∂t
+ αS

∂

∂S
+

σ2S2

2

∂2

∂S2
− r,
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or equivalently,

max
0≤�+ ,�−≤k

{[

∂Vk

∂x
(t, S, x)− κ+(t, S)

]

�
+ −

[

∂Vk

∂x
(t, S, x) + κ−(t, S)

]

�
−
}

+ Lt,SVk(t, S, x) + F(t, S, x) = 0, (t, S, x) ∈ [0, T)× (0, ∞)× I .

Assuming the value function to be an increasing function of x, the optimal control is obtained

by considering the following three possible cases (all the other permutations of inequalities

are impossible):

(i) If ∂Vk(t, S, x)/∂x − κ+(t, S) ≥ 0 and ∂Vk(t, S, x)/∂x + κ−(t, S) > 0, then the maximum is

achieved by �− = 0 and exerting control ξ+ at the maximum possible rate �+ = k.

(ii) If ∂Vk(t, S, x)/∂x − κ+(t, S) < 0 and ∂Vk(t, S, x)/∂x + κ−(t, S) ≤ 0, then the maximum is

achieved by �+ = 0 and exerting control ξ− at the maximum possible rate �− = k.

(iii) If ∂Vk(t, S, x)/∂x − κ+(t, S) ≤ 0 and ∂Vk(t, S, x)/∂x + κ−(t, S) ≥ 0, then the maximum is

achieved by not exerting any control, i.e., �+ = �− = 0, and Vk(t, S, x) satisfies the partial

differential equation (PDE) Lt,SVk(t, S, x) + F(t, S, x) = 0.

Thus, the state space [0, T]× (0, ∞)× I is partitioned into three regions, which we denote by

N (corresponding to no control), B (control ξ+ is exerted), and S (control ξ− is exerted). The

boundaries between the no-control region N and the regions B and S are denoted by ∂B and

∂S .

As k → ∞, the set Ak
t,x of admissible controls becomes the set At,x of problem (4) and the

state space remains partitioned into the regions N , B and S . If (t, S, x) ∈ B (resp. S), then the

control ξ+ (resp. ξ−) must be instantaneously exerted to bring the state to the boundary ∂B
(resp. ∂S). Thus, besides an initial jump from B or S to the boundary ∂B or ∂S (if necessary),

the optimal control process acts thereafter only when (t, S, x) ∈ ∂B or ∂S so as to keep the

state in N ∪ ∂B ∪ ∂S . Because the optimal process behaves like the local time of the (optimally

controlled) state process at the boundaries, such a control is termed singular. In B, since the

optimal control is to increase x by a positive amount δx (up to that required to take the state

to ∂B) at the cost of κ+(t, S) per unit increase, the value function satisfies the equation

V(t, S, x) = V(t, S, x + δx)− κ+(t, S)δx (in B).

Similarly, since the optimal control in S is to decrease x by a positive amount δx (up to that

required to take the state to ∂S) at the cost of κ−(t, S) per unit decrease, the value function

satisfies the equation

V(t, S, x) = V(t, S, x − δx)− κ−(t, S)δx (in S).

Letting δx → 0 leads to gradient constraints for the value function in B and S . In N , V(t, S, x)
continues to satisfy the PDE given in (iii) above. From these observations, we obtain the

following free boundary problem (FBP) for the value function V(t, S, x):

107Singular Stochastic Control in Option Hedging with Transaction Costs
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Lt,SV(t, S, x) + F(t, S, x) = 0 in N , (5a)

∂V

∂x
(t, S, x) = κ+(t, S) in B, (5b)

∂V

∂x
(t, S, x) = −κ−(t, S) in S , (5c)

V(T, S, x) = G(S, x). (5d)

It also follows that the Hamilton-Jacobi-Bellman equation associated with (4) is the following

variational inequality with gradient constraints:

max

{

Lt,SV(t, S, x) + F(t, S, x),
∂V

∂x
(t, S, x)− κ+(t, S), − ∂V

∂x
(t, S, x)− κ−(t, S)

}

= 0, (6)

(t, S, x) ∈ [0, T)× (0, ∞)× I .

With ρ = r/σ2 and β = α/σ2, a more parsimonious parameterization of (5) can be obtained

by considering the change of variables (2) (without K and with ρ replaced by β here since

the state process S has rate of return α under the “physical” measure rather than r under the

risk-neutral measure) and v(s, z, x) = e−ρsV(t, S, x). Applying the chain rule of differentiation

yields

∂V

∂S
=

eρs

S

∂v

∂z
,

∂2V

∂S2
=

eρs

S2

(

∂2v

∂z2
− ∂v

∂z

)

,
∂V

∂t
− rV = eρs

[

σ2 ∂v

∂s
−

(

α − σ2

2

)

∂v

∂z

]

.

We also define F̃(s, z, x) = er(T−t)F(t, S, x)/σ2 and κ̃±(s, z) = e−ρsκ±(t, S). Upon substitution

into (5), we arrive at the FBP

{

∂

∂s
+

1

2

∂2

∂z2

}

v(s, z, x) + F̃(s, z, x) = 0 in N , (7a)

∂v

∂x
(s, z, x) = κ̃+(s, z) in B, (7b)

∂v

∂x
(s, z, x) = −κ̃−(s, z) in S , (7c)

v(0, z, x) = G(ez, x), (7d)

Note that v(s, z, x) is the value function of the corresponding singular stochastic control

problem for the Brownian motion {Zu, u ≤ 0}:

v(s, z, x) = sup
(ξ+ ,ξ−)∈As,x

Es,z,x

{

∫ 0

s
F̃(u, Zu, xu) du −

∫

[s,0)
κ̃+(u, Zu) dξ+u

−
∫

[s,0)
κ̃−(u, Zu) dξ−u + G(eZ0 , x0)

}

, (8)

where Es,z,x denotes conditional expectation given Zs = z and xs = x.
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We now introduce the change of variables

w(s, z, x) =
∂v

∂x
(s, z, x), (s, z, x) ∈ [−σ2T, 0]× R × I . (9)

From (7) it follows that w solves the FBP

{

∂

∂s
+

1

2

∂2

∂z2

}

w(s, z, x) + φ(s, z, x) = 0 in N , (10a)

w(s, z, x) = κ̃+(s, z) in B, (10b)

w(s, z, x) = −κ̃−(s, z) in S , (10c)

w(0, z, x) = g(ez, x), (10d)

where φ(s, z, x) = ∂F̃(s, z, x)/∂x and g(·, x) = ∂G(·, x)/∂x. The FBP (10) can be restated as

an optimal stopping problem associated with a Dynkin game, for which w(s, z, x) is the value

function. Specifically,

w(s, z, x) = w(s, z, x) := sup
τ−∈T (s,0)

inf
τ+∈T (s,0)

Is,z,x(τ
+, τ−)

= w(s, z, x) := inf
τ+∈T (s,0)

sup
τ−∈T (s,0)

Is,z,x(τ
+, τ−), (11)

where T (a, b) denotes the set of stopping times taking values between a and b (> a), and

Is,z,x(τ
+, τ−) = Es,z,x

{

∫ τ+∧τ−

s
φ(u, Zu, xu) du + κ̃+(τ+, Zτ+ )I{τ+<τ−<0}

− κ̃−(τ−, Zτ− )I{τ−<τ+<0} + g(eZ0 , x0)I{τ−=τ+=0}

}

.

The Dynkin game is a “stochastic game of timing” in which there are two players P and

M, each of whom chooses a stopping time (τ+ and τ−, respectively) in T (s, 0). As long as

the game is in progress, P keeps paying M at the rate φ(s, z, x) per unit of time. The game

terminates as soon as one of the players decides to stop, i.e., at τ+ ∧ τ−. If player M stops first,

he pays P the amount κ̃−(τ−, Zτ− ). If player P stops first, he pays M the amount κ̃+(τ+, Zτ+ )
(resp. g(eZ0 , x0)) when the game terminates before (resp. at) the end of the time horizon 0. The

objective of P is to minimize his expected total payment to M whereas the objective of M is to

maximize this quantity.

In addition to the relationship (9) between the value functions v and w, the optimal

continuation region of the Dynkin game (11) coincides with the no-control region of the

singular stochastic control problem (8) in the sense that if (ξ+,∗, ξ−,∗) is an optimal control

of (8) and we define the stopping times τ+,∗ = inf{u ∈ [s, 0) : ξ+,∗(u) > 0} and τ−,∗ =
inf{u ∈ [s, 0) : ξ−,∗(u) > 0} (inf ∅ = 0), then (τ+,∗, τ−,∗) is a saddlepoint of the game with the

property that w(s, z, x) = Is,z,x(τ+,∗, τ−,∗).

109Singular Stochastic Control in Option Hedging with Transaction Costs
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2.2. Example: Reversible investment

Before we outline the computational algorithm for solving the Dynkin game (11), we give an

example in mathematical economics of a stochastic control problem which has the form (4).

In the notation of (4), the problem of reversible investment is one in which a company, by

adjusting its production capacity xt through expansion ξ+t and contraction ξ−t according to

market fluctuations St, wishes to maximize its overall expected net profit Et,S,x Jt,S,x(ξ
+, ξ−)

over a finite horizon. The net profit of such an investment depends on the running production

function F(t, S, x) of the actual capacity, the benefits of contraction κ−(t, S) ≡ K− < 0, and the

cost of expansion κ+(t, S) ≡ K+ > 0, with K+ + K− > 0. The economic uncertainty about St

(such as the price or demand for the product) is modeled by geometric Brownian motion (1).

Guo & Tomecek [21] studied the infinite-horizon (T = ∞) reversible investment problem

and provided an explicit solution to the problem with the so-called Cobb-Douglas production

function F(t, S, x) = Sλxμ, where λ ∈ (0, n), n = [−(α − σ2/2) +
√

(α − σ2/2)2 − 2σ2r]/σ2 >

0 and μ ∈ (0, 1]. The optimal strategy is for the company to increase (resp. decrease)

capacity when (S, x) belongs to the investment (resp. disinvestment) region B (resp. S). Here,

B = {(S, x) : x ≤ Xb(S)} and S = {(S, x) : x ≥ Xs(S)}, where Xi(S) = (S/νi)
λ/(1−α),

i = b, s, νb and νs are unique solutions to

α

λ − m
(νλ−m

b − νλ−m
s ) = − r

m
(K+ν−m

b + K−ν−m
s ),

α

n − λ
(νλ−n

b − νλ−n
s ) =

r

n
(K+ν−n

b + K−ν−n
s ),

and m = [−(α − σ2/2)−
√

(α − σ2/2)2 − 2σ2r]/σ2 < 0.

In the case of finite horizon (T < ∞), the investment and disinvestment regions have similar

forms but are not stationary in time, i.e., B = {(t, S, x) : x ≤ Xb(t, S)} and S = {(t, S, x) : x ≥
Xs(t, S)}. It is not possible to express the boundaries Xi(t, S) explicitly. We can solve for them

(after applying the change of variables (t, S, x) �→ (s, z, x) given by (2)) by making use of the

backward induction algorithm described in the next section; for details and numerical results,

see Lai et al. [16].

2.3. Computational algorithm for solving the Dynkin game

In view of the equivalence between the stochastic control problem (8) and the Dynkin

game (11), which is an optimal stopping problem with (disjoint) stopping regions B and S
coinciding with the control regions of (8) as well as continuation region N coinciding with

the no-control region of (8), it suffices to solve (11) rather than (8) directly. The backward

induction algorithm outlined below is similar to the algorithms studied by Lai et al. [17], for

which convergence properties have been established.

Suppose the buy and sell boundaries can be expressed as functions Xb(s, z) and Xs(s, z) such

that B = {(s, z, x) : x ≤ Xb(s, z)} and S = {(s, z, x) : x ≥ Xs(s, z)}. Whereas w(s, z, x) is

given by (10b) and (10c) in the buy and sell regions (i.e., the stopping region in the Dynkin

game), the continuation value of the Dynkin game is a solution of the partial differential

equation (10a) and can be computed using backward induction on a symmetric Bernoulli

random walk which approximates standard Brownian motion. Specifically, let Tmax denote
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the largest terminal date of interest, take small positive δ and ǫ such that N := σ2Tmax/δ is

an integer, and let Zδ = {0,±
√

δ,±2
√

δ, . . . } and Xǫ = {0,±ǫ,±2ǫ, . . . }. For i = 1, 2, . . . , N,

with s0 = 0, si = si−1 − δ, z ∈ Zδ, x ∈ Xǫ, the continuation value at si can be computed using

w̃(si, z, x) = δφ(si, z, x) + [w(si + δ, z +
√

δ, x) + w(si + δ, z −
√

δ, x)]/2 (12)

with w(0, z, x) = g(ez, x). The following algorithm allows us to solve for Xb(si, z) and Xs(si, z)
for z ∈ Zδ.

Algorithm 1. Let w(0, z, x) = g(ez, x) for z ∈ Zδ and x ∈ Xǫ. For i = 1, 2, . . . , N and z ∈ Zδ:

(i) Starting at x0 ∈ Xǫ with w̃(si, z, x0) < κ̃+(si, z), search for the first j ∈ {1, 2, . . . }
(denoted by j∗) for which w̃(si, z, x0 + jǫ) ≥ κ̃+(si, z) and set Xb(si, z) = x0 + j∗ǫ.

(ii) For j ∈ {1, 2, . . . }, let xj = Xb(si, z) + jǫ. Compute, and store for use at si+1,

w(si, z, xj) = w̃(si, z, xj) as defined by (12). Search for the first j (denoted by j∗) for

which w̃(si, z, xj) ≥ −κ̃−(si, z) and set Xs(si, z) = Xb(si, z) + j∗ǫ.

(iii) For x ∈ Xǫ outside the interval [Xb(si, z), Xs(si, z)], set w(si, z, x) = κ̃+(si, z) or

−κ̃−(si, z) according to whether x ≤ Xb(si, z) or x ≥ Xs(si, z).

The following backward induction equation summarizes this algorithm:

w(si, z, x) =

⎧

⎪

⎨

⎪

⎩

κ̃+(si, z) if w̃(si, z, x) < κ̃+(si, z),

−κ̃−(si, z) if w̃(si, z, x) > −κ̃−(si, z),

w̃(si, z, x) otherwise.

(13)

Lai et al. [17] have shown that under suitable conditions discrete-time random walk

approximations to continuous-time optimal stopping problems can approximate the value

function with an error of the order O(δ) and the stopping boundary with an error of the

order o(
√

δ), where δ is the interval width in discretizing time for the approximating random

walk. To prove this result, they approximate the underlying optimal stopping problem by a

recursively defined family of “canonical” optimal stopping problems which depend on δ and

for which the continuation and stopping regions can be completely characterized, and use an

induction argument to provide bounds on the absolute difference between the boundaries of

the continuous-time and discrete-time stopping problems as well as that between the value

functions of the two problems. Since the Dynkin game is also an optimal stopping problem

(with two stopping boundaries), their result can be extended to the present setting to establish

that (13) is able to approximate the value function (11) with an error of the order O(δ) and

Algorithm 1 is able to approximate the stopping boundaries Zi(s, x) := X−1
i (s, z), i = b, s,

corresponding to the optimal stopping problem (11) with an error of the order o(
√

δ). Further

refinements to the random walk approximations can be made by correcting for the excess

over the boundary when stopping cocurs in the discrete-time problem; for details and other

applications, see Chernoff [4], Chernoff & Petkau [5, 6] and Lai et al. [17].

3. Utility-based option theory in the presence of transaction costs

Consider now a risk-averse investor who trades in a risky asset whose price is given by the

geometric Brownian motion (1) and a bond which pays a fixed risk-free rate r > 0 with the
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objective of maximizing the expected utility of his terminal wealth Ω0
T . The number of units

xt the investor holds in the asset is given by (3), where x0 denotes the initial asset position and

ξ+t (resp. ξ−t ) represents the cumulative number of units of the asset bought (resp. sold) within

the time interval [0, t], 0 ≤ t ≤ T. If the investor pays fractions 0 < λ < 1 and 0 < μ < 1 of the

dollar value transacted on purchase and sale of the asset, the dollar value yt of his investment

in bond is given by

dyt = ryt dt − aSt dξ+t + bSt dξ−t ,

with a = 1 + λ and b = 1 − μ, or more explicitly,

yT = yte
r(T−t) − a

∫

[t,T)
er(T−u)Su dξ+u + b

∫

[t,T)
er(T−u)Su dξ−u .

Let U : R → R be a concave and increasing (hence risk-averse) utility function. We can

express the investor’s problem in terms of the value function

V0(t, S, x, y) = sup
(ξ+ ,ξ−)∈At,x,y

Et,S,x,y

[

U
(

Ω
0
T

)]

, (14)

where At,x,y denotes the set of all admissible controls which satisfy xt = x and yt = y, and

Et,S,x,y denotes conditional expectation given St = S, xt = x and yt = y. For the special case

of the negative exponential utility function U(z) = 1 − e−γz, which has constant absolute risk

aversion (CARA) γ, we can reduce the number of state variables by one by working with

H0(t, S, x) = 1 − V0(t, S, x, 0)

= inf
(ξ+ ,ξ−)∈At,x

Et,S,x

[

exp

{

γ

(

∫

[t,T)
er(T−u)Su(a dξ+u − b dξ−u )− Z0(ST , xT)

)}]

, (15)

where

Z0(S, x) = xS(aI{x<0} + bI{x≥0}) (16)

denotes the liquidated value of the asset by trading x units of the asset at price S to zero unit.

If the investor is presented with an opportunity to enter into a position in a European call

option written on the given asset, with strike price K and expiration date T, the problem can

be formulated in the same way as (14) but with Ω0
T replaced by Ωi

T with i = s indicating a

short call position and i = b indicating a long call position. The corresponding value functions

Vi(t, S, x, y) also admit reductions in dimensionality via Hi(t, S, x) = 1 − Vi(t, S, x, 0), but

with Z0(ST , xT) in (15) replaced by Zi(ST , xT). If the option is asset settled, then the writer

delivers one unit of the asset in return for a payment of K when the buyer exercises the option

at maturity T, so

Zi(S, x) = Z0(S, x − Δ
i(S)) + KΔ

i(S), i = s, b, (17)

where Δs(S) = I{S>K} (short call) and Δb(S) = −I{S>K} (long call). In the case of a cash settled

option, the writer delivers (ST − K)+ in cash at T, so

Zi(S, x) = Z0(S, x)− (S − K)Δi(S), i = s, b. (18)

As in Section 2.1, we apply the change of variables (2) (with ρ replaced by β = α/σ2) to

(15) and work with the resulting value function hi(s, z, x) = Hi(t, S, x). Corresponding to the
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definitions (16)–(18) of terminal settlement value are

A0(z, x) = xez(aI{x<0} + bI{x≥0}),

Ai(z, x) = A0(z, x − Di(z)) + Di(z) for asset settlement, i = s, b,

Ai(z, x) = A0(z, x)− (ez − 1)Di(z) for cash settlement, i = s, b,

with Ds(z) = I{z>0} (short call) and Db(z) = −I{z>0} (long call). For use in (22d) below, we

define Bi(z, x) := ∂Ai(z, x)/∂x, which are given explicitly by B0(z, x) = A0(z, x)/x and, for

i = s, b, Bi(z, x) = B0(z, x − Di(z)) under asset settlement and Bi(z, x) = B0(z, x) under cash

settlement. In the sequel, we fix i = 0, s, b and drop the superscript i in the value functions

(and associated quantities).

3.1. Associated free boundary problems and their solutions

The formulation of the option (pricing and) hedging problem as two stochastic control

problems of the form (14) goes back to Hodges & Neuberger [15]. Davis et al. [14] derived the

Hamilton-Jacobi-Bellman (HJB) equations associated with the control problems V(t, S, x, y)
and H(t, S, x) = 1 − V(t, S, x, 0) in the same way as we did in Section 2.1. By applying

the transformation h(s, z, x) = H(t, S, x) to their HJB equations, we obtain the following free

boundary problem (FBP) for h(s, z, x):

∂h

∂s
+

1

2

∂2h

∂z2
= 0, x ∈ [Xb(s, z), Xs(s, z)], (19a)

∂h

∂x
(s, z, x) = wb(s, z, x), x ≤ Xb(s, z), (19b)

∂h

∂x
(s, z, x) = ws(s, z, x), x ≥ Xs(s, z), (19c)

h(0, z, x) = exp{−γKA(z, x)}, (19d)

where

wb(s, z, x) = −aγKez+(β−ρ−1/2)sh(s, z, x), (20a)

ws(s, z, x) = −bγKez+(β−ρ−1/2)sh(s, z, x). (20b)

Associated with FBP (19) are three regions: B = {(s, z, x) : x ≤ Xb(s, z)} where it is optimal

to buy the (risky) asset, S = {(s, z, x) : x ≥ Xs(s, z)} where it is optimal to sell the asset, and

N = [−σ2T, 0]×R×R \ (B∪S) where it is optimal to not transact. Since ∂/∂s+(1/2)∂2/∂z2

is the infinitesimal generator of space-time Brownian motion, this means that while (s, Zs, xs)
is inside the no-transaction region, the dynamics of h(s, Zs, xs) is driven by the standard

Brownian motion {Zs, s ≤ 0}. In the buy and sell regions, it follows from (19b) and (19c)

that

h(s, z, x) = exp
{

−aγKez+(β−ρ−1/2)s[x − Xb(s, z)]
}

h(s, z, Xb(s, z)), x ≤ Xb(s, z), (21a)

h(s, z, x) = exp
{

−bγKez+(β−ρ−1/2)s[x − Xs(s, z)]
}

h(s, z, Xs(s, z)), x ≥ Xs(s, z). (21b)
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Finally, if we let w(s, z, x) = ∂h(s, z, x)/∂x, then w(s, z, x) satisfies the FBP

∂w

∂s
+

1

2

∂2w

∂z2
= 0, x ∈ [Xb(s, z), Xs(s, z)], (22a)

w(s, z, x) = wb(s, z, x), x ≤ Xb(s, z), (22b)

w(s, z, x) = ws(s, z, x), x ≥ Xs(s, z), (22c)

w(0, z, x) = −γKB(z, x)h(0, z, x). (22d)

If the function h(s, z, x) is known, then by analogy to (10), the FBP (22) is an optimal stopping

problem associated with a Dynkin game, and its solution can be computed using the following

analog of the backward induction equation (13):

w(si, z, x) =

⎧

⎪

⎨

⎪

⎩

wb(si, z, x) if w̃(si, z, x) < wb(si, z, x),

ws(si, z, x) if w̃(si, z, x) > ws(si, z, x),

w̃(si, z, x) otherwise,

(23)

where w̃(s, z, x) is given by (12) with φ ≡ 0. On the other hand, if the boundaries Xb(s, z)
and Xs(s, z) are given, then the FBP (19) can also be solved by backward induction: For

z ∈ Zδ, compute h(si, z, x) using (21) (with s replaced by si) if x ∈ Xǫ is outside the interval

[Xb(si, z), Xs(si, z)], and if x ∈ Xǫ ∩ [Xb(si, z), Xs(si, z)], let h(si, z, x) = h̃(si, z, x) with

h̃(s, z, x) = [h(s + δ, z +
√

δ, x) + h(s + δ, z −
√

δ, x)]/2. (24)

By replacing the unknown h in (20a) and (20b) by h̃ and redefining them as w̃b and w̃s,

Lai & Lim [18] have developed the coupled backward induction algorithm described below

to solve for Xb(si, z) and Xs(si, z), as well as to compute values of h(si, z, x) for x ∈ Xǫ ∩
[Xb(si, z), Xs(si, z)].

Algorithm 2. Let h(0, z, x) = exp{−γKA(z, x)} and w(0, z, x) = −γKB(z, x)h(0, z, x) for z ∈
Zδ and x ∈ Xǫ. For i = 1, 2, . . . , N and z ∈ Zδ:

(i) Starting at x0 ∈ Xǫ with w̃(si, z, x0) < w̃b(si, z, x0), search for the first j ∈ {1, 2, . . . }
(denoted by j∗) for which w̃(si, z, x0 + jǫ) ≥ w̃b(si, z, x0 + jǫ) and set Xb(si, z) = xi +
j∗ǫ.

(ii) For j ∈ {1, 2, . . . }, let xj = Xb(si, z) + jǫ. Compute, and store for use at si+1,

w(si, z, xj) = w̃(si, z, xj) as defined by (12) with φ ≡ 0 and h(si, z, xj) = h̃(si, z, xj)
by (24). Search for the first j (denoted by j∗) for which w̃(si, z, xj) ≥ w̃s(si, z, xj) and set

Xs(si, z) = Xb(si, z) + j∗ǫ.

(iii) For x ∈ Xǫ outside the interval [Xb(si, z), Xs(si, z)], compute h(si, z, x) using (21) and

set w(si, z, x) = wb(si, z, x) or ws(si, z, x) as defined by (20) according to whether x ≤
Xb(si, z) or x ≥ Xs(si, z).

It can be established that the convergence property of this algorithm is similar to that of

Algorithm 1 even though (22) is not a stopping problem like (10) is. Specifically, the backward

inductions (23) as well as (24) and (21) applied to {sN = −σ2T, sN−1, . . . , s1, s0 = 0}×Zδ ×Xǫ

are able to approximate the value functions w(s, z, x) and h(s, z, x) of the corresponding
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continuous-time control problems with an error of the order O(δ), and Algorithm 2 is able

to approximate the buy and sell boundaries Zi(s, x) := X−1
i (s, z), i = b, s, corresponding to

these control problems with an error of the order o(
√

δ); see Lai et al. [19] for details as well

as an extension to the problem of optimal investment and consumption.

3.2. Numerical results

Associated with each of the problems Vi(t, S, x, y), i = 0 given by (14) corresponding to

an investor with no option position and i = s, b being analogs of (14) corresponding to

an investor with a short or long call position, respectively, is an optimal trading strategy xi
t

(i = 0, s, b) of the form

xt =

⎧

⎪

⎨

⎪

⎩

Xb(t, St) if xt− < Xb(t, St),

Xs(t, St) if xt− > Xs(t, St),

xt− if Xb(t, St) ≤ xt− ≤ Xs(t, St).

The optimal hedging strategies for the option writer and buyer are then given by xs
t − x0

t and

xb
t − x0

t , respectively. In the case of no transaction costs (λ = μ = 0), it can be shown that

x0
t = X0(t, S) :=

e−r(T−t)

γS

α − r

σ2
, xi

t = Δ
i(t, S) + X0(t, S), i = s, b,

where Δb(t, S) (resp. Δs(t, S) = −Δb(t, S)) denotes the Black-Scholes delta for a long (resp.

short) call option, given explicitly (as a function of (s, z) after applying the change of variable

(2)) in Section 1. In the case of α = r (risk-neutrality), it can be shown that x0
t ≡ 0 whether

or not there are transaction costs. In particular, if α = r and λ = μ = 0, the optimal hedging

strategy is to hold Δ shares of stock at all times (see Section 1). Thus, the Black-Scholes option

theory is a special case of the more general utility-based option theory.

Whereas Clewlow & Hodges [11] and Zakamouline [20] made use of discrete-time dynamic

programming on an approximating binomial tree for the asset price to solve the control

problems directly for the optimal hedge, Lai & Lim [18] made use of the simpler Algorithm 2

outlined in Section 3.1. They provided extensive numerical results for the CARA utility

function with α = r, for which only one pair of boundaries need to be computed (since it

is then optimal not to trade in the risky asset when the investor does not have an option

position). As an illustration of Algorithm 2, we compute and show in Fig. 1 the optimal buy

(lower) and sell (upper) boundaries for a short asset-settled call (solid black lines) with strike

price K = 20 and for the case of no option (solid red lines) at four different times before

expiration (T − t = 1.5, 0.5, 0.25, 0.1) when proportional transaction costs are incurred at the

rate of λ = μ = 0.5%; the dashed lines correspond to X0(t, ·) and Δs(t, ·) + X0(t, ·) for the case

of no transaction costs. Other parameters are: absolute risk aversion γ = 2.0, risk-free rate

r = 8.5%, asset return rate α = 10% and asset volatility σ = 5%. Note that the red boundaries

are consistent with the intuitive notion of “buy at the low and sell at the high“ when investing

only in a risky asset (and bond). However, unlike the case of α = r in which the buy and sell

boundaries corresponding to a short asset-settled call always lie between 0 and 1, the black

boundaries in this case (where α �= r) do not necessarily take values in the interval [0, 1].
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Figure 1. Optimal buy (lower) and sell (upper) boundaries from negative exponential (CARA) utility
maximization for a short asset-settled call with strike price K = 20 (solid black lines) and for the case of
no option (solid red lines), with proportional transaction costs incurred at the rate of λ = μ = 0.5%,
absolute risk aversion γ = 2.0, risk-free rate r = 8.5%, asset return rate α = 10% and asset volatility
σ = 5%, at 1.5, 0.5, 0.25 and 0.1 period(s) from expiration T. For each pair of boundaries, the “buy asset”
region is below the buy boundary and the “sell asset” region is above the sell boundary; the
no-transaction region is between the two boundaries. The dashed lines correspond to the case of no
transaction costs.

4. Conclusion

For the so-called bounded variation follower problems, the equivalence between singular

stochastic control and optimal stopping can be harnessed to provide a much simpler solution

to the control problem by solving the corresponding Dynkin game. This approach can be
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used on certain control problems for which there does not exist an equivalent stopping

problem. We show how the “standard” algorithm can be modified to provide a coupled

backward induction algorithm for solving the utility-based option hedging problem and

provide numerical illustrations on the vanilla call option.
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