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1. Introduction 

The use of the Internet for accessing information has expanded dramatically over the past 

few years, while the availability and use of mobile hand-held devices for communication 

and Internet access has greatly increased in parallel. Industry has reacted to this trend for 

information access by developing services and applications that can be accessed by users on 

the move. These trends have highlighted a need for alternatives to the traditional methods 

of user data input, such as keypad entry, which is difficult on small form-factor mobile 

devices. One alternative is to make use of automatic speech recognition (ASR) systems that 

act on speech input from the user. An ASR system has two main elements. The first element 

is a front-end processor that extracts parameters, or features, that represent the speech 

signal. These features are processed by a back-end classifier, which makes the decision as to 

what has been spoken. 

In a fully embedded ASR system [1], the feature extraction and the speech classification are 

carried out on the mobile device. However, due to the computational complexity of high-

performance speech recognition systems, such an embedded architecture can be impractical 

on mobile hand-held terminals due to limitations in processing and memory resources. On 

the other hand, fully centralised (server-based) ASR systems have fewer computational 

constraints, can be used to share the computational burden between mobile users, and can 

also allow for the easy upgrade of speech recognition technologies and services that are 

provided. However, in a centralised ASR system the recognition accuracy can be 

compromised as a result of the speech signal being distorted by low bit-rate encoding at the 

codec and a poor quality transmission channel [2, 3].  

A distributed speech recognition (DSR) system is designed to overcome some of the 

difficulties described above. In DSR, the terminal (the mobile device) includes a local front-

end processor that extracts, directly from the speech, the features to be sent to the remote 
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server (back-end) where recognition is performed. In mobile environments, the speech 

features can be sent over an error protected data channel rather than a voice channel, 

making the DSR system more robust to channel errors.  

However, DSR systems generally operate in high levels of background noise (particularly in 

mobile environments). For mobile users in noisy environments (airports, cars, restaurants 

etc.) the speech recognition accuracy can be reduced dramatically as a consequence of 

additive background noise. A second source of error in DSR systems is the presence of 

transmission errors in the form of random packet loss and packet burst loss during 

transmission of speech features to the classifier. Packet loss can arise in wireless and packet 

switched (IP) networks, both networks over which a DSR system would normally be 

expected to operate. Packet loss, in particular packet burst loss, can have a serious impact on 

recognition performance and needs to be considered in the design of a DSR system. 

This chapter addresses the issue of robustness in DSR systems, with particular reference to 

the problems of background noise and packet loss, which are significant bottlenecks in the 

commercialisation of speech recognition products, particularly in mobile environments. The 

layout of the chapter is as follows. Section 2 discusses the DSR architecture and standards in 

more detail. This is followed by an overview of the auditory model used in this chapter as 

an alternative front-end to those published in the DSR standards. The Aurora 2 database 

and a description of the speech recognition system used are also discussed in Section 2. 

Section 3 addresses the problem of robustness of speech recognition systems in the presence 

of additive noise, in particular, by examining in detail the use of speech enhancement 

techniques to reduce the effects of noise on the speech signal. The performance of a DSR 

system in the presence of both additive background noise and packet loss is examined in 

Section 4. The feature vectors produced by the auditory model are transmitted over a 

channel that is subject to packet burst loss and packet loss mitigation to compensate for 

missing features is investigated. Conclusions are presented in Section 5. 

2. Distributed speech recognition systems 

2.1. DSR architecture and standards 

A DSR system is designed as a compromise between local and centralised recognition, in 

order to alleviate the issues associated with these approaches [2, 3]. In DSR, the speech 

recognition task is split between the terminal or client, where the front-end feature 

extraction is performed, and the network or server, where the back-end recognition is 

performed. The features that represent the speech are sent by means of an error protected 

data channel to the classifier for processing. DSR avoids both the speech encoding and 

decoding stages associated with centralised recognition and so eliminates the degradations 

that originate from the speech compression algorithms. The bandwidth required to transmit 

the extracted features to the server is much less than what is required to send the encoded 

speech signal. DSR systems offer some advantages over other architectures. Recent 

comparative studies have shown the superior performance of DSR to codec-based ASR [4]. 

However, in a DSR system, transmission errors in the form of random packet loss and 
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packet burst loss still need to be taken into consideration. Such transmission errors can have 

a significant impact on recognition accuracy.  

Furthermore, it is well known that the presence of noise severely degrades the performance 

of speech recognition systems, and much research has been devoted to the development of 

techniques to alleviate this effect; this is particularly important in the context of DSR where 

mobile clients are typically used in high-noise environments (though the same problem also 

exists for local embedded, or centralised architectures in noisy conditions). One approach 

that can be used to improve the robustness of ASR systems is to enhance the speech signal 

itself before feature extraction. Speech enhancement can be particularly useful in cases 

where a significant mismatch exists between training and testing conditions, such as where 

a recognition system is trained with clean speech and then used in noisy conditions. A 

significant amount of research has been carried out on speech enhancement, and a number 

of approaches have been well documented in the literature [5]. There has also been much 

interest in DSR in recent years, within the research community, and in international 

standardisation bodies, in particular, the European Telecommunications Standards Institute 

(ETSI) [6-9], which has developed a number of different recommendations for front-end 

processors of different levels of complexity.  

The ETSI basic front-end [6] was developed for implementation over circuit-switched 

channels and this implementation is also considered in the other three standards. The 

advanced front-end [7] produces superior performance to the basic front-end, and was 

designed to increase robustness in background noise. The implementation of the front-ends 

over packet-switched Internet Protocol (IP) networks has been specified in two documents 

published by the Internet Engineering Task Force (IETF). The first of these [10] specifies the 

real-time transport protocol (RTP) payload format for the basic front-end while the second 

[11] specifies the RTP payload format for the advanced front-end. 

The ETSI basic and advanced front-ends both implement MFCC-based parameterisation of 

the speech signal. The stages involved in feature extraction based on MFCCs are shown in 

Figure 1. The speech signal first undergoes pre-emphasis in order to compensate for the 

unequal sensitivity of human hearing across frequency. Following pre-emphasis, a short-

term power spectrum is obtained by applying a fast Fourier transform (FFT) to a frame of 

Hamming windowed speech. Critical band analysis is carried out using a bank of 

overlapping, triangular shaped, bandpass filters, whose centre frequencies are equally 

spaced on the mel scale. The FFT magnitude coefficients are grouped into the appropriate 

critical bands and then weighted by the triangular filters. The energies in each band are 

summed, creating a filter bank vector of spectral energies on the mel scale. The size of this 

vector of spectral energies is equal to the number of triangular filters used. A non-linearity 

in the form of a logarithm is applied to the energy vector. The final step is the application of 

a discrete cosine transform (DCT) to generate the MFCCs. 

In the ETSI DSR front-ends, speech, sampled at 8 kHz, is blocked into frames of 200 samples 

with an overlap of 60%. A logarithmic frame energy measure is calculated for each frame 

before any processing takes place. In the case of the basic front-end, pre-emphasis is carried 
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out using a filter coefficient equal to 0.97 while the advanced front-end uses a value of 0.9. A 

Hamming window is used in both the ETSI basic and advanced front-ends prior to taking 

an FFT. In the ETSI advanced front-end a power spectrum estimate is calculated before 

performing the filter bank integration. This results in higher noise robustness when 

compared with using a magnitude spectrum estimate as used in the ETSI basic front-end 

[12]. The two front-ends both generate a feature vector consisting of 14 coefficients made up 

of the frame log-energy measure (determined prior to pre-emphasis) and cepstral 

coefficients C0 to C12. In order to introduce robustness against channel variations, the ETSI 

advanced front-end carries out post-processing in the cepstral domain on coefficients C1 to 

C12 in the form of blind equalisation [13]. 
 

 

Figure 1. MFCC feature extraction 

2.2. Auditory modelling as an alternative front-end 

Many computational auditory models have been proposed for use in speech recognition 

systems, often with excellent results, particularly in the presence of noise. In the work 

presented here, the auditory model of Li et al. [14] is used. The choice of this auditory front-

end is motivated by previous work carried out by the authors [15] where a number of 

auditory front-ends were investigated in a comparative study of robust speech recognition 

with the widely-used Aurora 2 database [16]. In that study, there was no pre-processing or 

enhancement of the speech utterances. The front-ends investigated were perceptual linear 

prediction (PLP) proposed by Hermansky [17], the PEMO algorithm proposed by Tchorz 

and Kollmeier [18], and the front-end processor proposed by Li et al. [14]. For the task of 

connected digit recognition using the Aurora 2 database, the front-end proposed by Li et al. 

gave the best overall recognition results of all the auditory models examined, and with an 

overall reduction in recognition error compared to the ETSI basic front-end [6] which was 

used as a baseline for comparison. 

The steps involved in feature extraction in the Li et al. auditory model are shown in Figure 2. 

Speech is sampled at 8 kHz and blocked into frames of 240 samples. Frame overlap is 66.7% 

and a Hamming window is used prior to taking a FFT. An outer/middle ear transfer 

function that models pressure gain in the outer and middle ears is applied to the spectrum 

magnitude. After conversion of the spectrum to the Bark scale, the transfer function output 

is processed by an auditory filter that is derived from psychophysical measurements of the 

frequency response of the cochlea. A non-linearity in the form of a logarithm followed by a 

DCT is applied to the filter outputs to generate the cepstral coefficients. The recognition 

experiments use vectors that include energy and 12 cepstral coefficients (C1 to C12) along 

with velocity and acceleration coefficients. This results in vectors with an overall dimension 

equal to 39. 
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Figure 2. Feature extraction proposed by Li et al. [14]. 

2.3. Aurora 2 database 

The recognition problem examined in this work is connected digit recognition using the 

Aurora 2 database [16]. The motivation behind the creation of the Aurora database was to 

provide a framework that allowed for the evaluation and comparison of speech recognition 

algorithms in noisy conditions, thus providing a good basis for comparison between 

researchers. It has been widely used in the development and evaluation of DSR systems. The 

speech database is derived from utterances of isolated digits and connected digit sequences 

spoken by US-American adults originally included in the well-known TIDigits database. 

The speech in the TIDigits database is sampled at 20 kHz and is down-sampled to 8 kHz in 

the Aurora database. Some additional filtering is applied to the down-sampled data in order 

to take into account the frequency characteristics of equipment used in telecommunications 

systems. The channel characteristics used are G.712 and modified intermediate reference 

system (MIRS). The down-sampled, filtered speech corresponds to “clean” data in the 

Aurora database. The Aurora database also contains “noisy” data. This corresponds to clean 

data with noise artificially added at SNRs of 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and –5 dB. The 

noise signals added are chosen to reflect environments in which telecommunication 

terminals are used. In total there are eight different noise types: subway, babble, car, 

exhibition hall, restaurant, street, airport and train station. 

The Aurora framework includes a set of standard test conditions for evaluation of front-end 

processors. For the purpose of training the speech recogniser, two modes are defined. The 

first mode is training on clean data and the second mode is multi-condition training on 

noisy data. The same 8440 utterances, taken from the training part of the TIDigits, are used 

for both modes. For the multi-condition training, the clean speech signals are used, as well 

as speech with four different noise types (subway, babble, car and exhibition hall), added at 

SNRs of 20 dB, 15 dB, 10 dB and 5 dB. There are three different test sets defined for 

recognition testing, with the test utterances taken from the testing part of the TIDigits 

database. Test Set A (28028 utterances) employs the same four noises as used for the multi-
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condition training. Test Set B uses the same utterances as Test Set A but uses four different 

noise types (restaurant, street, airport and train station). In both Test Sets A and B, the 

frequency characteristic used in the filtering of the speech and noise is the same as that used 

in the training sets, namely G.712. The frequency characteristic of the filter used in Test Set C 

(14014 utterances) is the MIRS, and is different from that used in the training sets. Subway 

and street noises are used in Test Set C.  

2.4. Speech recognition system 

The classifier used for the recognition experiments in the work presented in this chapter is 

the HMM-based recogniser architecture specified for use with the Aurora 2 database [16], 

and implemented with the widely-used HTK package [19]. The use of a well-known 

specification provides a common framework with which to compare different front-ends 

and feature vectors for the purpose of connected digit recognition. There are eleven whole 

word HMMs each with 16 states; each state has 3 Gaussian mixtures. The topology of the 

models is left-to-right without any skips over states. This topology is suitable for modelling 

the sequential nature of speech and the consecutive states represent the consecutive speech 

states in a particular utterance. Two pause models, “sil” and “sp”, are defined. The “sil” 

model has 3 states and each state has 6 mixtures. The “sp” model has a single state. The 

Baum-Welch re-estimation algorithm is applied in the training of the word models. An 

utterance can be modelled by any sequence of digits with the possibility of a “sil” model at 

both ends and adjacent digits separated by a “sp” model. 

The method used to measure the performance of a speech recognition system is dependent 

on the type of utterance that is to be recognised, i.e. isolated word or continuous speech. 

There are three error types associated with the recogniser in a continuous speech 

recognition system: 

Substitutions (S) – A word in the original sentence is recognised as a different word. 

Deletions (D) – A word in the original sentence is missed. 

Insertions (I) – A new word is inserted between two words of the original sentence. 

The performance measure used throughout the work presented here, and also used in [16], 

is the word accuracy as defined by (1): 

 
( )

100%
N S D I

Word accuracy
N

  
    (1) 

where N is the total number of evaluated words. The word accuracies for each of the Aurora 

test sets presented throughout this chapter are calculated according to [16], which defines 

the performance measure for a test set as the word accuracy averaged over all noises and 

over all SNRs between 0 dB and 20dB. The overall word accuracy for the two training 

modes, clean training and multi-condition training, is calculated as the average over the 

three test sets A, B and C. 
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3. Speech enhancement 

Additive noise from interfering noise sources, and convolutional noise arising from 

transmission channel characteristics both contribute to a degradation of performance in 

automatic speech recognition systems. This section addresses the problem of robustness of 

speech recognition systems in the first of these conditions, namely additive noise. As noted 

previously, speech enhancement is one way in which the effects of noise on the speech 

signal can be reduced. Enhancement of noisy speech signals is normally used to improve the 

perception of the speech by human listeners however, it may also have benefits in 

enhancing robustness in ASR systems. Speech enhancement can be particularly useful in 

cases where a significant mismatch exists between training and testing conditions, such as 

where a recognition system is trained with clean speech and then used in noisy conditions, 

as inclusion of speech enhancement can help to reduce the mismatch. This approach to 

improving robustness is considered in this section. 

In the speech recognition system described here, the input speech is pre-processed using an 

algorithm for speech enhancement. A number of different methods for the enhancement of 

speech, combined with the auditory front-end of Li et al. [14], are evaluated for the purpose 

of robust connected digit recognition. The ETSI basic [6] and advanced [7] front-ends 

proposed for distributed speech recognition are used as a baseline for comparison.  

3.1. Speech enhancement overview 

The enhancement of noisy speech can be described as an estimation problem in which the 

original clean signal is estimated from a degraded version of the signal. A significant 

amount of research has been carried out on speech enhancement, and a number of 

approaches have been well documented in the literature. A survey of a number of 

approaches to speech enhancement using a single microphone is presented in [5].  

Two measures that can be used to perceptually evaluate speech are its quality and its 

intelligibility [5]. Speech quality is a subjective measure and is dependent on the individual 

preferences of listeners. It is a measure of how comfortable a listener is when listening to the 

speech under evaluation. The intelligibility of the speech can be regarded as an objective 

measure, and is calculated based on the number or percentage of words that can be correctly 

recognised by listeners. The intelligibility and the quality of speech are not correlated [5] 

and it is well known that improving one of the measures can have a detrimental effect on 

the other one. Speech enhancement algorithms give a trade-off between noise reduction and 

signal distortion. A reduction in noise can lead to an improvement in the subjective quality 

of the speech but a decrease in the measured speech intelligibility [5].  

When using speech enhancement in an ASR system, the speech is enhanced before feature 

extraction and recognition processing. The advantage of this is that there is no impact on the 

computational complexity of the feature extraction or the recognition processes as the 

enhancement is independent of both, and the speech enhancement can be implemented as 

an add-on without significantly affecting existing parts of the system. However, every 
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speech enhancement process will introduce some form of signal distortion and it is 

important that the impact of this distortion on the recognition process is minimised. 

3.2. Speech enhancement algorithms 

In this section, the various speech enhancement algorithms that were examined are briefly 

described. The algorithms range from well-established algorithms like that of Ephraim and 

Malah [20], to more recently proposed ones like that of Rangachari and Loizou [21]. 

Furthermore, the algorithms cover a range of paradigms, including spectral subtraction-

based algorithms using the FFT for spectral analysis, as well as methods based on auditory 

filter banks. 

Ephraim and Malah [20] present a minimum mean-square error short-time spectral 

amplitude (MMSE STSA) estimator. The estimator is based on modelling speech and noise 

spectral components as statistically independent Gaussian random variables. The enhanced 

speech is constructed using the MMSE STSA estimator combined with the original phase of 

the noisy signal. Analysis is carried out in the frequency domain and the signal spectrum is 

estimated using an FFT. 

Westerlund et al. [22] present a speech enhancement technique in which the input signal is 

first divided into a number of sub-bands. The signal in each sub-band is individually 

multiplied by a gain factor in the time domain based on an estimate of the short term SNR in 

each sub-band at every time instant. High SNR values indicate the presence of speech and 

the sub-band signal is amplified. Low SNR values indicate the presence of noise only and 

the sub-band signal remains unchanged. 

Martin [23] presented an algorithm for the enhancement of noisy speech signals by means of 

spectral subtraction, in particular through a method for estimation of the noise power on a 

sub-band basis. Martin’s noise estimation method is based firstly on the independence of 

speech and noise, and secondly on the observation that speech energy in an utterance falls 

to a value close to or equal to zero for brief periods. Such periods of low speech energy 

occur between words or syllables in an utterance and during speech pauses. The energy of 

the signal during these periods reflects the noise power level. Martin’s minimum statistics 

noise estimation method tracks the short-term power spectral density estimate of the noisy 

speech signal in each frequency bin separately. The minimum power within a defined 

window is used to estimate the noise floor level. The minimum tracking method requires a 

bias compensation since the minimum power spectral density of the noisy signal is smaller 

than the average value. In [24], Martin further developed the noise estimation algorithm by 

using a time- and frequency-dependent smoothing parameter when calculating the 

smoothed power spectral density. A method to calculate an appropriate time and frequency 

dependent bias compensation is also described in [24] as part of the algorithm. 

Rangachari and Loizou [21] proposed an algorithm for the estimation of noise in highly non-

stationary environments. The noisy speech power spectrum is averaged using time and 

frequency dependent smoothing factors. This new averaged value is then used to update the 
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noise estimate. Signal-presence probability in individual frequency bins is calculated in 

order to update the smoothing factors. Signal presence is determined by computing the ratio 

of the noisy speech power spectrum to its local minimum, which is updated continuously by 

averaging past values of the noisy speech power spectra with a look-ahead factor. The 

results in [21] indicate that the local minimum estimation algorithm adapts very quickly to 

highly non-stationary noise environments. 

A technique for the removal of noise from degraded speech using two filtering stages was 

proposed by Agarwal and Cheng [25]. The first filtering stage coarsely reduces the noise and 

whitens any residual noise while the second stage attempts to remove the residual noise. 

Filtering is based on the Wiener filter concept and filter optimisation is carried out in the 

mel-frequency domain. The algorithm, described as a two-stage mel-warped Wiener filter 

noise reduction scheme, is a major component of the ETSI advanced front-end standard for 

DSR [7]. The implementation of noise reduction in the ETSI advanced front-end is 

summarised in [12]. 

3.3. Tests and results 

This section presents recognition results from tests on the Aurora 2 database [16], using the 

combination of the speech enhancement algorithms described previously and the auditory 

model proposed by Li et al. (see Section 2.2). In the analysis, two versions of the Li et al. 

front-end are used. The first, referred to as Li et al. (I), generates a feature vector consisting 

of 13 coefficients made up of the frame log-energy measure and the cepstral coefficients C1 

to C12. The second version, referred to as Li et al. (II), generates a feature vector that contains 

the cepstral coefficients C1 to C12 along with a weighted combination of cepstral coefficient 

C0 and the frame log-energy measure. The reason for investigating two versions of the Li et 

al. front-end, Li et al. (I) and Li et al. (II), is to allow for a closer comparison with the ETSI 

basic front-end [6] and the ETSI advanced front-end [7] respectively. In all cases training 

was carried out using clean data, so that the effect of the speech enhancement in removing 

mismatch could be examined. The speech enhancement algorithms were used on both the 

(clean) training speech as well as the (noisy) test speech. Feature vectors were extracted 

directly from the enhanced speech with no intermediate processing. The recognition 

experiments used vectors that include 13 static coefficients along with velocity and 

acceleration coefficients. This results in vectors with an overall dimension equal to 39. The 

word accuracies detailed in the tables of results were calculated as previously described in 

Section 2.4. 

In the comparison of Li et al. (I) and the ETSI basic front-end, there was no post-processing 

of the feature vectors carried out. The recognition results using the Aurora 2 database for Li 

et al. (I), for each speech enhancement algorithm, are given in Table 1 and the corresponding 

results for the ETSI basic front-end (the baseline for this test) are given in Table 2. 

The performance of Li et al. (II) was compared with the performance of the ETSI advanced 

front-end. The ETSI advanced front-end includes a SNR-dependent waveform processing 

block that is applied after noise reduction and before feature extraction. The purpose of this  
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 Absolute word accuracy % 

Enhancement Set A Set B Set C Overall 

None 62.16 64.31 57.76 62.14 

Ephraim & Malah 78.85 79.38 74.78 78.25 

Westerlund et al. 75.87 76.32 70.45 74.97 

Martin 72.47 71.96 70.21 71.81 

Rangachari & Loizou 74.50 73.16 74.29 73.92 

Agarwal & Cheng 86.33 84.87 81.86 84.85 

Table 1. Recognition results for the Li et al. (I) front-end. 

 

 Absolute word accuracy % 

Enhancement Set A Set B Set C Overall 

None 61.34 55.75 66.14 60.06 

Ephraim & Malah 76.34 75.91 73.71 75.64 

Westerlund et al. 76.04 72.54 72.36 73.90 

Martin 67.98 67.57 68.24 67.87 

Rangachari & Loizou 63.58 61.57 67.82 63.62 

Agarwal & Cheng 84.39 82.75 78.72 82.60 

Table 2. Recognition results for the ETSI basic front-end. 

 

 Absolute word accuracy % 

Enhancement Set A Set B Set C Overall 

None 67.34 69.18 63.44 67.30 

Ephraim & Malah 80.36 81.03 79.34 80.42 

Westerlund et al. 78.70 80.02 78.44 79.18 

Martin 73.07 72.93 72.17 72.83 

Rangachari & Loizou 76.08 76.16 75.94 76.08 

Agarwal & Cheng 87.03 86.85 84.58 86.47 

Table 3. Recognition results for the Li et al. (II) front-end. 

block is to improve the noise robustness in the front-end of an ASR system by enhancing the 

high SNR period portion and attenuating the low SNR period portion in the waveform time 

domain, thus increasing the overall SNR of noisy speech [26]. However, the evaluation here 

is looking primarily at the effect of speech enhancement or noise reduction alone on the 

connected digit recognition accuracy. Therefore, the waveform processing block in the ETSI 

advanced front-end was disabled. In addition, the ETSI advanced front-end carries out post-
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processing in the cepstral domain in the form of blind equalisation as described in [13]. To 

ensure a closer match with the ETSI advanced front-end, the feature vectors produced by Li 

et al. (II) undergo post-processing in the cepstral domain by means of cepstral mean 

subtraction (CMS). The recognition results for Li et al. (II), for each speech enhancement 

algorithm, are detailed in Table 3 and the recognition results for the ETSI advanced front-

end are detailed in Table 4. 

 

 Absolute word accuracy % 

Enhancement Set A Set B Set C Overall 

None 65.92 65.48 70.07 66.57 

Ephraim & Malah 77.92 77.61 78.64 77.94 

Westerlund et al. 79.09 79.13 79.70 79.23 

Martin 71.26 72.91 72.71 72.21 

Rangachari & Loizou 73.77 73.35 78.85 74.62 

Agarwal & Cheng 85.92 85.66 83.89 85.41 

Table 4. Recognition results for the ETSI advanced front-end. 

Table 5 provides an overall view of the relative performance of the different speech 

enhancement algorithms for each of the four front-end versions considered.  

 
Rank Li et al. (I) FE ETSI basic FE Li et al. (II) FE ETSI advanced FE 

1 Agarwal & Cheng Agarwal & Cheng Agarwal & Cheng Agarwal & Cheng 

2 Ephraim & Malah Ephraim & Malah Ephraim & Malah Westerlund et al. 

3 Westerlund et al. Westerlund et al. Westerlund et al. Ephraim & Malah 

4 
Rangachari & 

Loizou 
Martin 

Rangachari & 

Loizou 

Rangachari & 

Loizou 

5 Martin 
Rangachari & 

Loizou 
Martin Martin 

Table 5. Performance ranking of enhancement algorithms. 

3.4. Discussion 

Ignoring speech enhancement, and comparing Tables 1 and 2, the performance of Li et al. (I) 

exceeds the baseline ETSI front-end [6] by 2.08% overall. From Table 3 and Table 4, again 

without speech enhancement applied, there is a difference in recognition accuracy of 0.73% 

in favour of Li et al. (II) when compared with the ETSI advanced front-end [7]. 
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The other results in Tables 1 to 4 show that enhancement of the speech prior to feature 

extraction significantly improves the overall recognition performance. This improvement in 

recognition accuracy is observed for both the ETSI basic [6] and advanced [7] front-ends and 

the front-end proposed by Li et al. [14]. A comparison of Table 1 with Table 2 shows that Li 

et al. (I) outperforms the ETSI basic front-end for all of the speech enhancement techniques 

evaluated. Furthermore, from Tables 3 and 4, it is seen that Li et al. (II) again outperforms 

the ETSI advanced front-end for all speech enhancement methods except Westerlund et al. 

[22], for which the overall recognition results are quite close. 

For Li et al. (I), Li et al. (II), the ETSI basic front-end and the ETSI advanced front-end, the 

best overall recognition accuracy is obtained for speech enhancement using the algorithm 

proposed by Agarwal and Cheng [25]. The combination of auditory front-end and the two-

stage, mel-warped, Wiener filter noise reduction scheme results in an overall recognition 

accuracy that is approximately 6% better overall compared with the next ranked front-end 

and speech enhancement combination. After Agarwal and Cheng [25], the next best 

performance across the board is obtained using Ephraim and Malah [20], and Westerlund et 

al. [22]. This suggests that the choice of speech enhancement algorithm for best speech 

recognition performance is somewhat independent of the choice of front-end (though this 

would have to be validated by further testing with other front ends). 

4. Robustness to noise and packet loss 

In the previous section, the benefit of speech enhancement prior to feature extraction in a 

speech recognition system was demonstrated. However, in a DSR system, transmission 

errors can still have a significant impact on recognition performance. Such transmission 

errors in the form of bit errors, random packet loss and packet burst loss need to be taken 

into consideration. This is particularly important in the context of increasing use of packet-

based networks for transmission of speech and data in mobile environments. This section 

examines the performance of a DSR system in the presence of both background noise and 

packet loss. 

4.1. Channel models and loss compensation 

A DSR client and server may be interconnected over either a circuit-switched channel or a 

packet-switched channel. Approaches used in the literature to simulate different channel 

types fall into two categories. The first makes use of physical layer models that simulate 

transmission phenomena that occur on the physical channel. The second category involves 

the use of statistical models that model unconditional packet loss probability and 

conditional packet loss burst lengths. This is the approach used in this chapter.  

To simulate packet loss and error bursts, the 2-state Gilbert model is widely used. In [27-29], 

a voice over IP (VoIP) channel is simulated using such a model. References [30, 31] simulate 

IP channels and use a 2-state Gilbert model to simulate burst type packet loss on the 

channel. Statistical models have also been used to simulate the physical properties of the 
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communication channel. The Gilbert model was found in [3] to be inadequate for simulating 

a GSM channel and instead a two-fold stochastic model is used in which there are two 

processes, namely shadowing and Rayleigh fading. This same model was used by [32], 

again to model a GSM network. Reference [33] compares three models of packet loss and 

examines their effectiveness at simulating different packet loss conditions. The models are a 

2-state Markov chain, the Gilbert-Elliot model and a 3-state Markov chain. The 2-state 

Markov chain in [33] uses State 1 to model a correctly received packet and State 2 to model a 

lost packet. While the Gilbert-Elliot model is itself a 2-state Markov model, there is only a 

probability of packet loss when in State 2. The three models in [33] are all validated for GSM 

and wireless local area network (WLAN) channels. Results indicate that the 3-state Markov 

model gives the best results overall and this model is used in the work described here; the 

model is described in more detail later in this chapter. 

There are a number of techniques documented that are used within DSR systems for the 

purpose of reducing transmission error degradation and so increasing the robustness of the 

speech recognition. Error-robustness techniques are categorised in [4] under the headings 

client-based error recovery, and server-based error concealment. Client-based techniques 

include retransmission, interleaving and forward error correction (FEC). While 

retransmission and FEC may result in recovering a large amount of transmission errors, 

they have the disadvantage of requiring additional bandwidth and introducing additional 

delays and computational overhead. Server-based methods include feature reconstruction, 

by means of repetition or interpolation, and error correction in the ASR-decoding stage. 

Reference [4] provides a survey of robustness issues related to network degradations and 

presents a number of analyses and experiments with a focus on transmission error 

robustness. 

The work described in [34-38] is focused on burst-like packet loss and how to improve 

speech recognition in the context of DSR. The importance of reducing the average burst 

length of lost feature vectors rather than reducing the overall packet loss rate is central to the 

work in these papers. By minimising the average burst length, the estimation of lost feature 

vectors is more effective. Reference [34] compared three different interleaving mechanisms 

(block, convolutional and decorrelated) and found that increasing the degree of interleaving 

increases the speech recognition performance but that this comes with the cost of a higher 

delay. It is further suggested in [38] that, for a DSR application, it is more beneficial to trade 

delay for accuracy rather than trading bit-rate for accuracy as in forward error correction 

schemes. Reference [35] combines block interleaving to reduce burst lengths on the client 

side with packet loss compensation at the server side. Two compensation mechanisms are 

examined: feature reconstruction by means of nearest neighbour repetition, interpolation 

and maximum a-posteriori (MAP) estimation; and a decoder-based strategy using missing 

feature theory. The results suggest that for packet loss compensation, the decoder-based 

strategy is best. This is especially true in the presence of large bursts of losses as the 

accuracy of reconstruction methods falls off rapidly as burst length increases. Interleaving, 

feature estimation and decoder based strategies are combined in [36] in order to improve the 

recognition performance in the presence of packet loss in DSR.  



 
Modern Speech Recognition Approaches with Case Studies 92 

In this section, the 3-state model proposed in [33] is used to simulate packet loss and loss 

bursts. To compensate for missing packets, two error-concealment methods are examined, 

namely nearest neighbour repetition and interpolation. Error mitigation using interleaving 

is also considered.  

4.2. Packet loss framework 

4.2.1. Packet loss model 

The packet loss model used in this work is the 3-state Markov chain proposed by [33]. This 

3-state model was found to be more effective at simulating different packet loss conditions 

in comparison with a 2-state Markov chain and the Gilbert-Elliot model. The model is 

detailed in Figure 3, showing the three states and the transition probabilities. Occupancy of 

states 1 and 3 indicate no packet loss while occupancy of state 2 indicates packet loss. In 

Figure 3, Q, q and Q’ are the self-loop probabilities of states 1, 2 and 3 respectively. The 

model parameters are designed so that state 1 models long duration periods of no loss and 

state 3 models short periods of no loss, which occur in between packet loss in burst-like 

conditions. The following four parameters define the model, and from these parameters the 

transition probabilities of the 3-state model can be determined: 

α = overall probability of a packet being lost 

β = average packet loss burst length 

N1 = average length, in packets, of loss-free periods 

N3 = average length, in packets, of no-loss periods inside loss periods 

 

Figure 3. Packet Loss Model [33]. 

The transition probabilities are calculated from the following equations: 
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The authors in [33] suggest that an alternative to performing speech recognition tests using 

simulated channels is to define a set of packet loss characteristics, thus enabling recognition 

performance to be analysed across a range of different packet loss conditions. References 

[34-37] define four channels with different characteristics in order to simulate packet loss. 

These same four channels are used here to determine the effect of packet loss on speech 

recognition performance. The parameter values for the four channels are detailed in Table 6. 

These parameters result from work in [33] on IP and wireless networks. These are network 

environments over which a DSR system would typically operate. In an IP network, packet 

loss arises primarily due to congestion at the routers within the network, due to high levels 

of IP traffic. The nature of IP traffic is that it can be described as being ‘bursty’ in nature with 

the result that packet loss occurs in bursts. Signal fading, where the signal strength at a 

receiving device is attenuated significantly, is also a contributing factor to packet loss in a 

wireless network. Long periods of fading in a wireless network can result in bursts of packet 

loss. The authors in [33] measured the characteristics of an IP network and a WLAN, and the 

results showed the packet loss rate (α) and the burst length (β) to be highly variable. At one 

point or another, most channel conditions occurred, although not necessarily for long. Based 

on the experimental measurements, a set of packet loss characteristics was defined in [33] 

and these are used to analyse recognition performance for different network conditions. The 

parameters in Table 6 are taken from this defined set of packet loss characteristics. 

 

 α β N1 N3 

Channel A 10% 4 37 1 

Channel B 10% 20 181 1 

Channel C 50% 4 5 1 

Channel D 50% 20 21 1 

Table 6. Packet loss parameters. 

4.2.2. Packet loss mitigation 

Two error concealment methods are examined, namely nearest neighbour repetition and 

interpolation. These methods attempt to reconstruct the feature vector stream when packet 

loss is detected. Missing feature vectors are estimated solely from correctly received feature 

vectors. In a DSR system, nearest neighbour repetition and interpolation would both be 
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implemented on the server side. Additionally, interleaving, a technique used to reduce 

feature vector loss burst lengths (with a penalty of additional delay), is also briefly 

discussed. Interleaving is carried out on the client side of a DSR system, with de-

interleaving on the server side. 

4.2.2.1. Nearest neighbour repetition 

The ETSI advanced front-end [7] specifies that where missing feature vectors occur due to 

transmission errors, they should be substituted with the nearest correctly received feature 

vector in the receiver. If there are 2B consecutive missing feature vectors, the first B speech 

vectors are substituted by a copy of the last good speech vector before the error, and the last 

B speech vectors are substituted by a copy of the first good speech vector received after the 

error. The speech vector includes the 12 static cepstral coefficients C1-C12, the zeroth cepstral 

coefficient C0 and the log energy term, and all are replaced together. A disadvantage of this 

method is that if B is large then long stationary periods can arise. 

4.2.2.2. Interpolation 

The disadvantage of stationary periods that arise with nearest neighbour repetition can be 

alleviated somewhat by polynomial interpolation between the correctly received feature 

vectors either side of a loss burst. Reference [34] found that non-linear interpolation using 

cubic Hermite polynomials gives the best estimates for missing feature vectors. Equation (6) 

is used to calculate the nth missing feature vector in a loss burst of length β packets, which is 

equivalent to a loss burst length of 2β feature vectors if each packet contains two feature 

vectors as defined by the ETSI advanced front-end [7]. The parameter n in (6) is the missing 

feature vector index. 
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 (6) 

The coefficients 0a , 1a , 2a  and 3a  in (6) are determined from the two correctly received 

feature vectors either side of the loss burst, bx  and 1b nx   , and their first derivatives, bx  and 

1b nx   . Equation (6) can be rewritten as 

       2 3 2 3 2 3 3 2
1 1

ˆ 1 3 2 3 2 2 1 2b n b b b bx x t t x t t x t t t x t t n                    (7) 

where ( 1)t n   . It was found in [34] that performance was better when the derivative 

components in (7) are set to zero. These components are also set to zero for the work 

presented in this chapter. 

4.2.2.3. Interleaving 

Research has shown that by minimising the average burst length of lost vectors the 

estimation of lost feature vectors is more effective [34]. The aim of interleaving is to break a 

long loss burst into smaller loss bursts by distributing them over time and so making it 

appear that the errors are more randomly distributed. 
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In a DSR system, the interleaver on the client side takes a feature vector sequence Xi, where i 

is the order index, and changes the order in which the vectors are transmitted over the 

channel. The result is to generate a new vector sequence Yi that is related to Xi by 

 ( )i iY X  (8) 

where π(i) is the permutation function. On the server side, the operation is reversed by de-

interleaving the received vector sequence as follows: 

 
1( )i i

X Y


  (9) 

where π(π-1(i))=i. 

In order for the interleaver to carry out the reordering of the feature vectors, it is necessary 

to buffer the vectors, which introduces a delay. On the server side, in order to carry out the 

de-interleaving, buffering of the incoming feature vectors takes place and a second delay is 

introduced. The sum of these two delays is known as the latency of the interleaving/de-

interleaving process. 

The spread S of an interleaver is a metric that indicates how good an interleaver is at 

breaking up error bursts. A burst of length L vectors will be broken into bursts of length 1 if 

S ≥ L. For S < L the full distribution of the burst cannot be guaranteed and some sets of 

consecutive feature vectors may be lost. 

For the work in this chapter, block interleaving is implemented. A block interleaver of 

degree d changes the order of transmission of a dxd block of input vectors. An example of a 

block interleaver of degree d = 4 and spread S = 4 is given in Figure 4. 

 

Figure 4. dxd block interleaver where d = 4, with permutation function. 

4.3. Tests and results 

The primary purpose of this section is to investigate the performance of the auditory model 

proposed by Li et al. [14] in combination with speech enhancement in the presence of noise 
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and packet loss. As a baseline for comparison, results are also presented for the ETSI 

advanced front-end [7]. In all cases, training was carried out using clean data. The speech 

enhancement algorithm of Agarwal and Cheng [25] was used on both the (clean) training 

speech as well as the (noisy) test speech. The ETSI advanced front-end includes a SNR-

dependent waveform processing block that is applied after noise reduction and before 

feature extraction. The waveform processing block in the ETSI advanced front-end is also 

implemented in the front-end of Li et al. in order to ensure a closer match between the two 

front-ends. Feature vectors are extracted from the output of this waveform processing block. 

A detailed description of the waveform processing block can be found in [26]. The ETSI 

advanced front-end carries out post-processing in the cepstral domain in the form of blind 

equalization as described by [13]. The feature vectors produced by Li et al. undergo post-

processing in the cepstral domain by means of cepstral mean subtraction (CMS). As defined 

by the ETSI advanced front-end [7], each packet transmitted over the communication 

channel carries two feature vectors. 

In [7] a distributed speech recognition front-end feature vector compression algorithm is 

defined. The algorithm makes use of the parameters from the front-end feature extraction 

algorithm of the ETSI advanced front-end. The purpose of the algorithm is to reduce the 

number of bits needed to represent each front-end feature vector and so reduce the bit rate 

required over the communications channel. The feature vector is directly quantized with a 

split vector quantiser. The 14 coefficients (C1 to C12, C0 & lnE) are grouped into pairs, and 

each pair is quantized using its own vector quantisation (VQ) codebook. The resulting set of 

index values is then used to represent the feature vector. The results documented in this 

paper are based on feature vectors that have undergone split vector quantisation. 

The baseline recognition results for the two front-ends, without vector quantisation and 

with no packet loss but with noise, are detailed in Table 7. The word accuracies in the 

following tables are calculated as described in Section 2.4. 

 

 Absolute word accuracy % 

Front-end Set A Set B Set C Overall 

ETSI AFE 87.74 87.09 85.44 87.02 

Li et al. 88.62 88.09 86.89 88.06 

Table 7. Baseline recognition results. 

In order to implement split vector quantization it is necessary to design VQ codebooks for 

each of the seven coefficient pairs. ETSI has made available script files for the ETSI advanced 

front-end and included with these are the VQ codebooks for the coefficient pairs. The 

recognition results for the ETSI advanced front-end with feature vector quantization using 

the ETSI supplied VQ codebooks are given in Table 8. 

To allow for close comparison between the ETSI advanced front end and the front-end 

proposed by Li et al., the VQ codebooks for Li et al. should be determined in the same 
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manner as the VQ codebooks for the ETSI advanced front-end. However, this was not 

possible as the detail of how the ETSI advanced front-end VQ codebooks were calculated is 

not publicly available at this time. Therefore, an implementation of the Generalized Lloyd 

Algorithm (GLA), described by [39], was used to design the VQ codebooks for both the ETSI 

advanced front-end and the front-end of Li et al. The recognition results for the two front-

ends using the VQ codebooks generated by the GLA implementation are detailed in Table 9. 

The overall word accuracies in Table 9, with vector quantization, compare well with the 

baseline accuracies, without vector quantization, in Table 7. There is also close correlation 

between the recognition results in Table 8 and Table 9 for the ETSI advanced front-end, 

indicating that the VQ codebooks generated by the GLA implementation used for this work 

are a good substitute for the VQ codebooks provided by ETSI with the advanced front-end. 

 

 Absolute word accuracy % 

Front-end Set A Set B Set C Overall 

ETSI AFE 87.81 87.11 85.74 87.12 

Table 8. Recognition results using ETSI VQ codebooks. 

 

 Absolute word accuracy % 

Front-end Set A Set B Set C Overall 

ETSI AFE 87.73 86.92 85.41 86.94 

Li et al. 88.22 87.59 86.55 87.63 

Table 9. Recognition results with VQ codebooks designed using implementation of the GLA. 

Packet loss (where each packet contains two feature vectors) is introduced on the 

communication channel by using the packet loss model described in Section 4.2.1. The four 

different packet loss channels investigated are defined in Table 6. Recognition tests, in the 

presence of packet loss, were carried out for each of the following conditions: 

 no speech enhancement, no loss mitigation (Table 10); 

 speech enhancement, no loss mitigation (Table 11); 

 speech enhancement, nearest neighbour repetition (Table 12); 

 speech enhancement, interpolation (Table 13); 

 speech enhancement, interleaving, interpolation (Table 14). 

Tests were first carried out for packet loss with no steps taken to recover the missing features 

or to minimise the loss burst length. The test results for both front-ends when no speech 

enhancement is used are given in Table 10, while recognition results with speech enhancement 

are given in Table 11. A comparison of Table 10 with Table 11 illustrates the benefit of using 

speech enhancement in improving recognition performance. Comparing Table 11 with Table 9 

(no packet loss) it is seen that packet loss has a significant impact on the recognition results, in 

particular for channels C and D where the probability of packet loss is 50%. 
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 ETSI AFE absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 60.56 60.96 64.36 61.48 

Channel B 59.31 59.49 63.67 60.25 

Channel C 36.45 37.62 37.66 37.16 

Channel D 35.38 35.89 37.68 36.04 

 Li et al. absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 66.66 68.39 63.85 66.79 

Channel B 65.59 67.35 62.93 65.76 

Channel C 38.27 39.60 36.29 38.41 

Channel D 37.78 39.25 36.07 38.03 

Table 10. No speech enhancement, no error mitigation. 

 

 ETSI AFE absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 80.17 80.09 77.97 79.70 

Channel B 79.86 79.28 77.61 79.18 

Channel C 42.50 42.87 40.50 42.25 

Channel D 44.07 44.25 42.21 43.77 

 Li et al. absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 81.08 80.64 79.37 80.56 

Channel B 80.33 79.85 78.85 79.84 

Channel C 43.35 43.53 41.91 43.13 

Channel D 44.46 44.30 43.44 44.19 

Table 11. Speech enhancement, no error mitigation. 

Two methods, nearest neighbour repetition and Hermite interpolation, are used to 

reconstruct the feature vector stream as a result of missing features due to packet loss. Table 

12 details the recognition results obtained when using nearest neighbour repetition while 
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Table 13 details the results obtained when Hermite interpolation is implemented (speech 

enhancement is used in both cases). Both reconstruction methods show improvements in 

recognition testing over no error mitigation for all four channels. In particular, with feature 

reconstruction channel C shows improvements in recognition accuracy greater than 55% for 

both front-ends. Channel D also shows good improvement. Nearest neighbour repetition 

gives a slightly higher performance compared to Hermite interpolation. 

 ETSI AFE absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 84.04 83.34 81.69 83.29 

Channel B 80.85 80.37 78.89 80.26 

Channel C 68.90 68.25 66.83 68.23 

Channel D 50.95 50.82 50.67 50.84 

 Li et al. absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 84.57 84.00 82.67 83.96 

Channel B 81.10 80.89 79.78 80.75 

Channel C 68.81 68.60 66.87 68.34 

Channel D 50.33 51.10 49.86 50.54 

Table 12. Speech enhancement, nearest neighbour repetition. 

 

 ETSI AFE absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 83.87 83.28 82.01 83.26 

Channel B 80.81 80.21 78.78 80.17 

Channel C 67.62 68.03 66.28 67.52 

Channel D 50.33 50.16 48.91 49.98 

 Li et al. absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 84.23 83.69 82.56 83.68 

Channel B 80.87 80.60 79.64 80.51 

Channel C 67.05 67.03 65.32 66.70 

Channel D 50.33 50.16 48.91 49.98 

Table 13. Speech enhancement, Hermite interpolation. 
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When interleaving is introduced, the receive side perceives that the average loss burst 

length is reduced [37]. Table 14 shows the recognition results obtained when interleaving, 

with an interleaving depth of 4, is used in conjunction with Hermite interpolation. 

Comparing the results in Table 14 with the results in Table 13 it is seen that feature 

reconstruction is improved when interleaving is employed. 

 

 ETSI AFE absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 86.59 85.66 84.25 85.75 

Channel B 82.65 81.89 80.51 81.92 

Channel C 78.35 77.92 76.67 77.84 

Channel D 58.52 58.77 59.88 58.89 

 Li et al. absolute word accuracy % 

Loss parameters Set A Set B Set C Overall 

Channel A 86.91 86.29 85.20 86.32 

Channel B 82.84 82.15 81.50 82.30 

Channel C 78.14 77.92 76.73 77.77 

Channel D 57.95 58.13 57.05 57.84 

Table 14. Speech enhancement, Hermite interpolation with interleaving (d = 4). 

4.4. Discussion 

The results in Table 7 show that the front-end proposed by Li et al. [14], when combined with 

the speech enhancement algorithm proposed by [25], reduces the overall word error rate of the 

ETSI advanced front-end [7] by 8%. Looking at Table 9, the vector quantisation has a lesser 

impact on the overall recognition performance of the ETSI advanced front-end compared with 

the impact of vector quantisation on the Li et al. front-end. The Li et al. front-end, combined 

with speech enhancement, still outperforms the ETSI advanced front-end in the presence of 

vector quantisation although the improvement in overall word error rate is reduced from 8% 

(without vector quantisation) to 5.3%. In the presence of packet loss, with no speech 

enhancement and with no packet loss compensation, a comparison of Table 10 shows that the 

front-end of Li et al. gives better overall recognition results than the ETSI advanced front-end. 

The benefit of speech enhancement in the presence of packet loss, without any missing feature 

reconstruction, can be seen by comparing Table 10 and Table 11. With speech enhancement 

and no packet loss compensation, Table 11 shows that Li et al. outperforms the ESTI advanced 

front-end for all four channels, and for all three test sets. Comparing Table 9 with Table 11, a 

significant reduction in recognition performance is observed in the presence of packet loss, in 

particular for channels C and D where the probability of packet loss is 50%. When nearest 

neighbour repetition is used to reconstruct missing features, Table 12 shows that there is a 
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significant increase in recognition performance across all channels when compared to the 

results presented in Table 11. Looking at Table 12, the recognition results for the two front-

ends under evaluation are similar across all channels and test sets. The front-end of Li et al. 

performs marginally better overall than the ETSI advanced front-end for channels A, B and C; 

however, for channel D, the overall recognition performance of the ETSI advanced front-end is 

better than that of Li et al. A comparison of Table 13 with Table 12 shows a slight decrease in 

recognition performance when Hermite interpolation is used to reconstruct the feature vector 

stream instead of nearest neighbour repetition. With Hermite interpolation, Table 13 shows 

that the front-end of Li et al. outperforms the ETSI advanced front-end for the packet loss 

conditions of channels A and B, however, for channel C the reverse is the case. The overall 

performance of both front-ends is the same for channel D. Interleaving the feature vectors 

prior to transmission on the channel gives the perception on the receive side that the loss 

bursts are shorter than they actually are. The advantage of interleaving can be seen by a 

comparison of Table 14 with Table 13, where overall recognition results are improved for both 

front-ends when interleaving is introduced. Looking at Table 14 it is seen that Li et al. gives the 

better overall recognition performance for channels A and B while the ETSI advanced front-

end gives the better performance for channels C and D. The results indicate that, in the 

presence of packet loss and environmental noise, the overall recognition performance of the 

front-end of Li et al. is better than that of the ETSI advanced front-end for all channel 

conditions when there are no packet loss mitigation techniques implemented. For each of the 

error mitigation techniques used, Li et al. outperforms the ETSI advanced front-end for channel 

conditions when the probability of packet loss is 10%. For packet loss probabilities of 50%, Li et 

al. gives better results than the ETSI advanced front-end for short average burst lengths (4 

packets) when nearest neighbour repetition is used. However, the ETSI advanced front-end 

gives better recognition performance than Li et al. for the same channel conditions when 

Hermite interpolation is used, with and without interleaving. When the average burst length is 

increased to 20 packets and the probability of packet loss is 50%, the overall recognition 

performance of the ETSI advanced front-end is better than that of the front-end of Li et al. 

5. Conclusions 

This chapter has examined the speech recognition performance of both a speech enhancement 

algorithm combined with the auditory model front-end proposed by Li et al. [14], and the ETSI 

advanced front-end [7], in the presence of both environmental noise and packet loss. A 

number of speech enhancement techniques were first examined, including well-established 

techniques such as Ephraim and Malah [20] and more recently-proposed techniques such as 

Rangachari and Loizou [21]. Experiments using the Aurora connected-digit recognition 

framework [16] found that the best performance was obtained using the method of Agarwal 

and Chang [25]. The test results also suggest that the choice of speech enhancement algorithm 

for best speech recognition performance is independent of the choice of front-end.  

Packet loss modelling using statistical modelling was also examined, and packet loss 

mitigation was discussed. Following initial testing with no packet loss compensation, a 

number of existing packet loss mitigation techniques were investigated, namely nearest 
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neighbour repetition and interpolation. Results show that the best recognition performance 

was obtained using nearest neighbour repetition to reconstruct missing features. The 

advantage of interleaving at the sender’s side to minimise the average burst length of lost 

vectors was also demonstrated. 

In summary, the experiments and results outlined in this chapter show the benefit of 

combining speech enhancement and packet loss mitigation to combat both noise and packet 

loss. Furthermore, the performance of the auditory model of Li et al. was generally shown to 

be superior to that of the standard ETSI advanced front-end. 
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