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1. Introduction 

Speech communication can be impaired by the wide range of noise conditions present in air. 

Researchers in the field of speech applications have been investigating how to improve the 

performances of signal extraction and its recognition in the conditions. However, it is not yet 

possible to measure clear speech in environments where there are low Signal-to-Noise 

Ratios (SNR) of about 0 dB or less (H. Hirsch and D. Pearce, 2000). Standard rate scales, such 

as CENSREC (N. Kitaoka et al., 2006) and AURORA (H. Hirsch and D. Pearce, 2000), are 

typically discussed for evaluating performances of speech recognition in noisy 

environments and have shown that speech recognition rates are approximately 50–80% 

when under the influence of noise, demonstrating the difficulty of achieving high 

percentages. With these backgrounds, many signal extraction and retrieval methods have 

been proposed in previous research. There is one of approaches in signal extractions, body-

conducted speech (BCS) which is little influence from noise in air however it does not 

measure 2 kHz above in frequency characteristics. However, these need normal speech or 

parameters measured simultaneously with body-conducted speech. Because these 

parameters are not measured in noisy environments, the authors have been investigating 

the use of body-conducted speech which is generally called bone-conducted speech, where 

the signal is also conducted through the skin and bone in a human body (S. Ishimitsu, 2008) 

(M. Nakayama et al., 2011). Conventional retrieval methods for sound quality of body-

conducted speech are the Modulation Transfer Function (MTF), Linear Predictive 

Coefficients (LPC), direct filtering and the use of a throat microphone (T. Tamiya, and T. 

Shimamura, 2006) (T. T. Vu et al., 2006) (Z. Liu et al., 2004) (S. Dupont, et al., 2004). As a 

research in state-of-the art, the research fields is expanded to speech communications 
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between a patient and an operator in a Magnetic Resonance Imaging (MRI) room which has 

a noisy sound environment with a strong magnetic field (A. Moelker et al., 2005). 

Conventional microphone such as an accelerometer composed of magnetic materials are not 

allowed in this environment, which requires a special microphone made of non-magnetic 

material. 

For this environment the authors proposed a speech communication system that uses a BCS 

microphone with an optical fiber bragg grating (OFBG microphone) (M. Nakayama et al., 

2011). It is composed of only non-magnetic materials, is suitable for the environment and 

should provide clear signals using our retrieval method. Previous research using an OFBG 

microphone demonstrated the effectiveness and performance of signal extraction in an MRI 

room. Its performance of speech recognition was evaluated using an acoustic model 

constructed with unspecified normal speech (M. Nakayama et al., 2011). It is concluded that 

an OFBG microphone can produce a clear signal with an improved performance compared 

to an acoustic model made by unspecified speeches. The original signal of an OFBG 

microphone enabled conversation however some stress was felt because its signal was low 

in sound quality. Therefore one of the research aims is to improve the quality with our 

retrieval method which used differential acceleration and noise reduction methods. 

In this chapter, it will be shown in experiments and discussions for the body-conducted 

speeches with the method which is measured with an accelerometer and an OFBG 

microphone, as one of topics is a state-of-the-art in the research field of signal extraction 

under noisy environment. Especially, it is mainly investigated in evaluations of the 

microphones, signal retrievals with the method and applying the method to a signal in 

sentence unit long for estimating and recovering of sound qualities. 

2. Speech and body-conducted speech 

2.1. Conventional body-conducted speech microphone 

Speech as air-conducted sound is easily affected by surrounding noise. In contrast, body-

conducted speech is solid-propagated sound and thus less affected by noise. A word is 

uttered by a 20-year-old male in a quiet room. Table 1 details the recording environments 

for microphone and acclerometer emploied in this research. Speech is measured 30 cm from 

the mouth using a microphone, and body-conducted speech is extracted from the upper lip 

using the accelerometer as conventional microphone which is shown in Figure 1. This 

microphone position is that commonly used for the speech input of a car navigation system. 

The upper lip, as a signal-extraction position, provides the best cepstral coefficients as 

feature parameters for speech recognition (S. Ishimitsu et al., 2004). Figures 2 and 3 show 

uttered words “Asahi” in quiet room, taken from the JEIDA database, which contains 100 

local place names (S. Itahashi, 1991). Speech is measured a cleary signal in frequency 

characteristics however body-conducted speech lacks high-frequency components above 2 

kHz. So the performance is reduced when the signal is used for the recognition directory. 
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Recorder TEAC RD-200T 

Microphone Ono Sokki MI-1431 

Microphone amplifier Ono Sokki SR-2200 

Microphone position 30cm (Between mouth and microphone) 

Accelerometer Ono Sokki NP-2110 

Accelerometer amplifier Ono Sokki PS-602 

Accelerometer position Upper lip 

Table 1. Recording environments for microphone and accelerometer 

 

Figure 1. Accelerometer 

 

Figure 2. Speech from microphone in quiet 
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Figure 3. BCS from accelerometer in quiet 

2.2. Optical Fiber Bragg Grating microphone 

To extend testing to scenarios such as that in which noise sound is generated with strong 

magnetic field, in communications between a patient and an operator in an MRI room, an 

OFBG microphone is employed to record body-conducted speech there because it can 

measure a clearer signal than an accelerometer and be used in an environment with a strong 

magnetic field. It is examined the effectiveness of the microphone in an MRI room in which 

a magnetic field is produced by an open-type magnetic resonance imaging system. Tables 2 

and 3 detail the recording environments for OFBG microphone which is shown in Figure 

4. Noise levels in the room did not measure at the recording point such as the mouth of 

the speaker because a sound-level meter did not permit into the room since it composed 

from magnetic materials. Therefore, the noise level is measured at the entrance of the 

room, and consequently may be higher than the noise level at the signal recording point; 

the noise level is given in Table 2. Owing to patient discomfort during the recordings, 

only 20 words and 5 sentences were recorded in the room where a scene is shown in 

Figure 5. Figure 6 shows the body-conducted speech recorded from the OFBG 

microphone in the room when activated a MRI. Compared the signal with conventional 

BCS, it is clearer than that for body-conducted speech measured by accelerometer because 

characteristics of frequencies above 2 kHz can be found. 
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Figure 4. OFBG microphone 

   

Figure 5. Signal recording in an MRI room 

 

Figure 6. BCS from OFBG microphone 
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MRI model HITACH AIRIS II 

Environment 
MRI (OFF): 61.6 dB SPL 

MRI (ON): 81.1 dB SPL 

Speakers 
two males (22 and 23 years old) 

two females (23 and 24 years old) 

Vocabulary 
twenty words × two sets: JEIDA 100 local place names 

five sentences × three sets: ATR database sentences 

Table 2. Recording environment 1 for OFBG microphone 

 

Device name Type name 

Pickup Optoacoustics Optimic4130 

Optical-electronic conversion device Optoacoustics EOU200 

Recorder TEAC LX-10 

Table 3. Recording environment 2 for OFBG microphone 

3. Speech recognition with OFBG microphone 

The quality of the signal recorded with the OFBG microphone, is higher than the quality of 

BCS recorded with accelerometer. Generally, the quality of speech sound is evaluated by the 

mean opinion score from 1 to 5 however this requires much evaluation data to achieve 

adequate significance levels. For the reason, it is evaluated the sound quality through speech 

recognition using acoustic models estimated with the speech of unspecified speakers as 

results of recognition performances. In speech recognition, the best candidate is chosen and 

decided by likelihoods derived from acoustic models and feature parameters such as 

cepstral parameters, which are calculated from the recorded speech (D. Li, and D. 

O’Shaughnessy, 2003) (L. Rabiner, 1993). As a result, the recognition performances and 

likelihoods are statistical results since human errors and other factors are not considered. 

3.1. Experimental conditions 

Table 4 shows the experimental conditions for isolated word recognition in speech 

recognition. The experiment employs the Julius, speech recognition decoder, which is a 

large-vocabulary continuous-speech recognition system for Japanese language (T. Kawahara 

et al., 1999) (A. Lee et al., 2001). The decoder requires a dictionary, acoustic models and 

language models. The dictionary describes connections of sub-words in each word, such as 

phonemes and syllables, which are the acoustic models. Language models give the 

probability for a present word given a former word in corpora. The purpose of the 

experiment is only the evaluation of the clarity or the similarity of signals and acoustic 

models. Since language models are not required in this experiment, Julian version 3.4.2 is 

used for isolated-word recognition especially. Thus, the experiments are used the same 
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acoustic models estimated by HTK with JNAS to evaluate closeness of signals when highest 

recognition performance is achieved (S. Young et al., 2000) (K. Itou et al, 1999).  

3.2. Experimental results 

Table 5 shows recognition results of isolated word recognition in each data set, and Table 6 

gives averages of recognition results in each speaker. The recognition results for the OFGB 

microphone are found to be superior to the recognition results for the conventional BCS 

microphone. The differences in isolated-word recognition rates are about 15% to 35% 

respectively. These results show the effectiveness of the OFBG microphone when is 

measured clearly signals with it. 

 

Speaker 
two males (22 and 23 years old) 

two female (23 and 24 years old) 

Number of datasets 20 words × three sets/person 

Vocabulary JEIDA 100 local place names 

Recognition system Julian 3.4.2 

Acoustic model gender-dependent triphone model 

Model conditions 16 mixture Gaussian, clustered 3000 states 

Feature vectors MFCC(12)+ΔMFCC(12)+ΔPow(1)=25 dim. 

Training condition 
more than 20,000 samples 

JANS with HTK 2.0 

Table 4. Experimental conditions for isolated word recognition 

 

Speaker 
MRI off MRI on 

set 1 set 2 set 3 set 1 set 2 set 3 

Male 1 85% 80% 90% 30% 40% 50% 

Male 2 90% 75% 85% 50% 60% 60% 

Female 1 35% 35% 35% 20% 20% 20% 

Female 2 80% 70% 70% 75% 70% 75% 

Table 5. Recognition results of isolated word recognition in each data set 

 

Speaker MRI off MRI on 

Male 1 85.0% 40.0% 

Male 2 83.3% 56.7% 

Female 1 35.0% 20.0% 

Female 2 73.3% 73.3% 

Table 6. Averages of recognition results 
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4. Improvement on sound quality of body-conducted speech in word unit 

The OFBG microphone can measure a high quality signal compared to a BCS of an 

accelerometer. To realize conversations without stress, signals with improved in sound 

qualities are required. Consequently, one of aims in the research is to invent and examine 

a method for improving sound quality. Many researchers and researches which are 

already introduced in the chapter of introduction, are unaware that a BCS does not have 

frequency components 2 kHz and higher. Mindful of this condition, conventional retrieval 

methods for BCS that need the speech and its parameters are proposed and investigated, 

however speech is not measured easily in noisy environments. Therefore a signal retrieval 

method for a BCS only performs well with itself. In realizing this progressive idea, the 

method is invented a signal retrieval method without speech and the other parameters 

because effective frequency components in signals over 2 kHz are found however there 

contains very low gains. 

4.1. Differential acceleration 

Formula (1) shows an equation for estimating using the differential acceleration from the 

original BCS. 

   ( ) ( 1) ( )differentialx i x i x i   (1) 

xdifferential(i) is the differential acceleration signal that is calculated from each frame of a BCS. 

Because of low gains in its amplitude, it requires adjusting to a suitable level for hearing or 

processing. Figure 7 shows a differential acceleration estimated from Figure 6 using 

Formula (1), with the adjusted gain. It seems that the differential acceleration signal is 

composed of speech mixed with stationary noise, so we expected to be able to remove it 

completely with the noise reduction method because the signal has a high SNR compared to 

the original signal. Consequently, it is proposed the signal estimation method using 

differential acceleration and a conventional noise reduction method (M. Nakayama et al., 

2011). 

4.2. Noise reduction method 

As a first approach to noise reduction, it is examined the effectiveness of a spectral 

subtraction method for the reduction of stationary noise. However, improvements in 

performances for the frequency components is inadequated with this approach. The noise 

spectrum is simply subtracted by a spectral subtraction method, so a Wiener-filtering 

method is expected to estimate the spectrum envelope of speech using linear prediction 

coefficients. Therefore, it is tried to extract a clear signal using the Wiener-filtering method, 

which could estimate and obtain the effective frequency components from noisy speech. 

Formula (2) shows the equation used for the Wiener-filtering method. 
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Estimate
Speech Noise
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H

H H
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An estimated spectrum HEstimate(ω) can be converted to a retrieval signal from the differential 

acceleration signal. It can be calculated from the speech spectrum HSpeech(ω) and noise 

spectrum HNoise(ω). In particular, HSpeech(ω) is calculated with autocorrelation functions and 

linear prediction coefficients using a Levinson-Durbin algorithm (J. Durbin, 1960), and 

HNoise(ω) is then estimated using autocorrelation functions. 

4.3. Evaluations 

Signal retrieval for a signal measured by an OFBG microphone is performed using the 

same parameters in the method because a propagation path of body-conducted speech in 

a human body is not affected by either quiet or noisy environments. Figure 8 shows a 

retrieval signal from Figure 7 using a Wiener-filtering method where the linear prediction 

coefficients and autocorrelation functions are 1 and the frame width is 764 samples. These 

procedures were repeated five times on a signal to remove a stationary noise. From a 

retrieval signal, high frequency components from 2 kHz and above were recovered with 

these settings. This proposed method could also be applied to obtain a clear signal from 

body-conducted speech measured with OFBG microphone in noisy sound and high 

magnetic field environment. 

 

Figure 7. Differential acceleration from OFBG microphone 
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Figure 8. Retrieval signal from OFBG microphone 

5. Improvement on sound quality of body-conducted speech in sentence 

unit 

The effectiveness of signal retrieval for body-conducted speech in word unit measured by 

an accelerometer and an OFBG microphone has been demonstrated at former sections. 

However the effectiveness of body-conducted speech in word unit is proven, signals in 

sentence unit need to be examined for practical use such as conversations in the noisy 

environment. Though the investigation for the sentence unit is an important evaluation, so it 

could revolutionize speech communications in the environment. As a first step in signal 

retrieval for sentence unit, the method adopts the method to signals in word unit because 

the transfer function between the microphone and sound source seems to change little 

whether word or sentence unit, and is examined a body-conducted speech in sentence unit 

directly measured by an accelerometer and an OFBG microphone.  

5.1. Body-conducted speech from an accelerometer 

In experiments on signal retrieval using an accelerometer, speech and body-conducted 

speech were measured in a quiet room of our laboratory and engine room of the training 

ship at the Oshima National College of Maritime Technology, where there is noisy 

environments with working a main engine and two generator, are shown Figures 9 (a) and 

(b). The recording environment is also used Table 1, however the speaker who uttered a 
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word differs from a speaker in a former section. Noise within the engine room, under the 

two conditions of anchorage and cruising, were 93 and 98 dB SPL, respectively, and the SNR 

measurements from microphone. There was –20 and –25 dB SNR, respectively. In this 

research, the signal is experimented under cruising condition to estimate retrieval signals. 

A 22-year-old male uttered A01 sentence from the ATR503 sentence database, and the 

sentence is a commonly used sentence in speech recognition and application (M. Abe et al., 

1991). And the sentence is composed of the followings in sub-word of mora. 

 /a/ /ra/ /yu/ /ru/ /ge/ /N/ /ji/ /tsu/ /wo/ /su/ /be/ /te/ /ji/ /bu/ /N/ /no/ /ho/ /u/ /he/ /ne/ /ji/ 

/ma/ /ge/ /ta/ /no/ /da/ 

 

Figure 9. The engine room in Oshima-maru 

Figures 10 and 11 show a speech and a body-conducted speech in sentence unit measured 

by a conventional microphone and accelerometer in a quiet room when a 22 years-old male 

uttered the sentence. Although the accelerometer is held with fingers, sounds are measured 

clearly because it was firmly held to the upper lip with a suitable pressure. Figure 12 shows 

a differential acceleration from Figure 11, becomes clearly signal with little noise because the 

BCS is high SNR. 

Figures 13 and 14 show a speech and a body-conducted speech in sentence unit in the 

noisy environment. Speech is completely swamped by the intense noise from the engine 

and generators. On the other hand, body-conducted speech in Figure 14 is affected a little 

by the noise but can be measured. Because SNR in Figure 14 has low gain, differential 

acceleration in Figure 15 is considered that the performance of signal retrieval is reduced. 

Figure 16 shows the signal retrieval from the differential acceleration works well when the 

treated four times since the performance is sufficient to recover the frequency 

characteristics. As a result, it is concluded that body-conducted speech is as clear as 

possible without noise disturbance. 

(a) Main engine of Oshima-maru (b) Signal recording in the engine room 
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Figure 10. Speech of sentence in quiet 

 

 

Figure 11. BCS of sentence in quiet 
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Figure 12. Differential acceleration of sentence in quiet 

 

 

Figure 13. Speech of sentence in noise environment 
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Figure 14. BCS of sentence in noise environment 

 

 

Figure 15. Differential acceleration of sentence in noise environment 
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Figure 16. Retrieval BCS of sentence in noise environment 

5.2. Body-conducted speech from OFBG microphone 

The quality of the signal measured by the OFBG microphone in the noisy environment of an 

MRI room was investigated here. A speaker uttered the sentence A01 during the operation 

of MRI devices, such that there was an 81 dB SPL-noise environment. Although a sound 

level meter was not permitted in the room, so it is measured in front of the gate door in the 

room. Figure 17 shows the signal of the uttered sentence recorded by the OFBG microphone 

in the MRI room when MRI equipment was in operation. Since the signal is clear, it is 

expected that the frequency characteristics of the signal can be recovered employing the 

signal retrieval method. Figures 18 and 19 show the differential acceleration and retrieved 

signal from the OFBG microphone in the MRI room when the MRI equipment was in 

operation and the method treated three times. These figures confirm to improve in the 

sound quality of BCS in sentence, and it also concluded that the SNR in BCS is best when it 

has high level. 
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Figure 17. BCS of sentence in MRI room 

 

 

Figure 18. Differential acceleration of sentence in MRI room 
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Figure 19. Retrieval signal of sentence in MRI room 

6. Conclusions and future works 

This section presents improvements on sound quality of body-conducted speeches 

measured with an accelerometer and an OFBG microphone. Especially, an MRI room has 

heavy noisy sound and high magnetic field environment. The environment does not allow 

bringing accelerometer such as a conventional body-conducted speech microphone which is 

made from magnetic materials. For conversations and communications between a patient 

and an operator in the room, an OFBG microphone is proposed, which can measure clear 

signals compared to accelerometer. 

And then, the performances of signal retrieval method in sentence with the microphones 

that are an accelerometer and an OFBG microphone were evaluated, and the effectiveness is 

confirmed with time–frequency analysis and speech recognition. From this background, it is 

investigated estimating clear body-conducted speech in sentence unit from an OFBG 

microphone with our signal retrieval method that used combined differential acceleration 

and noise reduction. Applying the method to the signal measured recovered which in 

sound quality that was evaluated using time-frequency analysis. Thus, its retrieval 

method can also be applied to a signal measured by an OFBG microphone with the same 

settings because its conduction path is not affected by the noise in the air. The signals 

were measured in quiet and noisy rooms, specifically an engine room and MRI room. The 

signals were clearly obtained employing the signal retrieval method and the same settings 
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used for the word unit as a first step. To obtain a clearer signal with the signal retrieval 

method, the pressure at which the microphone is held is important, and the sounds have 

high SNR in original BCS.  

As future works, it needs to extend the signal retrieval method for practical use and 

improvement of algorithm for advance. 
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