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1. Introduction 

A large number of problems in production planning and scheduling, location, 

transportation, finance, and engineering design require that decisions be made in the 

presence of uncertainty. From the very beginning of the application of optimization to these 

problems, it was recognized that analysts of natural and technological systems are almost 

always confronted with uncertainty. Uncertainty, for instance, governs the prices of fuels, 

the availability of electricity, and the demand for chemicals. A key difficulty in optimization 

under uncertainty is in dealing with an uncertainty space that is huge and frequently leads 

to very large-scale optimization models. Decision-making under uncertainty is often further 

complicated by the presence of integer decision variables to model logical and other discrete 

decisions in a multi-period or multi-stage setting.  

Approaches to optimization under uncertainty have followed a variety of modeling 

philosophies, including expectation minimization, minimization of deviations from goals, 

minimization of maximum costs, and optimization over soft constraints. The main 

approaches to optimization under uncertainty are stochastic programming (recourse 

models, robust stochastic programming, and probabilistic models), fuzzy programming 

(flexible and possibilistic programming), and stochastic dynamic programming. 

This paper is devoted to improvement of statistical decisions in revenue management 

systems. Revenue optimization – or revenue management as it is also called – is a relatively 

new field currently receiving much attention of researchers and practitioners. It focuses on 

how a firm should set and update pricing and product availability decisions across its 

various selling channels in order to maximize its profitability. The most familiar example 

probably comes from the airline industry, where tickets for the same flight may be sold at 
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many different fares throughout the booking horizon depending on product restrictions as 

well as the remaining time until departure and the number of unsold seats. Since the tickets 

for a flight have to be sold before the plane takes off, the product is perishable and cannot be 

stored for future use. The use of the above strategies has transformed the transportation and 

hospitality industries, and has become increasingly important in retail, telecommunications, 

entertainment, financial services, health care and manufacturing. In parallel, pricing and 

revenue optimization has become a rapidly expanding practice in consulting services, and a 

growing area of software and IT development, where the revenue optimization systems are 

tightly integrated in the existing Supply Chain Management solutions. 

Most stochastic models, which are used in revenue optimization systems, are developed 

under the assumptions that the parameter values of the models are known with certainty. 

When these models are applied to solve real-world problems, the parameters are estimated 

and then treated as if they were the true values. The risk associated with using estimates 

rather than the true parameters is called estimation risk and is often ignored. When data are 

limited and/or unreliable, estimation risk may be significant, and failure to incorporate it 

into the model design may lead to serious errors. Its explicit consideration is important since 

decision rules which are optimal in the absence of uncertainty need not even be 

approximately optimal in the presence of such uncertainty.  

In this paper, we consider the cases where it is known that the underlying probability 

distributions belong to a parameterized family of distributions. However, unlike in the 

Bayesian approach, we do not assume any prior knowledge on the parameter values. The 

primary purpose of the paper is to introduce the idea of embedding of sample statistics (say, 

sufficient statistics or maximum likelihood estimators) in a performance index of revenue 

optimization problem. In this case, we find the optimal stochastic control policy directly. We 

demonstrate the fact that the traditional approach, which separates the estimation and the 

optimization tasks in revenue optimization systems (i.e., when we use the estimates as if 

they were the true parameters) can often lead to pure results. It will be noted that the 

optimal statistical decision rules depend on data availability.  

For constructing the improved statistical decisions, a new technique of invariant embedding 

of sample statistics in a performance index is proposed (Nechval et al., 1999; 2004; 2008; 

2010a; 2010b; 2010c; 2010d; 2010e; 2011a; 2011b). This technique represents a simple and 

computationally attractive statistical method based on the constructive use of the invariance 

principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding 

technique is independent of the choice of priors, i.e., subjectivity of investigator is 

eliminated from the problem. The technique allows one to eliminate unknown parameters 

from the problem and to find the improved invariant statistical decision rules, which has 

smaller risk than any of the well-known traditional statistical decision rules.  

In order to obtain improved statistical decisions for revenue management under parametric 

uncertainty, it can be considered the three prediction situations: “new-sample” prediction, 

“within-sample” prediction, and “new-within-sample” prediction. For the new-sample 

prediction situation, the data from a past sample are used to make predictions on a future unit 

or sample of units from the same process or population. For the within-sample prediction 



 
Stochastic Control and Improved Statistical Decisions in Revenue Optimization Systems 187 

situation, the problem is to predict future events in a sample or process based on early data 

from that sample or process. For the new-within-sample prediction situation, the problem is to 

predict future events in a sample or process based on early data from that sample or process as 

well as on a past data sample from the same process or population. Some mathematical 

preliminaries for the within-sample prediction situation are given below. 

2. Mathematical preliminaries for the within-sample prediction situation 

Theorem 1. Let X1  ...  Xk be the first k ordered observations (order statistics) in a sample of 

size m from a continuous distribution with some probability density function f (x) and 

distribution function F (x), where  is a parameter (in general, vector). Then the joint 

probability density function of X1  ...  Xk and the lth order statistics Xl (1  k < l  m) is 

given by  

 θ 1 k l θ 1 k θ l kf (x , ..., x , x ) f (x , ..., x )g (x |x ),  (1) 

where 

 θ 1 kf (x ,..., x ) 



 
 

k
m k

θ i θ k
i 1

m!
f (x )[1 F (x )] ,

(m k)!
 (2) 

  
    

    
           

l k 1 m l

θ l θ k θ l θ k θ l
θ l k

θ k θ k θ k

F (x ) F (x ) F (x ) F (x ) f (x )(m k)!
g (x |x ) 1

(l k 1)!(m l)! 1 F (x ) 1 F (x ) 1 F (x )
 

  



    
    

        


m l j
l k 1

j θ l θ l

j 0 θ k θ k

l k 1 1 F (x ) f (x )(m k)!
( 1)

j(l k 1)!(m l)! 1 F (x ) 1 F (x )
 

 

  



   
    

        


l k 1 j
m l

j θ l θ k θ l

j 0 θ k θ k

m l F (x ) F (x ) f (x )(m k)!
( 1)

j(l k 1)!(m l)! 1 F (x ) 1 F (x )
  (3) 

represents the conditional probability density function of Xl given Xk=xk. 

Proof. The joint density of X1  ...  Xk and Xl is given by 

θ 1 k lf (x , ..., x , x )   



  
   

k
l k 1 m l

θ i θ l θ k θ l θ l
i 1

m!
f (x )[F (x ) F (x )] f (x )[1 F (x )]

(l k 1)!(m l)!
 

   θ 1 k θ l kf (x , ..., x )g (x |x ).  (4) 

It follows from (4) that 

  θ 1 k l
θ l 1 k θ l k

θ 1 k

f (x , ..., x , x )
f (x |x , ..., x ) g (x |x ),

f (x , ..., x )
  (5) 
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i.e., the conditional distribution of Xl, given Xi = xi for all i = 1,…, k, is the same as the 

conditional distribution of Xl , given only Xk = xk. This ends the proof. □ 

Corollary 1.1. The conditional probability distribution function of Xl given Xk=xk is 

  
   

  θ l l k k

(m k)!
P X x |X x 1

(l k 1)!(m l)!
 

   



    
    

       


m l 1 jjl k 1
θ l

j 0 θ k

l k 1 1 F (x )( 1)

j m l 1 j 1 F (x )
 

 




  
  

     


jm l

j 0

m l(m k)! ( 1)

j(l k 1)!(m l)! l k j

 
 
 

  

l k j

θ l θ k

θ k

F (x ) F (x )
.

1 F (x )
 (6) 

Corollary 1.2. If l = k + 1, 

 
 



 
   

   

m k 1

θ k 1 θ k 1
θ k 1 k

θ k θ k

1 F (x ) f (x )
g (x |x ) (m k)

1 F (x ) 1 F (x )
 

 
 

 



    
        

     


j
m k 1

j θ k 1 θ k θ k 1

j 0 θ k θ k

m k 1 F (x ) F (x ) f (x )
(m k) ( 1) , 1 k m 1,

j 1 F (x ) 1 F (x )
 (7) 

and 

 



 

 
     

  

m k

θ k 1
θ k 1 k 1 k k

θ k

1 F (x )
P X x |X x 1

1 F (x )
 

 

 




    
       

     


1 jjm k 1
θ k 1 θ k

j 0 θ k

m k 1 F (x ) F (x )( 1)
(m k) , 1 k m 1.

j 1 j 1 F (x )
 (8) 

Corollary 1.3. If l = m, 

 



  
   

 


m k 1
j

θ m k
j 0

m k 1
g (x |x ) (m k) ( 1)

j
 

 
 

 
   

j

θ m θ m

θ k θ k

1 F (x ) f (x )

1 F (x ) 1 F (x )

 
 

     
   

m k 1

θ m θ k θ m

θ k θ k

F (x ) F (x ) f (x )
(m k) , 1 k m 1,

1 F (x ) 1 F (x )
 (9) 

and 

 
1+ jj

θ m

θ k

1- F (x )(-1)

1 + j 1 - F (x )

 



   
        

    


m k 1

θ m m k k
j 0

m k 1
P X x |X x 1 (m k)

j
 



 
Stochastic Control and Improved Statistical Decisions in Revenue Optimization Systems 189 

 


 

    
  

m k

θ m θ k

θ k

F (x ) F (x )
,   1 k m 1.

1 F (x )
 (10) 

2.1. Exponential distribution 

In order to use the results of Theorem 1, we consider, for illustration, the exponential 

distribution with the probability density function  

 
 

    
 

θ
1 x

f (x) exp ,   x 0,   θ 0,
θ θ

 (11) 

and the probability distribution function  

 
 

     
 

θ
x

F (x) 1 exp ,   x 0,   θ 0.
θ

 (12) 

Theorem 2. Let X1  ...  Xk be the first k ordered observations (order statistics) in a sample of 

size m from the exponential distribution (11). Then the conditional probability density 

function of the lth order statistics Xl (1  k < l  m) given Xk = xk is 

 



       
          


l k 1

j l k
θ l k

j 0

l k 1 (m l 1 j)(x x )1 1
g (x |x ) ( 1) exp

jΒ(l k,(m l 1) θ θ
 

  



       
                   


l k 1 j

m l
j l k l k

j 0

m l x x x x1 1
( 1) 1 exp exp , 

jΒ(l k,(m l 1) θ θ θ
 

 l kx x ,  (13) 

and the conditional probability distribution function of the lth order statistics Xl given Xk = xk is 

  θ l l k kP X x |X x
 



  
   

    


l k 1

j 0

l k 11
1

jΒ(l k,(m l 1)
 

    
      

j
l k(m l 1 j)(x x )( 1)

exp  
m l 1 j θ

 

 

 



    
                


l k jjm l

l k

j 0

m l x x1 ( 1)
1 exp .

jΒ(l k,(m l 1) l k j θ
  (14) 

Proof. It follows from (3) and (6), respectively. □ 

Corollary 2.1. If l = k + 1,  
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


  
   

 
k 1 k

θ k 1 k

(m k)(x x )1
g (x |x ) (m k) exp

θ θ
 

 
 



        
          

       


j
m k 1

j k 1 k k 1 k

j 0

m k 1 x x x x1
(m k) ( 1) 1 exp exp , 

j θ θ θ
 

     k 1 kx x ,   1 k m 1,  (15) 

and 

  
 

  
     

 
k 1 k

θ k 1 k 1 k k

(m k)(x x )
P X x |X x 1 exp

θ
 

 

 




     
          

      


1 jjm k 1
k 1 k

j 0

m k 1 x x( 1)
(m k) 1 exp , 1 k m 1.

j 1 j θ
 (16) 

Corollary 2.2. If l = m, 

 θ m kg (x |x ) (m k)  

 



     
     

  


m k 1
j m k

j 0

m k 1 (1 j)(x x )1
( 1) exp

j θ θ
 

 

 
     

            
     

m k 1

m k m k
m k

x x x x1
(m k) 1 exp exp , x x ,   1 k m 1,

θ θ θ
 (17) 

and 

 
 



     
        

   


jm k 1
m k

θ m m k k
j 0

m k 1 (1 j)(x x )( 1)
P X x |X x 1 (m k) exp

j 1 j θ
 

 


  

       
   

m k

m kx x
1 exp ,   1 k m 1.

θ
 (18) 

Theorem 3. Let X1  ...  Xk be the first k ordered observations (order statistics) in a sample of 

size m from the exponential distribution (11), where the parameter  is unknown. Then the 

predictive probability density function of the lth order statistics Xl (1  k < l  m) is given by 

 



  
  

    


k

l k 1
j

s l k
j 0

l k 1k
g (x |x ) ( 1)

jΒ(l k,(m l 1)
 

 

 
 

      
  

(k 1)

l k
l k

k k

x x 1
1 (m l 1 j) ,   x x ,

s s
  (19) 
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where 

 


  
k

k i k
i 1

S X (m k)X  (20) 

is the sufficient statistic for , and the predictive probability distribution function of the lth 

order statistics Xl is given by 

 
 



   
     

      


k

jl k 1

s l l k k
j 0

l k 11 ( 1)
P X x |X x 1

jΒ(l k,(m l 1) m l 1 j
 

 


 

     
  

k

l k

k

x x
1 (m l 1 j) .

s
  (21) 

Proof. Using the technique of invariant embedding (Nechval et al., 1999; 2004; 2008; 2010a; 

2010b; 2010c; 2010d; 2010e; 2011a; 2011b), we reduce (13) to 

 



  
  

    


l k 1
j

θ l k
j 0

l k 11
g (x |x ) ( 1)

jΒ(l k,(m l 1)
 

 
    

   
 

l k

k k

(m l 1 j)(x x ) 1
vexp v

s s


ks l kg (x |x ,v),  (22) 

where 

 / kV S θ   (23) 

is the pivotal quantity, the probability density function of which is given by 

   k 11
f(v) v exp( v),   v 0.

Γ(k)
  (24) 

Then 

 .


  k k k ks l k s l k s l k s l k

0

g (x |x ) E{g (x |x ,v)} g (x |x ,v)f(v)dv g (x |x )   (25) 

This ends the proof. □  

Corollary 3.1. If l = k + 1,  

 




 
    

  k

(k 1)

k 1 k
s k 1 k

k k

x x 1
g (x |x ) k(m k) 1 (m k) ,

s s
 

     k 1 kx x ,   1 k m 1,   (26) 
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and 

  



 

 
         

  k

k

k 1 k
s k 1 k 1 k k

k

x x
P X x |X x 1 1 (m k) , 1 k m 1.

s
  (27) 

Corollary 3.2. If l = m, 

  



    
       

    


k

(k 1)
m k 1

j m k
s m k

j 0 k k

m k 1 x x 1
g (x |x ) k(m k) ( 1) 1 (1 j) ,

j s s
 

    m kx x ,   1 k m 1,   (28) 

and 

 
 



    
         

     


k

kjm k 1
m k

s m m k k
j 0 k

m k 1 x x( 1)
P X x |X x 1 (m k) 1 (1 j)

j 1 j s
 

 





   
        

    


k
m k

j m k

j 0 k

m k x x
( 1) 1 j , 1 k m 1.

j s
 (29) 

2.2. Cumulative customer demand 

The primary purpose of this paper is to introduce the idea of cumulative customer demand 

in inventory control problems to deal with the order statistics from the underlying 

distribution. It allows one to use the above results to improve statistical decisions for 

inventory control problems under parametric uncertainty. 

Assumptions. The customer demand at the ith period represents a random variable  

Yi, i{1, …, m}. It is assumed (for the cumulative customer demand) that the random 

variables 

 
  

     
k l m

1 1 k i l i m i
i i 1 i 1

X Y , ..., X Y , ..., X Y , ..., X Y  (30) 

represent the order statistics (X1  …  Xm) from the exponential distribution (11).  

Inferences. For the above case, we have the following inferences. 

Conditional probability density function of Yk+1, k{1, …, m 1}, is given by  

 
 

 
   

 
k 1

θ k 1 k 1

(m k)ym k
g (y |k) exp ,   y 0;

θ θ
 (31) 

Conditional probability distribution function of Yk+1, k{1, …, m 1}, is given by 
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   


 
   

 
k 1

θ k 1

(m k)y
G y |k 1 exp  .

θ
  (32) 

Conditional probability density function of mZ
 

m

ii k 1
Y is given by 

 

 
    

            
     

m k 1

m m
θ m m

z z1
g (z |k) (m k) 1 exp exp , z 0,   1 k m 1;

θ θ θ
 (33) 

Conditional probability distribution function of mZ
 

m

ii k 1
Y is given by 

 


  

       
   

m k

m
θ m

z
G (z |k) 1 exp ,   1 k m 1.

θ
  (34) 

Predictive probability density function of Yk+1, k{1, …, m 1}, is given by 

 

 


 

 
     

  k

(k 1)

k 1
s k 1 k 1

k k

y 1
g (y |k) k(m k) 1 (m k) , y 0;

s s
 (35) 

Predictive probability distribution function of Yk+1, k{1, …, m 1}, is given by 

 






 
    

  k

k

k 1
s k 1

k

y
G (y |k) 1 1 (m k) .

s
  (36) 

Predictive probability density function of Zm is given by  

  



   
       

    


k

(k 1)
m k 1

j m
s m

j 0 k k

m k 1 z 1
g (z |k) k(m k) ( 1) 1 (1 j) ,

j s s
 

    mz 0,   1 k m 1;   (37) 

Predictive probability distribution function of Zm is given by 

 





  
        

    


k

k
m k

j m
s m

j 0 k

m k z
G (z |k) ( 1) 1 j , 1 k m 1.

j s
 (38) 

3. Stochastic inventory control problem 

Most of the inventory management literature assumes that demand distributions are 

specified explicitly. However, in many practical situations, the true demand distributions 

are not known, and the only information available may be a time-series of historic demand 

data. When the demand distribution is unknown, one may either use a parametric approach 
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(where it is assumed that the demand distribution belongs to a parametric family of 

distributions) or a non-parametric approach (where no assumption regarding the parametric 

form of the unknown demand distribution is made). 

Under the parametric approach, one may choose to estimate the unknown parameters or 

choose a prior distribution for the unknown parameters and apply the Bayesian approach to 

incorporating the demand data available. Scarf (1959) and Karlin (1960) consider a Bayesian 

framework for the unknown demand distribution. Specifically, assuming that the demand 

distribution belongs to the family of exponential distributions, the demand process is 

characterized by the prior distribution on the unknown parameter. Further extension of this 

approach is presented in (Azoury, 1985). Application of the Bayesian approach to the censored 

demand case is given in (Ding et al., 2002; Lariviere & Porteus, 1999). Parameter estimation is 

first considered in (Conrad, 1976) and recent developments are reported in (Agrawal & Smith, 

1996; Nahmias, 1994). Liyanage & Shanthikumar (2005) propose the concept of operational 

statistics and apply it to a single period newsvendor inventory control problem. 

This section deals with inventory items that are in stock during a single time period. At the 

end of the period, leftover units, if any, are disposed of, as in fashion items. Two models are 

considered. The difference between the two models is whether or not a setup cost is 

incurred for placing an order. The symbols used in the development of the models include: 

c = setup cost per order, 

c1= holding cost per held unit during the period, 

c2= penalty cost per shortage unit during the period, 

g (yk+1|k) = conditional probability density function of customer demand, Yk+1, during the 

(k+1)th period, 

 = parameter (in general, vector), 

u = order quantity, 

q = inventory on hand before an order is placed. 

3.1. No-setup model (Newsvendor model) 

This model is known in the literature as the newsvendor model (the original classical name is 

the newsboy model). It deals with stocking and selling newspapers and periodicals. The 

assumptions of the model are: 

1. Demand occurs instantaneously at the start of the period immediately after the order is 

received. 

2. No setup cost is incurred. 

The model determines the optimal value of u that minimizes the sum of the expected 

holding and shortage costs. Given optimal u (= u*), the inventory policy calls for ordering 

u* q if q < u*; otherwise, no order is placed. 

If Yk+1 u, the quantity u Yk+1 is held during the (k+1)th period. Otherwise, a shortage 

amount Yk+1 u will result if Yk+1> u. Thus, the cost per the (k+1)th period is 
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





 
   

k 1
1 k 1

k 1
2 k 1

u Y
c    if   Y u,

θC(u)
Y u

c    if   Y u.
θ

  (39) 

The expected cost for the (k+1)th period, E{C(u)}, is expressed as 

 


     

 
    
 
 
 
u

θ 1 k 1 θ k 1 k 1 2 k 1 θ k 1 k 1

0 u

1
E {C(u)} c (u y )g (y |k)dy c (y u)g (y |k)dy .

θ
 (40) 

The function θE {C(u)} can be shown to be convex in u, thus having a unique minimum. 

Taking the first derivative of θE {C(u)}  with respect to u and equating it to zero, we get 

 


   

 
  
 
 
 
u

1 θ k 1 k 1 2 θ k 1 k 1

0 u

1
c g (y |k)dy c g (y |k)dy 0

θ
 (41) 

or 

      1 θ k 1 2 θ k 1c P {Y u} c (1 P {Y u}) 0  (42) 

or 

   

2

θ k 1
1 2

c
P {Y u} .

c c
 (43) 

It follows from (31), (32), (40), and (43) that  

   
     

2

1

cθ
u ln 1

m k c
 (44) 

and 




   

 
   
 
 


u

θ 2 θ k 1 1 2 k 1 θ k 1 k 1
0

1
E {C(u )} c E {Y } (c c ) y g (y |k)dy

θ
 

 
 

     
1 2

1

c c
ln 1 .

m k c
  (45) 

Parametric uncertainty. Consider the case when the parameter  is unknown. To find the best 

invariant decision rule BIu ,  we use the invariant embedding technique (Nechval et al., 1999; 

2004; 2008; 2010a; 2010b; 2010c; 2010d; 2010e; 2011a; 2011b) to transform (39) to the form, 

which is depended only on the pivotal quantities V, V1, and the ancillary factor . In 

statistics, a pivotal quantity or pivot is a function of observations and unobservable 
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parameters whose probability distribution does not depend on unknown parameters. Note 

that a pivotal quantity need not be a statistic—the function and its value can depend on 

parameters of the model, but its distribution must not. If it is a statistic, then it is known as 

an ancillary statistic.  

Transformation of C(u) based on the pivotal quantities V, V1 is given by 

 (1) 1 1 1

2 1 1

c (η V )    if    V ηV,
C η

c (V ηV)    if    V ηV,
 )

     

V
(   (46) 

where 

 
k

uη ,
S

 (47) 

      k 1
1 1 1 1

Y
V ~ g(v |k) (m k)exp[ (m k)v ],   v 0.

θ
  (48) 

Then E{C(1)()} is expressed as  

 ( )  
  
    
 
 
  

ηv
(1)

1 1 1 1 2 1 1 1
0 0 ηv

E{C } c (η v v )g(v |k)dv c (v ηv)g(v |k)dv f(v)dv.η   (49) 

The function E{C(1)()} can be shown to be convex in , thus having a unique minimum. 

Taking the first derivative of E{C(1)()} with respect to  and equating it to zero, we get 

 
  

  
 
 

  
ηv

1 1 1 2 1 1
0 0 ηv

v c g(v |k)dv c g(v |k)dv f(v)dv 0    (50) 

or  

 














1
0 2

1 2

0

vP(V ηv)f(v)dv
c

.
c c

vf(v)dv

  (51) 

It follows from (47), (49), and (51) that the optimum value of  is given by 

 




           

1/(k 1)

2

1

c1η 1 1 ,
m k c

  (52) 

the best invariant decision rule is 

 




            

1/(k 1)

BI k 2
k

1

S c
u η S 1 1 ,

m k c
  (53) 
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and the expected cost, if we use uBI, is given by  

 
BI

θE {C(u )}



             

1/(k 1)

(1)1 2

1

c (k 1) c
1 1 E{C (η )}.

m k c
  (54) 

It will be noted that, on the other hand, the invariant embedding technique (Nechval et al., 

1999; 2004; 2008; 2010a; 2010b; 2010c; 2010d; 2010e; 2011a; 2011b) allows one to transform 

equation (40) as follows: 



     

 
    
 
 
 
u

θ 1 k 1 θ k 1 k 1 2 k 1 θ k 1 k 1

0 u

1
E {C(u)} c (u y )g (y |k)dy c (y u)g (y |k)dy

θ
 


 

  
       

u

2 k 1
1 k 1 k 1

k k k0

v(m k)y1 1
c (u y )v (m k)exp dy

s s s
 

 



 

 
        

 2 k 1
2 k 1 k 1

k ku

v(m k)y 1
c (y u)v (m k)exp dy .

s s
 (55) 

Then it follows from (55) that 

 


  k

(1)
θ θ s

0

E{E {(C(u)}} E {C(u)}f(v)dv E {C (u)},  (56) 

where 

 


 
     

 
    
 
 
 k k k

u
(1)

s 1 k 1 s k 1 k 1 2 k 1 s k 1 k 1
k 0 u

k
E {C (u)} c (u y )g (y |k)dy c (y u)g (y |k)dy

s
 (57) 

represents the expected prediction cost for the (k+1)th period. It follows from (57) that the 

cost per the (k+1)th period is reduced to 

 







 


   

k 1
1 k 1

(2) k

k 1
2 k 1

k

u Y
c    if   Y u,

s /k
C (u)

Y u
c    if   Y u,

s /k

 (58) 

and the predictive probability density function of Yk+1 (compatible with (40)) is given by 

 

 
 

 

 
      

  k

(k 2)

k 1
s k 1 k 1

k k

y 1
g (y |k) (k 1)(m k) 1 (m k) ,   y 0.

s s
 (59) 

Minimizing the expected prediction cost for the (k+1)th period, 
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 ,


 
     

 
    
 
 
 k k k

u
(2)

s 1 k 1 s k 1 k 1 2 k 1 s k 1 k 1
k 0 u

k
E {C (u)} c (u y )g (y |k)dy c (y u)g (y |k)dy

s
  (60) 

with respect to u, we obtain uBI immediately, and 

 
k

(2) BI
sE {C (u )}

            

1/(k 1)

1 2

1

c (k 1) c
1 1 .

m k c
  (61) 

It should be remarked that the cost per the (k+1)th period, (2)C (u),  can also be transformed 

to 

 

 

 

  
                    

 

k 1 k 1
1

k k k k(3) 1

2k 1 k 1
2

k k k k

Y Yu u
c k    if   

s s s s c k(η W)   if   W η
C (η)

c k(W η)   if   W η,Y Yu u
c k    if   

s s s s

 (62) 

where the probability density function of the ancillary statistic W (compatible with (40)) is 

given by 

 
 

      


k

(k 2)

sg (w|k) (k 1)(m k) 1 (m k)w , w 0.   (63) 

Then the best invariant decision rule BI
ku η S , where η minimizes 

 
 

   
  
  
η

(3)
1 2

0 η

E{C (η)} k c (η w)g (w|k)dw c (w η)g (w|k)dw .   (64) 

Comparison of statistical decision rules. For comparison, consider the maximum likelihood 

decision rule that may be obtained from (44), 

 
 

      


ML ML2

j k
1

cθ
u ln 1 η S

m k c
,  (65) 

where 


kθ S /k  is the maximum likelihood estimator of , 

 
 

     

1/k

ML 2

1

c1η ln 1 .
m k c

  (66) 

Since BIu and MLu  belong to the same class, 

   kC {u : u ηS },   (67) 
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it follows from the above that MLu  is inadmissible in relation to BIu . If, say, k=1 and 

1002 1c / c , we have that  

 ML BIRel.eff.{u ,  u ,q} BI ML
θ θ= E {C(u )} E {C(u )} 0.838.  (68) 

Thus, in this case, the use of BIu leads to a reduction in the expected cost of about 16.2 % as 

compared with MLu . The absolute expected cost will be proportional to  and may be 

considerable. 

3.2. Setup model (s-S policy) 

The present model differs from the one in Section 3.1 in that a setup cost c is incurred. Using 

the same notation, the total expected cost per the (k+1)th period is 

 θ θE {C(u)} c E {C(u)}
 

 


     

 
     
 
 
 
u

1 k 1 θ k 1 k 1 2 k 1 θ k 1 k 1

0 u

1
c c (u y )g (y |k)dy c (y u)g (y |k)dy .

θ
  (69) 

As shown in Section 3.1, the optimum value u* must satisfy (43). Because c is constant, the 

minimum value of θE {C(u)}  must also occur at u*. In Fig.1, 

 
S = u*, and the value of s (< S) is determined from the equation 

Figure 1. (sS) optimal ordering policy in a single-period model with setup cost 

    θ θ θE {C(s)} E {C(S)} c E {C(S)},   s S.   (70) 

The equation yields another value s1 (> S), which is discarded. 

Assume that q is the amount on hand before an order is placed. How much should be 

ordered? This question is answered under three conditions: 1) q < s; 2) s  q  S; 3) q > S. 
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Case 1 (q < s). Because q is already on hand, its equivalent cost is given by θE {C(q)}. If any 

additional amount u  q (u > q) is ordered, the corresponding cost given u is θE {C(u)} , 

which includes the setup cost c. From Fig. 1, we have  

 


 θ θ θ
u  q
min E {C(u)} E {C(S)} E {C(q)}.   (71) 

Thus, the optimal inventory policy in this case is to order S  q units. 

Case 2 (s  q  S). From Fig. 1, we have 

 


 θ θ θ
u  q

E {C(q)} min E {C(u)} E {C(S)}.  (72) 

Thus, it is not advantageous to order in this case and u* = q. 

Case 3 (q > S). From Fig. 1, we have for u > q, 

 θ θE {C(q)} E {C(u)}.  (73) 

This condition indicates that, as in case (2), is not advantageous to place an order  that is,  

u* = q. 

The optimal inventory policy, frequently referred to as the s  S policy, is summarized as 

 
 


If x S, order S x,

If x s, do not order.
 (74) 

The optimality of the s  S policy is guaranteed because the associated cost function is 

convex. 

Parametric uncertainty. In the case when the parameter  is unknown, the total expected 

prediction cost for the (k+1)th period, 

 
k k

(1) (1)
s sE {C (u)} c E {C (u)}

 

 


 
     

 
     
 
 
 k k

u

1 k 1 s k 1 k 1 2 k 1 s k 1 k 1
k 0 u

k
c c (u y )g (y |k)dy c (y u)g (y |k)dy ,

s
  (75) 

is considered in the same manner as above. 

4. Airline revenue management problem 

The process of revenue management has become extremely important within the airline 

industry. It consists of setting fares, setting overbooking limits, and controlling seat 

inventory to increase revenues. It has allowed the airlines to survive deregulation by 

allowing them to respond to competitors' deep discount fares on a rational basis. 
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An airline, typically, offers tickets for many origin–destination itineraries in various fare 

classes. These fare classes not only include business and economy class, which are settled in 

separate parts of the plane, but also include fare classes for which the difference in fares is 

explained by different conditions regarding for example cancellation options or overnight 

stay arrangements. Therefore the seats on a flight are products, which can be offered to 

different customer segments for different prices. Since the tickets for a flight have to be sold 

before the plane takes off, the product is perishable and cannot be stored for future use. The 

same is true for most other service industries, such as hotels, hospitals and schools.  

4.1. Airline seat inventory control 

At the heart of airline revenue management lies the airline seat inventory control problem. It 

is common practice for airlines to sell a pool of identical seats at different prices according to 

different booking classes to improve revenues in a very competitive market. In other words, 

airlines sell the same seat at different prices according to different types of travelers (first 

class, business and economy) and other conditions. The question then arises whether to offer 

seats at a relatively low price at a given time with a given number of seats remaining or to 

wait for the possible arrival of a higher paying customer. Assigning seats in the same 

compartment to different fare classes of passengers in order to improve revenues is a major 

problem of airline seat inventory control. This problem has been considered in numerous 

papers. For details, the reader is referred to a review of yield management, as well as 

perishable asset revenue management, by Weatherford et al. (1993), and a review of relevant 

mathematical models by Belobaba (1987). 

The problem of finding an optimal airline seat inventory control policy for multi-leg flight 

with multiple fare classes, which allows one to maximize the expected profit of this flight, is 

one of the most difficult problems of air transport logistics. On the one hand, one must have 

reasonable assurance that the requirements of customers for reservations will be met under 

most circumstances. On the other hand, one is confronted with the limitation of the capacity 

of the cabin, as well as with a host of other less important constraints. The problem is 

normally solved by the application of judgment based on past experience. The question 

arises whether or not it is possible to construct a simple mathematical theory of the above 

problem, which will allow one better to use the available data based upon airline statistics. 

Two models (dynamic model and static one) of airline data may be considered. In the 

dynamic model, the problem is formulated as a sequential decision process. In this case, an 

optimal dynamic reservation policy is used at each stage prior to departure time for multi-

leg flights with several classes of passenger service. The essence of determining the optimal 

dynamic reservation policy is maximization of the expected gain of the flight, which is 

carried out at each stage prior to departure time using the available data. The term (dynamic 

reservation policy) is used in this paper to mean a decision rule, based on the available data, 

for determining whether to accept a given reservation request made at a particular time for 

some future date. An optimal static reservation policy is based on the static model. The 

models proposed here contain a simple and natural treatment of the airline reservation 

process and may be appropriate in practice. 
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4.2. Expected marginal seat revenue model (EMSR) 

Different approaches were developed for solving the airline seat inventory control problem. 

The most important and widely used model – EMSR – was originally proposed by 

Littlewood (1972). To explain the basic ideas of the Littlewood model, we will consider the 

seat allocation problem on a nonstop flight with two airfares. We denote by U the number of 

seats in the aircraft, by uL the number of seats reserved for passengers with a lower fare and 

by p the probability that a passenger who would pay the higher fare cannot find a seat 

because it was sold to a passenger paying a lower fare. A rise in variable uL means a rise in 

probability p. A rise in the number of seats for passengers with the lower fare, i.e. a rise in 

variable p, decreases the number of seats for passengers with the higher fare, i.e., variable U 

– uL decreases. A reduction in variable U – uL increases the probability that a passenger 

paying the higher fare cannot find a vacant seat on their desired flight because it has been 

sold to a passenger with a lower fare. Probability p is given by 

 




 
L

θ
U u

p f (x)dx,  (76) 

where the ( )f x is the underlying probability density function for the total number of 

requests X of passengers who would pay the higher fare,  is the parameter (in general, 

vector). Littlewood (1972) proposed the following way to determine the reservation level uL 

to which reservations are accepted for passengers with the lower fare. We denote by c1 the 

revenue from passengers with the lower fare and by c2 the revenue from passengers with the 

higher fare. Let uL seats be reserved for low fare passengers. The revenue per lower fare seat 

is c1. Expected revenue from a potential high fare passenger is c2p. Passengers with lower 

fares should be accepted until  

 1 2c c p,  (77) 

i.e., 

  1

2

c
p .

c
 (78) 

Reservation level uL is determined by solving the following equality: 

    Pr X h γ,   (79) 

where  

 ,  Lh U u   (80) 

  1

2

c
γ .

c
  (81) 
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Richter (1982) gave a marginal analysis, which proved that (77) gives an optimal allocation 

(assuming certain continuity conditions). Optimal policies for more than two classes have 

been presented independently by Curry (1990), Wollmer (1992), Brumelle & McGill (1993), 

and Nechval et al. (2006). 

Parametric uncertainty. In order to solve (79) under parametric uncertainty, it can be used, for 

example, the following results.  

Theorem 4. Let X1  ...  Xr be the first r ordered past observations from a previous sample of 

size n from the two-parameter Weibull distribution 

 

                

δ 1 δ
δ x x

f(x|β,δ) exp    (x 0),
β β β

 (82) 

where both distribution parameters (β – scale,  - shape) are positive. Then a lower one-

sided conditional  prediction limit h on the lth order statistic f
lX  in a set of m future 

ordered observations also from the distribution (82) is given by 

 
 

1/δ
hh z β,  (83) 

where zh satisfies the equation 

  
 

(r) (r)f f 1/δ
l l hPr{X h|z } Pr{X z β|z }  

 

 


  






                        
 

   
 

  



22 2 2

2 2 2

r
r l 1 k r

vv v vjr 2
2 i h i r 2

k 0 j 0 i 1i 10

r
r r

v v vr 2
2 i i r 2

i 1i 10

m k
v z  ( 1) (m k j)z z (n r)z dv

k j

v z z (n r)z dv

 γ,  (84) 

 (r)
1 2 rz (z , z , ..., z ) ,  (85) 

 
 

   
 




δ

i
i

X
Z ,   i 1, ..., r,

β
 (86) 

are ancillary statistics, any r2 of which form a functionally independent set (for notational 

convenience we include all of z1, …, zr in (85); zr-1 and zr can be expressed as function of z1, 

…, zr-2 only), 

β  and 


δ  are the maximum likelihood estimators of  and  based on the first r 

ordered past observations (X1  …  Xr) from a sample of size n from the two-parameter 

Weibull distribution, which can be found from solution of  

 


  
        




  1/δ

r
δ δ
i r

i 1

β x (n r)x r ,  (87) 
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and 

 



  

                 
  

   
1

1
r r r

δ δ δ δ
i i r r i r i

i 1 i 1 i 1

1δ x lnx (n r)x lnx x (n r)x lnx ,
r

 (88) 

(Observe that an upper one-sided conditional  prediction limit h on the lth order statistic 
f
lX  from a set of m future ordered observations f f

1 mX X may be obtained from a lower 

one-sided conditional  prediction limit by replacing  by 1.)  

Proof. The joint density of X1  ...  Xr is given by 

 1 rf(x , ..., x |β,δ)





                               


δ 1 δ δr
i i r

i 1

x x xn! δ
exp exp (n r) .

(n r)! β β β β
 (89) 

Let 

β , 


δ  be the maximum likelihood estimates of , , respectively, based on X1  …  Xr 

from a complete sample of size n, and let 

 
 

   
 




δ

1 2

β δ
V ,  V ,

β δ
 and 

 
   
 




δ

i
i

X
Z ,   i 1, ..., r,

β
 (90) 

Parameters  and  in (90) are scale and shape parameters, respectively, and it is well known 

that if 

β  and 


δ  are estimates of  and , possessing certain invariance properties, then V1 

and V2 are the pivotal quantities whose distributions depend only on n. Most, if not all, 

proposed estimates of  and  possess the necessary properties; these include the maximum 

likelihood estimates and various linear estimates.  

Using (90) and the invariant embedding technique (Nechval et al., 1999; 2004; 2008; 2010a; 

2010b; 2010c; 2010d; 2010e; 2011a; 2011b), we then find in a straightforward manner, that the 

joint density of V1, V2, conditional on fixed z 1 2 r(z , z , ..., z ) , is 

(r)
1 2f(v ,v |z )  

 1 2, v (0, ),  v (0, ),  



  
             

 2 2 2

r r
v v v(r) r 2 r 1

2 i 1 1 i r
i 1i 1

(z )v z v exp v z (n r)z  (91) 

where  

 


 



          
 2 2 2

1
r

r r
v v v(r) r 2

2 i i r 2
i 1i 10

(z ) Γ(r)v z z (n r)z dv ,  (92) 

is the normalizing constant. Writing 






 
   

 

l 1

f k m k
l

k 0

m
Pr{X h|β,δ}  [F(h|β,δ)] [1 F(h|β,δ)]

k
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



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

k m k
δ δl 1

k 0

m h h
1 exp exp

k β β
 



 

   
       
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  2

l 1 k
vj

1 h
k 0 j 0

m k
( 1) exp[ v (m k j)z ]

k j
 

  f
l 1 2Pr{X h|v ,v },  (93) 

where 

 
 

   
 




δ

h

h
z ,

β
 (94) 

we have from (91) and (93) that 

 


   (r) (r)f f
l l 1 2 1 2 1 2

0 0

Pr{X h|z } Pr{X h|v ,v }f(v ,v |z )dv dv .  (95) 

Now v1 can be integrated out of (95) in a straightforward way to give  

 (r)f
lPr{X h|z }  
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v z  ( 1) (m k j) z (n r)z dv

k j β
.

v z z (n r)z dv

  (96) 

This completes the proof. □  

Remark 1. If l=m=1, then the result of Theorem 4 can be used to construct the static policy of 

airline seat inventory control. 

Theorem 5. Let X1  ...  Xk be the first k ordered early observations from a sample of size m 

from the two-parameter Weibull distribution (82). Then a lower one-sided conditional  
prediction limit h on the lth order statistic Xl (l > k) in the same sample is given by 

 


1/δ
h kh w X ,  (97) 

where wh satisfies the equation 

         
 

 
δ δ(k) (k) (k)

l l k k hPr{X h|z } Pr X / X h / X  z Pr{W w |z }  
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where 

β  and 


δ are the maximum likelihood estimates of  and  based on the first k 

ordered past observations X1  ...  Xk from a sample of size m from the two-parameter 

Weibull distribution (82), which can be found from solution of  
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and 
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 (103) 

(Observe that an upper one-sided conditional  prediction limit h on the lth order statistic Xl 

based on the first k ordered early-failure observations X1  ...  Xk, where l > k, from the 

same sample may be obtained from a lower one-sided conditional  prediction limit by 

replacing  by 1) 

Proof. The joint density of X1  ...  Xk and Xl is given by 

1 k lf(x , ..., x ,x |β,δ)
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δ
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exp (m l)
β

. (104) 

Let 

β , 


δ  be the maximum likelihood estimates of , , respectively, based on X1  ...  Xk 

from a complete sample of size m, and let 
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and 
 δ

i iZ (Y /β) , i=1(1)k. Using the invariant embedding technique (Nechval et al., 1999; 

2004; 2008; 2010a; 2010b; 2010c; 2010d; 2010e; 2011a; 2011b), we then find in a 

straightforward manner, that the joint density of V1, V2, W, conditional on fixed 
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where 
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is the normalizing constant. Using (106), we have that 
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v z (m k j)(w z ) jz z dv

j m k j
 

 

    


 

                  
  22 2

1
kl k 1 jk l k 1 k

vv vk 2
2 i k i 2

j 0 i 1i 10

l k 1 ( 1)
v z (m k)z z dv ,

j m k j
 (108) 
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and the proof is complete. □  

Remark 2. If l=m, then the result of Theorem 5 can be used to construct the dynamic policy of 

airline seat inventory control. 

5. Conclusions and directions for future research 

In this paper, we develop a new frequentist approach to improve predictive statistical 

decisions for revenue optimization problems under parametric uncertainty of the 

underlying distributions for the customer demand. Frequentist probability interpretations of 

the methods considered are clear. Bayesian methods are not considered here. We note, 

however, that, although subjective Bayesian prediction has a clear personal probability 

interpretation, it is not generally clear how this should be applied to non-personal 

prediction or decisions. Objective Bayesian methods, on the other hand, do not have clear 

probability interpretations in finite samples.  

For constructing the improved statistical decisions, a new technique of invariant embedding 

of sample statistics in a performance index is proposed. This technique represents a simple 

and computationally attractive statistical method based on the constructive use of the 

invariance principle in mathematical statistics. The method used is that of the invariant 

embedding of sample statistics in a performance index in order to form pivotal quantities, 

which make it possible to eliminate unknown parameters (i.e., parametric uncertainty) from 

the problem. It is especially efficient when we deal with asymmetric performance indexes 

and small data samples 

More work is needed, however, to obtain improved or optimal decision rules for the 

problems of unconstrained and constrained optimization under parameter uncertainty 

when: (i) the observations are from general continuous exponential families of distributions, 

(ii) the observations are from discrete exponential families of distributions, (iii) some of the 

observations are from continuous exponential families of distributions and some from 

discrete exponential families of distributions, (iv) the observations are from multiparametric 

or multidimensional distributions, (v) the observations are from truncated distributions, (vi) 

the observations are censored, (vii) the censored observations are from truncated 

distributions.  
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