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1. Introduction 

Till now the synthesis problem of the optimum control of the observation process has been 

considered and solved satisfactorily basically for the linear stochastic objects and observers by 

optimization of the quadratic criterion of quality expressed, as a rule, through the a posteriori 

dispersion matrix [1-4]. At the same time, the statement of the synthesis problem for the 

optimum observation control in a more general case assumes, first, a nonlinear character of the 

object and observer, and, second, the application of the non-quadratic criteria of quality, 

which, basically, can provide the potentially large estimation accuracy[3-6]. 

In connection with the fact that the solution of the given problem in such a statement 

generalizing the existing approaches, represents the obvious interest, we formulate it more 

particularly as follows. 

2. Description of the task 

Let the Markovian vector process t, described generally by the nonlinear stochastic 

differential equation in the symmetrized form 

      0 0 0, , , ,t tf t f t n t         (1) 

where f, f0 are known N – dimensional vector and NM – dimensional matrix nonlinear 

functions; 

nt is the white Gaussian normalized M – dimensional vector - noise; be observed by means 

of the vector nonlinear observer of form: 

 , ,
t

Z H t W   
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where Z  – L  N – dimensional vector of the output signals of the meter; 

h(,t) – a known nonlinear L- dimension vector - function of observation; 

Wt – a white Gaussian L- dimension vector - noise of measurement with the zero average 

and the matrix of intensity WD . 

The function of the a posteriori probability density (APD) of process 

   0, , , ,t t Z t t           is described by the known integro-differential equation in 

partial derivatives (Stratonovich equation), the right-hand part of which explicitly depends 

on the observation function h:  

      0

,
, , ,

t
L t Q Q t

t

 
   


      

where        0
0 0 0

1 1
,

2 2

V
T Tf

L t div f f div div f f


   


               
 – the Focker-Plank- 

operator, 

(А)(V) is the operation for transforming the nm matrix A into vector (А)(V) formed from its 

elements as follows: 

 
11 21 1 12 22 2 1 2

,
TV

m m n n mn
A a a a a a a a a a      

div  is the symbol for the operation of divergence of the matrix row, 

     11
, , , ,

2

T

WQ Q t Z H t D Z H t              

   0 , , .Q Q t t d   




   

As the main problem of the a posteriori analysis of the observable process t is the obtaining 

of the maximum reliable information about it, then the synthesis problem of the optimum 

observer would be natural to formulate as the definition of the form of the functional 

dependence h(,t), providing the maximum of the a posteriori probability (MAP) of signal t 

on the given interval of occurrence of its values * min max,       during the required 

interval of time T = [t0, tk], i.e. in view of the positive definiteness (,t) 

 
*

max ,
T

J t d dt


  
   
  

   

or 
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 
*

min , .
T

t d dt


  
   
  
   

Generally instead of criterion MAP one can use, for example, the criterion of the minimum 

of the a posteriori entropy on interval * min max,       or the criterion of the minimum of 

the integrated deviation of the a posteriori density from the density of the given form etc., 

that results in the need for representing the criterion of optimality J in the more generalized 

form: 

 ,

T

J t d dt



  


      , 

where Ф is the known nonlinear function which takes into account generally the 

feasible analytical restrictions on the vector t; 

T = [t0, tk] is a time interval of optimization; 

* is some bounded set of the state parameters t. 

In the final forming of structure of the criterion of optimality J it is necessary to take into 

account the limited opportunities of the practical realization of the function of observation 

h(,t), as well, that results, in its turn, in the additional restriction on the choice of functional 

dependence h(,t). The formalization of the given restriction, for example, in the form of the 

requirement of the minimization of the integrated deviation of function Н from the given 

form Н0 on interval *  during time interval Т allows to write down analytically the form of 

the minimized criterion J as follows: 

            
* *

0 0 *, , , , , .
T

T T T

J t d dt H t H t H t H t d dt W t dt
 

                             (2) 

Thus, the final statement of the synthesis problem of the optimum observer in view of the 

above mentioned reasoning consists in defining function h(,t), giving the minimum to 

functional (2).  

3. Synthesis of observations optimal control 

Function APD, included in it, is described explicitly by the integro-differential Stratonovich 

equation with the right-hand part dependent on h(,t). The analysis of the experience of the 

instrument realization of the meters shows, that their synthesis consists, in essence, in 

defining the parameters of some functional series, approximating the output characteristic 

of the device projected with the given degree of accuracy. As such a series one uses, as a 

rule, the final expansion of the nonlinear components of vector h(,t) in some given system 

of the multidimensional functions: power, orthogonal etc. 
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Having designated vector of the multidimensional functions as 1...
T

S   , we present 

the approximation of vector h(,t) as 

    , ,T
EH t E h h       (3) 

11 1 21 2 1... ... ... ... ,
T

S S N NSh h h h h h h   

where      
1

,
S

i ij j
j

h t h t  


  is the i-th component of vector h, the factors of which define 

the concrete technical characteristics of the device, 

 is the symbol of the Kronecker product. 

For the subsequent analytical synthesis of optimum vector - function h(,t) in form of (3) we 

rewrite the equation of the APD (,t) in the appropriate form 

 1 2 ,T TL h H h H h
t

   


               (4) 

where 

     
*

1
1 , , ,T T

E E WH t d D Z t


        
 
        

  

       
*

1 1
2

,
, .

2
T T
E W E E W E

t
H D D t d



 
          

 
        

  

The constructions carried out the problem of search of optimum vector h(,t) is reduced to 

the synthesis of the optimum in-the- sense -of-(2) control h of the process with the 

distributed parameters described by Stratonovich equation (in view of representing vector 

Н0(,t) in the form similar to (3) 

 0 0, ).EH t h   

The optimum control of process (,t) will be searched in the class of the limited piecewise-

continuous functions with the values from the open area Н*. For its construction we use the 

method of the dynamic programming, according to which the problem is reduced to the 

minimization of the known functional [1] 

 
*

*min 0
h H

dV
W

dt

 
  

 
  (5) 
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under the final condition V(tk) = 0 with respect to the optimum functional V = V(,t), 

parametrically dependent on t  [t0, tk] and determined on the set of functions satisfying 

(4). 

For the processes, described by the linear equations in partial derivative, and criteria of the 

form of the above-stated ones, functional V is found in the form of the integrated quadratic 

form [1], therefore in this case we have: 

   
*

2, , .V v t t d


      

Calculating derivative 
dV

dt
 

* *

2 2
1 22 2 2 2 ,T TdV dv d dv

v d v L v h H v h H h d
dt dt dt dt 

             
                  

   
   

the functional equation for v is obtained in the following form: 

 
*

2
1 2min 2 2 T T

h H

dv
v L v h H h H h d

dt

       


 
                    

 
  

       
*

0 0 0,
T T

E Eh h d h h


         

whence we have optimum vector hоpt: 

          
* *

1

2 2 0 1
T T T

оpt E E E Eh v H H d h v H d
 

           


            
   

    
*

1 0 1, .B v h v H d


       

Using condition * 0

оpth h

dV
W

dt 

 
  

 
, for v(,t) we have the following equation: 

 
*

1 2
0 1 1 1 1 02 2T T T Tdv

v L h B v H d B v H h
dt 



        
 
          
 

  

* *

2 2
0 1 1 0 1 0 1 1
T T T T Th B h B v H d h B v H d B 

 

         
   
       
   
   

   
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  
*

2 2
2 1 1 0 1 0 1 02 ,Tv H B h B v H d h h



         
 
          
 

   (6) 

where 

 
*

1 1 ,d


      

which is connected with the equation of the APD, having after substitution into it expression 

оpth  the following form: 

*

0 1 1 1
T T T Td

L h B v H d B H
dt 



    
 
        
 

  

 

* *

0 1 1 2 1 0 1 .T T T Th B v H d B H B h B v H d 
 

     
   
     
   
   

    (7) 

4. Observations suboptimal control 

The solution of the obtained equations (6), (7) exhausts completely the problem stated, 

allowing to generate the required optimum vector - function h of form (3). On the other 

hand, the solution problem of system (6), (7) is the point-to-point boundary-value 

problem for integrating the system of the integro-differential equations in partial 

derivatives, general methods of the exact analytical solution of which , as it is known, 

does not exist now. Not considering the numerous approximated methods of the solution 

of the given problem oriented on the trade-off of accuracy against volume of the 

computing expenses, then as one of the solution methods for this problem we use the 

method based on the expansion of function v, p in series by some system of the 

orthonormal functions of the vector argument : 

     , ,TV t t 


        

     , ,Tt t 


         

where  is the index running a set of values from (0,...,0) to (М,...,М) [2]; 

 is the vector of the orthonormal functions of argument ; 

  are vectors of factors of the appropriate expansions. 

In this case the solution is reduced to the solution of the point-to-point boundary-

value problem for integrating the system of the following equations, already ordinary 

ones: 
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       
* * *

0 1 1 1, , , ,T T T T T T T TL d h B H d B H d
  

                                 

       
* *

0 1 1 2, , , ,T T T T T T T Th B H d B H
 

                     

     
*

1 0 1, , , , ,T T TB h B H d d


             
 
  
 
 

  

     
*

1 2

0 12 , ,T T T T T T TL h B


             
            

      
*

1 1 1 0, , 2T T T T T T T TH d B H h


              

  


  

        
*

2

0 1 1 0 1, , , ,T T T T Th B h B H d


               
  

   
 
 

   (8) 

       
*

2

0 1 1, , , ,T T T T T T T Th B H d B


              
      

    2 1 1 02 , ,T T TH B h             

        
*

2 2

1 0 1 0, , T T T T T T TB H d h h d


                
          

under boundary value conditions    0 00,T t    , where the values of the components 

are defined from the expansion of function  0 0,t   . 

From the point of view of the practical realization the integration of system (8) under the 

boundary-value conditions appears to be more simple than integration (6), (7), but from the 

point of view of organization of the estimation process in the real time it is still hindered: 

first, the volume of the necessary temporary and computing expenses is great, secondly the 

feasibility of the adjustment of the vector of factors h in the real time of arrival of the signal 

of measurement Z - is excluded, the prior simulation of realizations Z appears to be 

necessary (in this case in the course of the instrument realization, as a rule, one fails to 

maintain the precisely given values h all the same). Thus, the use of the approximated 

methods of the problem solution (8) is quite proved in this case, then as one of which we 

consider the method of the invariant imbedding [3], used above and providing the required 

approximated solution in the real time. 
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As the application of the given method assumes the specifying of all the components of the 

required approximately estimated vector in the differential form, then for the realization of 

the feasibility of the synthesis of vector h through the given method in the real time we 

introduce a dummy variable v, allowing to take into account from here on expression hopt as 

the differential equation 

 opt , ,T Tv h      

forming with equations (8) a unified system. The application of the method of the invariant 

imbedding results in this case in the following system of equations:  

   
*

*

0 2
0

0 0
0 0 1 0 2 0

0

,T T
T T T T

h
v

D dh H H h d


            


                 

  

 
*

1 2
0 0 0 0 0 0

0 0 0

2 T T T T TH H
D L h h h d D



        
  

                 
  

    
*

1

0 0 0 2 0 02 T T T T T TD L h H h d


         


           

 
*

1 0 0 2 02T T T TH h H d


                

   
*

2 1

0 0 0 0
0

2 2 ,T T T T TD d D


          


              
  

   
*

1
1 0 2 0 1

1
2 .

2
T T TH h H d



        
   

 
  

By virtue of the fact that matrix D in the method of the invariant imbedding plays the role of the 

weight matrix at the deviation of the vector of the approximated solution from the optimum one, 

in this case for variables i0 the appropriate components D characterize the degree of their 

deviation from the factors of expansion of the true APD (components D0 - are deviations of the 

parameters at the initial moment). The essential advantage of the approach considered, despite 

the formation of the approximated solution, is the feasibility of the synthesis of the optimum 

observation function in the real time, i.e. in the course of arrival of the measuring information. 

5. Example 

For the illustration of the feasibility of the practical use of the suggested method the 

numerical simulation of the process of forming vector 1 2

T
h h h of factors of the observer 
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2
1 2 tZ h h W     for target 3

tn     was carried out the normalized Gaussian white 

noises of the target and meter. As the criterion of optimization the criterion of the maximum 

of the a posteriori probability of the existence of the observable process on interval *  = = [-

2.5, 2.5] was chosen that provided the additional restriction in the form of the requirement of 

the minimal deviation of vector h from the given vector 0 0.95, 0.3
T

h  that allows to write 

down the minimized functional as 

     
*

0 0, ,
T

H

T T

J t d dt h h D h h dt


          

where 

*

2
2

10.4 0

, 0; 600 .

0 39.1
HD d T




  


  


 


 

In this case the equation of the APD has the form 

 
2

3
1 22

1
,

2
T Th H h H h

t

    
  

     

where 

 
*

1 2 2
, ,H t d Z



 
   

 

 
  
 
 

  

 
*

2 3 2 3

2 3 4 3 4
, .

2
H t d



      
   

 
  
 
 

  

The optimum vector h is defined from expression hopt as 

 
* *

1
2 3 2 3

2
оpt 3 4 3 4

,Hh D V t d d
 

   
    

   


  
     
  

  
   

 
* *

2
0 2 2

, .HD h Z V t d d
 

 
    

 

  
    
    

   

Using the Fourier expansion up to the 3-rd order for the approximated representation of 

functions V,   
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 
2

0 1 0 2 0
1

1
, cos sin ,

2 k k
k

V t k k       


    

 
2

1 0 2 0
1

, cos sin ,k k
k

t k k       


   

0

2
,

5

   

(then for v2 the following representation holds true 

 
6

2
0 1 0 2 0

1

, cos sin ,k k
k

v t k k        


    

 0 , ,ik      are functions linearly dependent on factors ik  and quadratically - on ik ) 

and introducing designations 

   
 *

0 1
1,3
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2.5
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2

n i
n

n n
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k n k d i C k n
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




 
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 
  

   
 *

0 1
0,2

0

2.5
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2

m i
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




 
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 
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vector hopt of the factors of the observer we write down as follows: 

   
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Then the system of equations for the factors of expansion has the following form: 
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where the expressions of factors    (determined by the numerical integration in the 

course of solving) aren’t given as complicated. In the reduced form the system obtained can 

be given as  

 , , ,h       
  
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   1 2, ,G h G     

           2 1, 2, 1, 2, .
T
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The approximated solving of the given boundary-value problem by the method of the 

invariant imbedding results in the required system of the equations allowing to carry out 

simultaneously the definition of vector hopt and formation of vector  in the real time: 
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 
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The integration of the given system was made by the Runge-Kutta method on interval [0; 

600] s. with the step equal to 0,05 s. 

For the comparison of efficiency of the approach suggested with that of the existing ones the 

formation of the optimum- by-the- criterion-of-the-MAP estimation ̂  by two ways was 

carried out: on the basis of the MAP - filter with the linear observer [4] and by defining the 

maximum of the function of the APD, approximated by series 0
T   (where 0 is the solution 

of the last system of the estimation equations ), by means of the method of the random draft. 

The search of the maximum of the APD was carried out on the simulation interval [500; 600] 

s. for the estimations of vector 0, taken with interval 1 s. The generated test sample of 

dimension 100 was the normalized Gaussian sequence.  

The calculation of the estimation errors was made by comparing the current values of 

estimations with the target coordinate and subsequent defining of the average values of the 

errors on interval [500; 600] s. Upon terminating the simulation interval the value of the 

average error obtained in this way for the estimation equations [4], using the linear 

observer, has exceeded the average estimation error carried out by the technique suggested, 

using the information of the optimum observer, by the factor of ~ 1,52. 
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