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1. Introduction 

Early-life exposure to adverse experience or stress, simply termed early-life stress (ELS), is a 

worldwide problem that has a significantly negative impact in human health [1, 2]. In the 

United States, about 50% of adults had experienced some kind of stress before age 18 [3], 

and up to 15-25% of adults had traumatic ELS such as sexual abuse [4]. Most ELS is parents-

originated, such as neglect, maltreatment, and abuse [5, 6]. In addition to the immediate, 

dreadful, and destructive effects on a child’s life, ELS may produce a series of mental [7, 8], 

cardiovascular [9, 10], metabolic [11, 12], and many other types of disease [13, 14], at a later 

life stage. For example, adults who were sexually abused during childhood have a 5.7-fold 

increase in risk for drug abuse over those without ELS [7], and the prevalence of 

posttraumatic stress disorder (PTSD), a predominant form of anxiety disorders (ADs), is 

highly associated with ELS, with a 4-5 fold difference between adults with ELS and those 

without ELS [15]. Moreover, cognitive dysfunctions [16-18] such as learning and memory 

impairment [19-21] are also highly associated with ELS. Given that children, especially early 

adolescents, have a higher possibility to expose to a traumatic insult [22], adolescent trauma 

(AT) is an important risk factor for these post-ELS disorders.  

Over the past decades, considerable insights have been gained into the molecular/neuronal 

mechanisms regarding how ELS impacts brain function and behavior [23-26]. Generally, it is 

now accepted that ELS can produce changes, most permanently, at multiple levels [25, 27]. 

Following ELS, for example, the overall volume of the hippocampus [28-30], corpus 

callosum [31-33], and cortex [34-36] all becomes smaller, compared to that of those brain 

regions in age-matched subjects. Besides these neuroanatomical changes, the neuronal 

activity and the synaptic function in the brain in ELS-victims are impaired [37-39], and most 

neurotransmitter systems are significantly affected too. By using positron emission 

tomography or fMRI, it has been found that a significantly increased release of dopamine in 

the ventral striatum is associated to ELS [40, 41]. The turnover rate of the serotonin (5-HT) 
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metabolism or the 5-HT receptor density [42, 43] is altered following ELS. Similarly, the 

activity of the glutamatergic system [44, 45] and the cholinergic system [46, 47] are also altered 

in the brain of individuals following ELS. However, it should be emphasized that the changes 

in the hypothalamic-pituitary-adrenal (HPA) axis activity is of the most interest [48-52]. 

As the most important stress-related neuroendocrine system in the body, the HPA axis is 

anatomically and functionally composed of three major structures: the paraventricular 

nucleus of the hypothalamus (PVN), the anterior lobe of the pituitary gland, and the adrenal 

gland [53, 54]. The PVN contains magnocellular neurosecretory neurons that synthesize and 

release a corticotropin-releasing factor (CRF). CRF is a 41 amino acid peptide [55, 56], and can 

bind to three types of G-protein-coupled receptors: CRFR1, CRFR2, and CRFR3 [57-59]. In the 

mammalian brain, both CRF and CRFR1 are mainly distributed in the limbic system, while 

CRFR-2 is in the hypothalamus [60-62]. The essential role for the CRF system is to maintain the 

basal HPA axis activity as well as to trigger the HPA axis in response to stresses. After released 

from the PVN, the CRF binds to CRFR1 at the anterior pituitary and increase the release of 

adrenocorticotropic hormone (ACTH). The ACTH consequently stimulates the release of 

glucocorticoids from the adrenal gland [63]. Once released, glucocorticoids bind both high-

affinity mineralocorticoid receptors and lower-affinity glucocorticoid receptors. The 

glucocorticoids, or cortisol in humans and corticosterone in rodents, play an essential role in 

energy metabolism, growth processes, immune function, and brain functions [63, 64].  

In response to stress, CRF system plays an essential role in modifying peripheral 

physiological response to support “fight or flight” reactions, such as mobilizing energy 

stores, increasing blood sugar and heart rate, inhibiting digestive functions etc [65,66]. In 

addition, CRF itself may act on CRFR2 in the brain to directly regulate adaptive behavioral 

changes encountering stress [67-69]. Taken together, the CRF/HPA system plays a primary 

role in coordinating the endocrine, autonomic, immune, and behavioral response to stress. 

As stress, either real or imaged, is a necessary inducer for ADs, the CRF/HPA system must 

play a unique role in anxiety-related behaviors. Indeed, a huge body of evidence has 

documented this notion. For example, administration of CRF [70-72] or CRFR1 agonists 

[69,73,74] or overexpression of the CRF gene [75-77] produces Anxiety-like behaviors (ALBs) 

in the animals. On the other hand, CRFR1 antagonists exert significantly anxiolytic effects 

[78-80]. Knockout of CRF or CRFR1 in mice significantly reduces ALBs to stress and 

dramatically blunts stress-induced HPA axis activity [61,81,82]. Remarkably, previous 

chronic stress is able to enhance HPA axis activity in response to a novel acute stress, 

despite the negative feedback effects of increased glucocorticoids produced by the chronic 

stress [83-85]. For example, CCK-4-induced panic status in healthy volunteers significantly 

increases HPA axis activities [86]. Even the effects of early-life stress on HPA axis function 

are found to be associated with CCK sensitivity 130. Most interestingly, interactions between 

the CCKergic system and the CRF/HPA system exist [88-90]. For example, the CCKergic 

system was found to be involved in this chronic stress-enhanced responsiveness, since 

chronic stress can specifically facilitate the release of CCK into the PVN, which directly 

projects to the pituitary, in response to acute stress 125. All these findings have not only 

established the role of the CRF/HPA system in initiating behavioral responses to stresses, 
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but also indicate that a significant interaction may exist between the CRF/HPA system and 

CCKergic system to regulate stress-related behaviors. 

However, the vulnerability among different individuals to AT is different. This variability 

may at least partially attribute to a genetic variability [91]. A twin study of Vietnam veterans 

revealed that about 37.9% of vulnerability to PTSD was genetically related [92]. Further 

genetic evidence comes from clinical association studies, by which several candidate genes 

for ADs including PTSD have been associated, although a causative gene has not been yet 

established [91]. Among those candidate genes, cholecystokinin (CCK) receptor-2 (CCKR-2) 

has been linked to panic disorder, another major form of ADs [93,94]. 

As the most abundant neuropeptides, CCK distributes broadly in the brain and mainly in 

the limbic system [95,96]. CCK binds to CCK receptor-1 (CCKR-1) and CCKR-2, of which the 

CCKR-2 is predominantly found in the brain with the highest level in cortical area and the 

limbic system [97], a brain region that is critically involved in emotion response and 

behavior. Virtually, the CCKergic system has long been recognized as an anxiogenic factor 

for the animals [98], and this effect has been well validated in human populations as well 

[89,99,100]. Our recent study also showed that overexpression of CCKR2 in neurons of the 

forebrain of mice significantly enhanced ALBs [101]. At the same time, some candidate 

genes that are linked to ADs are also associated with HPA axis activity. For example, a 

common polymorphism at the serotonin transporter (5-HTT) gene, namely 5HTTLPR, is a 

strong candidate genetic variation for ADs and depression [102-103], and also is 

significantly implicated in HPA axis activity [104]. Similar to the CCKergic system, the HPA 

axis system has long been recognized as a stress hormone [105,106], and plays a critical role 

in the pathogenesis of ADs [107,108]. Indeed, following ELS, the activity of the HPA axis 

system is dysfunctional [109-111]. Moreover, given the overall role of both the HPA axis 

system [112-114] and the CCKergic system [115-117] in regulating neuronal, cardiovascular, 

and metabolic functions in the body, these two systems may play an integrative role in the 

pathogenesis of post-ELS disorders. 

In this study, by using our previously engineered inducible forebrain-specific CCKR-2 

transgenic (IF-CCKR-2 tg) mice [101], we demonstrated that the elevated CCKergic tone in 

the brain significantly facilitated the effect of AT on the impairment of the glucocorticoid 

negative feedback inhibition in response to a novel acute stressor during the adult stage in 

the mouse, providing direct evidence that reveals a molecular basis for this co-effect.  

2. Materials and methods 

2.1. Experimental animals  

The procedures for the generation of IF-CCKR-2 tg (simply dtg) mice were described in our 

previous publication [101]. Briefly, we used the tTA/tetO-inducible gene expression system to 

produce these dtg mice. This system requires two independent transgenic mouse strains, tTA 

transgenic and tetO/CCKR-2 transgenic mice. Accordingly, two constructs were made. The 

first was for tTA transgenic mice, in which the expression of the tTA was under the control of 

an alpha-Ca2+ calmodulin kinase II (CaMKII) promoter. The tTA transgene cassette consists of 
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0.6 kb of exon-intron splicing signal (pNN265), 1.0 kb of tTA encoding sequence (pTet-Off, 

Clontech), and 0.5 kb of SV-40 poly-A signals (pTet-Off, CLONTECH). The other construct is 

for CCKR-2 transgenic mice, in which the expression of the CCKR-2 transgene was under the 

control of the tetO promoter. The CCKR-2 transgene cassette consisted of 1.3 kb of mouse 

CCKR-2 cDNA, an upstream 0.6 kb of splicing signal (pNN265), and a downstream 1.1 kb of 

b-globin poly-A signals. All these components were subcloned into the pTRE2 vector 

(CLONTECH). CCKR-2 cDNA was cloned by RT-PCR from the total RNA extracted from the 

brain of a male B6/CBA F1 mouse (The Jackson Laboratory) with the primers of 5'-CGG GAT 

CCA TGG ATC TGC TCA AGC TG-3' and 5'-GCT CTA GAT CAG CCA GGT CCC AGC GT-

3'. A commercial RNA extraction kit (Invitrogen) and a reverse transcription kit (Stratagene) 

were used. The cloned cDNA was confirmed by sequencing. The plasmid constructs were then 

linearized with suitable enzymes and separately injected into the pronucleoli of B6/CBA F1 

zygotes, as described [118]. Transgenic founders and the transgene copy numbers were 

determined by Southern blot analyses of the tail DNA. Founder mice with suitable gene copy 

numbers were backcrossed into B6/CBA F1 mice first to produce hemizygous single transgenic 

mice and then to produce double hemizygous transgenic mice. We have totally generated nine 

CaMKII-tTA transgenic founders and seven tetO-CCKR-2 transgenic founders. Southern blot 

analyses indicated that the gene copy numbers were from 2 to 70 for tTA transgenic founders 

and 2-150 for CCKR-2 transgenic founders (data not shown). To map the tTA expression 

pattern in the brain, we crossed a tetO-Lac-Z reporter mouse line (SJL-TgN-tetoplacZ, the 

Jackson Laboratory) into different independent CaMKII-tTA mouse lines to produce different 

tTA-LacZ double transgenic mouse lines. For Lac-Z staining, a commercial X-Gal staining kit 

(Invitrogen) and the recommended staining protocol were used with sagittal brain sections (30 

µm), by which we identified a tTA transgenic line that was of the capacity to drive tetO/gene 

expression in almost all the neurons in the forebrain region (data not shown). Genotyping was 

determined by PCR analyses of both tTA (5'-AGG CTT GAG ATC TGG CCA TAC-3' and 5'-

AGG AAA AGT GAG TAT GGT G-3') and the CCKR-2 (5'-ACG GTG GGA GGC CTA TAT 

AA-3' and 5'-GAG TGT GAA GGG CATG CAA-3') transgenes. Dtg mice used here were 

around 12-16 generations since they were generated, during which duration dtg mice were 

backcrossed into B6/CBA F1 mice in every 5-6 generations, in order to avoid an inbreed effect. 

Single transgenic (tTA or tetO-CCKR-2 only) and wild-type (wt) littermates of dtg mice were 

used as controls, and are collectively and simply called wt mice hereafter.  Mice used here 

were kept in standard laboratory mouse cages under the standard condition (12 hours 

light/dark cycle, temperature at 22 ± 1 oC, humility at 75%) with food and water ad libitum. All 

experimental procedures for the use of animals were previously reviewed and approved by 

the institutional animal care and use committee at the Louisiana State University Heath 

Sciences Center at New Orleans, and all of the experiments were conducted in accordance 

with the Guide for the Care and Use of Laboratory Animals published by the US National 

Institutes of Health. 

2.2. In situ hybridization  

The hybridization was used to detect the expression level and pattern of the CCKR-2 

transgene in the brain. Brains from both wt and dtg mice were collected by decapitation, 
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and were frozen with powered dry ice immediately. Sagittal sections (20 µm) were made 

with a Cryostat (Leica, CM 1900, Richmond, IL). An oligo probe for tTA and a cRNA probe 

for the total CCKR-2 mRNAs were labeled with 35S UTP (>1,000 Ci/mmol; NEN, Boston, 

MA) by a random labeling kit and in vitro transcription kit (Invitrogen, Carlsbad, CA), 

respectively. The hybridization was performed overnight at 55°C, and after washing, slides 

were exposed to Kodak BioMax film (NEN) for the same time.  

2.3. Adolescent trauma (AT)  

Both wt and dtg mice at the age of P25 were individually put into a small shock-box (4 X 4 X 

10 inch in high) that was modified from the shock box from a fear-conditioning system 

(Coulbourn Instruments, Whitehall, PA), in order to ensure that the mice did not have much 

space for escaping during shocking. The current of the footshock was higher (1.0 mA) than it 

was commonly used in the fear-conditioning test (0.6-0.8 mA). The footshock was conducted 

for 5 times (trials), in total, during a period of 1 minute, and each trial lasted for 2 seconds, 

with an interval of 10 seconds between trials. 

2.4. Acute stressor (AS)  

Additional acute stressor (AS; 0.8 mA for 2 seconds for one trial) with a standard fear-

conditioning paradigm as described previously [119], was used to trigger HPA axis reaction 

at the age of P60 (2 months).   

2.5. ELISA  

Commercially available kits for both the adrenocorticotropic hormone (ACTH) (MD 

Bioproducts, St. Paul, MN) and corticosteroid hormone (CORT) (R&D systems, Minneapolis, 

MN) were used to determine the serum level of these hormones. Experimental procedures 

followed the recommended steps. In order to have samples enough for triplicate 

measurements, blood was collected with a retroorbital eye bleeding method. In order to 

minimize non-specific effects, blood collection was conducted at 9:00 Am, and the procedure 

was completed within 30 seconds, by which time any possible change that might be 

produced by the sampling procedure was not yet measurable. 

2.6. Statistical analysis  

Both female and male mice were almost equally distributed in each group. Data were 

analyzed with one-way ANOVA, followed by post-hoc tests.  The p value less than 0.05 is 

considered significant.  

3. Results 

3.1. Expression of the CCKR-2 transgene in the brain of dtg mice 

As shown in Fig 1, in situ hybridization revealed that the expression of the tTA was 

forebrain-specific in dtg mice (Fig. 1B), but was not detectable in wt mice (Fig. 1A). The 
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expression pattern of the CCKR-2 transgene (data not shown) was the same as both the 

pattern of the tTA expression and the CCKR-2 transgene expression reported in our 

previous study [101].  

 

Figure 1. Expression pattern of the tTA mRNA detected by in situ hybridization with saggital brain 

sections in wt (A) and dtg (B) mice.  

3.2. Dtg mice with AT exhibit an increased HPA axis activity in response to AS 

Either wt (n = 60) or dtg mice (n = 60) were subjected to AT, and then were divided into 5 

groups (n = 12) for a time-course study, in which both ACTH and CORT were examined 

before the AS for the basal level, and 1, 2, 4, and 8 hours following the AS. As shown in Fig. 

2, although the difference in the basal level of ACTH (Fig.  2A) or CORT (Fig. 2C) between 

these mice was not significant, a tendency of a lower level ACTH (p = 0.0741) and CORT (p = 

0.0648) was observed in dtg groups, compared to wt groups. Following the AS, an one-way 

ANOVA revealed a significant effect of the AT and CCKR-2 transgene on ACTH [F(1,8) = 

6.781, p < 0.01] and  CORT [F(1,8) = 9.201, p < 0.01]. Detailed post-hoc tests revealed that 

both ACTH (Fig. 2B) and CORT (Fig. 2D) in either wt or dtg mice reached the peak level at 1 

hr after the AS, while a significant difference was observed at 1 and 2 hr in ACTH between 

wt and dtg groups (p > 0.05), and at 1 and 2 hr in CORT between wt and dtg groups (p > 

0.05). In both wt and dtg mice, ACTH returned to the basal level at 4 hr (Fig. 2B), while 

CORT returned to the basal level at 4 hr (Fig. 2D). All these results indicate that the 

interaction between the AT and CCKR-2 transgene does not only increase the activity of the 

HPA axis following a novel stressor, but also impairs the CORT negative feedback in 

response this stressor.  

3.3. Disassociation of the CCKR2 transgene expression and AT largely 

diminishes the effect of AT on HPA axis activity in response to AS  

In this study, both wt and dtg mice were treated with doxycycline (doxy, 2 mg/100 ml in 

drinking water) for 5 days prior to AT, so that the transgene expression in dtg mice was 

inhibited during the episode of AT, and this inhibition lasted for about 3-5 days after the 

doxy treatment. At 2 months old, these mice were subjected to AS, and 1 hr later, which is 

the peak time of HPA axis response, as described in Fig. 2, the HPA axis activity was 

measured. Surprisedly, the levels of both ACTH and CORT were indistinguishable between 

wt and dtg mice, indicating that the coupling of AT and the transgene expression is critical 

for the AT to produce impaired glucocorticoid negative feedback inhibition in the animals.  
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Figure 2. Increased HPA axis activity in dtg mice with AT/AS. A. Basal serum level of ACTH in naïve 

wt mice and naïve dtg mice. A tendency of a difference is shown, but it is not significant. Data are 

expressed as mean ± SEM. B. Time-course of ACTH response following the AS. C. Basal serum level of 

CORT in naïve wt mice and naïve dtg mice. A tendency of a difference is shown, but it is not significant. 

Data are expressed as mean ± SEM. D. Time-course of CORT response following the AS. The same 

groups of mice above were examined.  

 

Figure 3. Level of ACTH (A) and CORT (B) in the mice after AT/AS. No significant difference was 

found between wt and dtg mice when the expression of the CCKR-2 transgene was suppressed during 

AT. 
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4. Discussion  

We have for the first time demonstrated that a coupling of a higher CCKergic tone with an 

ELS event is a causative factor for the development of an impairment of glucocorticoid 

negative feedback inhibition in the animals in response to additional acute stressor at a later 

life stage.  

This demonstration is achieved based on the technical merit in our transgenic mice, in which 

the transgene expression is inducible/reversible. The time resolution for this 

inducible/reversible feature is within 1 week, which is high enough for this time-coupling 

analysis. However, it is still not clear how this real-time coupling occurs, partially due to the 

fact that the functional significance of the CCKergic system is still not fully understood. As 

G protein-coupled receptors, CCKR are associated with Ca2+ release, PKC activation, PLA2 

activity, and cAMP production [120]. In addition, there are robust interactions between the 

CCKergic system and other neurotransmitter systems including dopaminergic, serotonergic, 

and GABAergic systems at both the structural and functional levels [121,122], and therefore, 

the mechanism underlying this associative effect should be complicated, and need to be 

further studied.  

An important finding in this study is the discovery of the change in the HPA axis activity, 

and these changes include (1) a slightly lower basal level of the HPA axis activity in dtg 

mice, compared to wt mice, (2) a synergistic effect of AT and the CCKR-2 transgene on the 

peak level of the HPA axis activity in response to the AS; (3) a prolonged decay time of the 

HPA axis activity following the AS in dtg mice with AT, and (4) a requirement of real-time 

coupling of the transgene expression and TA. It should be mentioned that it has been well 

established that a previous chronic stress in the animals down-regulates the HPA axis 

activity, but enhances their response to a novel acute stress, despite the negative feedback 

effects [83,123,124]. Because chronic stress can specifically facilitate the release of CCK into 

the PVN, which directly projects to the pituitary, in response to acute stress [88], the elevated 

CCKergic tone in our dtg mice may mimic the effect of a chronic stress by working as an 

“intrinsic stressor” for the animals. Therefore, this intrinsic stressor constitutes a basis for the 

higher vulnerability of dtg mice to AT. At the same time, the impaired AS-induced CORT 

negative feedback response may, in tern, significantly alter many other physiological 

functions, and eventually lead to a pathological condition. 

As described above, following ELS, neuroanatomical changes were found in different brain 

regions. In addition, neuronal activity is altered too {125}. Consistent to the current study, 

the activity of the HPA axis system in the subject who experienced ELS was dysregulated 

[48-52]. Moreover, many other neurotransmitter systems were also affected by ELS [40, 126-

128]. Therefore, the finding from the current study has provided additional evidence 

regarding how the CCKergic system and the HPA axis system are involved in the 

pathogenesis of post-ELS disorders. 

The most important finding in this study is the demonstration of that if the transgene was 

temporally suppressed during the time of AT exposure, this impaired HPA axis inhibition 
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in response to another acute stressor was largely diminished, indicating that the temporal 

association of the elevated CCKergic tone with AT is critically pathogenic.  This finding has 

a potential translational significance. It is well know that the endogenous CCKergic activity, 

or the CCKR-2 level in the brain, plays a dominant role in the expression of anxiety. For 

example, the expression of anxiety was correlated with the increased CCKergic tone, which 

was evidenced by a higher CCK receptor-binding capacity in the brain of anxious animals, 

in comparison with non-anxious animals [129-131]. Different fear responses among different 

strains of the same animal species were attributed to different expression levels of CCKR-2 

[132-134]. On the other hand, evidence also indicates that the CCKergic tone in the brain is 

dynamically regulated by stress. Following stress, for example, both CCK peptide 

immunoreactivity and CCK receptor density in the brain were significantly increased [135-

139]. Social isolation, an anxiogenic stress, increased the CCK mRNA expression in the 

brain [140]. Especially, the effect of ELS on the HPA axis activity was associated with CCK 

activity [87]. Chronic stress could specifically facilitate the release of CCK into the PNV in 

response to acute stress [84,141]. Consistently, CCKR-2 agonists could only produce, or 

produce more pronounced, anxiogenic effect in stressed animals, but not in un-stressed 

animals [88, 142-144]. Patients with ADs were more sensitive to CCKR-2 agonists than 

normal controls [145-148]. Together with all these findings, it seems conclusive that the 

CCKergic system is dynamically involved in ELS-triggered mental disorders, and thus, an 

inhibition of the CCKergic tone timely associated with an ELS event might be useful to 

prevent the development of post-ELS disorder, especially ADs. 

In summary, our study has revealed a Novel molecular underpinning for the development 

of post-ESL disorders, especially for mental disorders, and provide insightful information 

regarding how can we develop a preventive strategy for these post-ESL disorders in the 

humans.  
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