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1. Introduction 

Glucocorticoids (GCs), steroid hormones produced predominantly by the adrenal gland, are 

key mediators of stress responses. Whilst the acute and chronic effects of pharmacological 

glucocorticoid excess are well-recognized (including induction of hyperglycemia, insulin 

resistance, hyperlipidemia, hypertension and dysphoria, with suppression of immune, 

inflammatory and cognitive processes), their role in the biology of the response to stress is 

more nuanced, with balanced homeostatic effects to facilitate short-term survival and 

recovery from challenge [1, 2]. In addition, glucocorticoids play an essential role in normal 

fetal development and are important for the development and maturation of various fetal 

tissues including the liver, lungs, gut, skeletal muscle and adipose tissue in preparation for 

extrauterine life. Glucocorticoids most notably act during late gestation to stimulate 

surfactant production by the lung. This action is critical to prepare the fetus for extrauterine 

life, and it is for this reason that synthetic glucocorticoid treatment is so widely used in 

preterm pregnancies where lung immaturity threatens neonatal viability. Although these 

treatments greatly improve survival [3], they are not without adverse effects.  

Glucocorticoids regulate many of the processes required for successful embryo 

implantation, as well as for the subsequent growth and development of the fetus and 

placenta. In utero, the endometrium, placenta and embryo/fetus are each exposed to 

physiological glucocorticoids arising from either maternal or fetal adrenal glands. It has 

been shown that glucocorticoids have several roles in improving the intrauterine 

environment. For example, in uterus, glucocorticoids regulate the synthesis of 

prostaglandins that have been implicated to play critical roles during implantation by 

increasing stromal vascular permeability [4] and in the initiation of parturition [5]. The peri-

implantation secretion of human chorionic gonadotrophin (hCG) from human term 

trophoblasts can be stimulated by up to 10-fold by treatment for 24 to 72 h with synthetic 
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glucocorticoids dexamethasone and triamcinolone [6, 7]. Glucocorticoids have several anti-

inflammatory actions required for implantation. In first trimester human cytotrophoblasts, 

cortisol can suppress the synthesis of the pro-inflammatory interleukin (IL)-1b [8]. Similarly, 

in term human placental cytotrophoblasts, physiological concentrations of cortisol and 

numerous synthetic glucocorticoids can inhibit secretion of pro-inflammatory cytokines 

tumor necrosis factor (TNF)-α, IL-6 and IL-8 without affecting the expression of anti-

inflammatory cytokine IL-10 [9-11]. Glucocorticoids contribute to preventing immunological 

rejection of the fetal semiallograft in the pregnant uterus by inhibiting eosinophil infiltration 

[12]. Moreover, glucocorticoids profoundly and specifically suppress expression of 

fibronectin and laminin, two extracellular matrix proteins that are important mediators of 

uterine–placental adherence [6]. 

Furthermore, glucocorticoids activate many of the biochemical processes in these tissues 

such as altering expression of numerous receptors, enzymes, ion channels, transporters, 

growth factors, cytoskeleton proteins, binding proteins, clotting factors, gap and tight 

junction proteins and intracellular signaling pathways’ components involved in growth. 

Taken together, these glucocorticoid-induced changes in cell physiology combine to 

produce functional alterations at the systemic level [13]. 

In pregnancy, glucocorticoid administration is used mainly in the management of women 

at risk of preterm labor and in the antenatal treatment of fetuses at risk of congenital 

adrenal hyperplasia. It is recommended that, for pregnant women who are at risk of 

preterm delivery within 7 days between 24 weeks and 34 weeks of gestation, a single 

course of corticosteroid administration should be performed. And a single course of  

antenatal corticoids should be administered to women with premature rupture of 

membranes before 32 weeks gestation to reduce the risks of respiratory distress syndrome, 

perinatal mortality and other morbidities [14]. Numerous evidence indicates that increased 

exposure of the fetus to glucocorticoids in mid- to late pregnancy may result in adverse 

outcomes including intrauterine growth restriction (IUGR) [15-18], postnatal hypertension 

[15, 19], postnatal cardiovascular disease [20], postnatal glucose intolerance [20], increased 

postnatal activity in the hypothalamo–pituitary–adrenal axis [21-24], effects on fetal brain 

development [21, 25, 26].  

Glucocorticoid actions within the cell are regulated by Glucocorticoid Receptor (GR) [27]. 

On hormone binding, activated GR translocates from the cytoplasm to the nucleus as a 

dimer to associate with specific DNA sequences termed glucocorticoid response elements 

(GREs) and acts as a ligand-dependent transcription factor [28]. GR-mediated 

transcriptional activation is modulated by phosphorylation [29]. GRs are highly expressed in 

decidua, chorion, amnion, stromal fibroblasts, vascular smooth muscle cells and endothelial 

cells of human term placentas, with moderate expression in cytotrophoblasts and negligible 

expression in syncytiotrophoblast [30-34]. Because the significance of glucocorticoids to the 

early mammalian embryo is clear and glucocorticoid action within the cell is regulated by 

GR, we investigated GR expression during the course of rat embryogenesis until day 12 of 

gestation. The demonstrated ontogenetic pattern of GR expression indicates the potential 
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sites of biological action of the glucocorticoids, providing supportive evidence for its critical 

importance during the course of embryogenesis in rats [35].  

The intracellular enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyzes the 

interconversion of bioactive glucocorticoids (cortisol and corticosterone) and their inactive 

metabolites (cortisone and 11-dehydrocorticosterone). Thus, it is an important modulator of 

glucocorticoid  bioavailability  in  both  glucocorticoid  and  mineralocorticoid  target organs  

[36]. To date, two 11β-HSD isoenzymes (known as 11β-HSD1 and 11β-HSD2) have been 

identified, characterized and cloned [37]. The conversion of cortisone to active cortisol is 

catalyzed by 11β-HSD1, whereas the metabolism of cortisol to cortisone is mediated via both 

11β-HSD1 and 11β-HSD2 [38]. In placenta, 11β-HSD1 protein is expressed specifically in the 

placental villous endothelial cells, amnion, chorionic and extravillous trophoblasts (EVTs). 

11β-HSD1 expression increases throughout pregnancy in response to progesterone [39]. As 

the placenta differentiates, there is an up-regulation in the expression of 11β-HSD2 enzyme 

that becomes the major placental isoenzyme [40]. 11β-HSD2 protein is localized exclusively 

in the syncytiotrophoblast and invasive extravillous trophoblasts with no expression in the 

chorion or amnion [41-43]. The distinct pattern of 11β-HSD1 and -2 localizations may 

indicate having different physiological functions. In normal pregnancy, maternal 

glucocorticoid levels are markedly higher than those in the fetal circulation. It has been 

stated that the role of placental 11β-HSD is to protect the fetus from adverse effects of 

maternal glucocorticoids. 11β-HSD2 is better suitable for this role because of its location (the 

site of maternal–fetal exchange) and its enzymatic properties (higher affinity for cortisol). 

This enzyme acts as a ‘barrier’ to prevent premature or inappropriate action at 

glucocorticoid-responsive tissues during fetal development [44]. It has been suggested that a 

reduction in the expression or activity of placental 11β-HSD2, by leading to increased 

transplacental passage of active glucocorticoids, reduces fetal growth. 11β-HSD2 knockout 

(11β-HSD2−/−) mice exhibit reduced birth weight and heightened anxiety in adulthood [45]. 

Numerous studies have shown that inhibition of 11β-HSD2 during pregnancy leads to a 

reduction in birth weight and the development of later hypertension and glucose 

intolerance [46-48], as well as programming increased HPA axis activity and anxiety-related 

behaviors [49]. Moreover, placentas from 11β-HSD2 knockout mice fetuses have impaired 

labyrinth zone capillary development accompanied by a decline in vascular endothelial 

growth factor (VEGF)-A mRNA expression and altered transport of nutrients by system A 

amino acid transporter (SNAT) [50]. Furthermore, a correlation between decreased activity 

of 11β-HSD2 in the human placenta and IUGR has been reported [15, 51, 52]. In addition, 

mutations in the HSD11B2 gene in humans, although rare, markedly reduce birth weight 

[53]. It was found that while maternal administration of glucocorticoids caused IUGR, 

glucocorticoid administration directly into the fetal circulation did not restrict fetal growth, 

which suggests that the growth limiting effects of glucocorticoids are mediated via actions 

in the utero-placental unit rather than effects on fetal tissues [54] 

Placental development is a critical determinant of fetal growth and glucocorticoids affect 

growth and development of the fetus indirectly by affecting placental development and 

function. The actions of glucocorticoids on fetal growth are mediated, in part, by changes in 
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the placenta. In sheep, rats, mice and non-human primates, administration of synthetic 

glucocorticoids during late gestation reduces placental weight. In most of these species, the 

effect of glucocorticoids on the placenta is greater than that on the fetus [13]. Glucocorticoids 

have been implicated in the fusion of cytotrophoblast cells to form the syncytiotrophoblast 

and associated with morphological (accelerated apical microvilli formation, nuclear 

maturation, and increase in cell organelle number) and functional (elevated hCG secretion 

and increased 11β-HSD2 mRNA expression) markers of syncytiotrophoblast differentiation. 

These findings suggest that glucocorticoids stimulate syncytiotrophoblast differentiation 

and maturation [55-57].  

Microarray analysis showed that maternal glucocorticoid administration leads to marked 

changes in the gene expression profile in the placenta. Dexamethasone (Dex) caused a 

decrease in expression of genes involved in cell division such as cyclins A2, B1, D2, CDK 2, 

CDK 4 and M-phase protein kinase along with growth-promoting genes such as epidermal 

growth factor receptor, bone morphogenetic protein 4 and insulin-like growth factor-

binding protein 3. In addition, Dex treatment led to down-regulation of genes involved in 

protein biosynthesis, skeletal development, and collagen metabolism. There was also 

decreased expression of genes involved in cell division, DNA replication, chromosome 

segregation, DNA alkylation, nucleotide and nucleoside biosynthesis, microtubule-based 

processes, B-cell activation and differentiation processes, innate immune response, antigen 

processing and presentation, and complement system [58]. Treatment of rats with 

glucocorticoids restricts placental vascular development via inhibition of the VEGF-A and 

peroxisome proliferator-activated receptor γ (PPARγ) which is regulated by VEGF-A 

expression [59, 60]. In addition, in response to glucocorticoid treatment of either the mother 

or fetus, there are changes in the placental handling of certain amino acids such as 

alanine, glutamine and glutamate. However, there have been few studies on the effects of 

glucocorticoids on amino acid transporters in the placenta of any species to date [61, 62]. 

Additionally, glucocorticoids change the production and metabolism of hormones by the 

placenta such as prostaglandins, placental lactogen, leptin, corticotrophin-releasing 

hormone (CRH), estrogens, progesterone and other progestagens [63, 64]. Glucocorticoids 

also alter the placental activity of various enzymes involved in the synthesis and 

inactivation of steroids and thyroid hormones such as 17,20-lyase, 17α-hydroxylase, 

aromatase, renin and endothelial nitric oxide synthase [63].  

2. The effects of glucocorticoids on placental cell cycle 

Glucocorticoids play a fundamental role in pregnancy with effects on decidualization, 

implantation, placental development, fetal brain development, lung maturation and 

parturition but fetal-placental exposure to maternally administered glucocorticoids may 

lead to abnormalities of fetal and placental growth [15, 19, 65]. The mode of action of 

glucocorticoids in placental growth inhibition has not been determined.  

Human placental development is established by trophoblast invasion into the uterine 

endometrium and its vasculature. The resulting changes will facilitate an increase in 
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intervillous blood flow and, hence, the exchange of nutrients and molecules between 

maternal and fetal blood. The transports as well as metabolic and endocrine functions of 

the placenta reside primarily in the floating villi covered by the syncytiotrophoblast, a 

tissue that results from terminal differentiation of underlying villous cytotrophoblasts 

and their subsequent fusion. Anchoring villi establish physical connection of the placenta 

with the decidua predominantly by a subpopulation of cytotrophoblasts known as EVT. 

They accumulate at the tips of the anchoring villi and form cell columns. Both villous 

and extravillous cytotrophoblast subpopulations arise by proliferation and 

differentiation from stem cells located within the cytotrophoblast layer of the chorionic 

villi [66]. 

On the basis of the immunostaining of the Ki67 antigen, a cell cycle regulator with yet 

unknown role, EVTs have been categorized as the proliferative phenotype, which is 

primarily located in the proximal part, and the invasive phenotype that is located mainly in 

the distal part of cell columns [66]. Current understanding assumes that EVT can 

differentiate, thereby acquiring an invasive phenotype, which eventually enables them to 

invade the maternal decidua and spiral arteries. Thus placental development involves 

proliferation and differentiation of the cytotrophoblasts in a manner that is tightly regulated 

in time and space. 

Eukaryotic cell cycle consists of four phases, G1, S, G2 and M. G1 and G2 are preparation 

phases for DNA synthesis (S) and mitosis (M) phases respectively. During G1 and G2 

phases cell growth, doubling of the amount of protein and organelles and preparation for 

the next phase occurs. If the conditions are not appropriate, cells in G1 phase stop cell cycle 

progression and enter into a resting state, known as G0 phase, where they continue 

biological functions but do not go through the rest of the cell cycle. When growth signals are 

received, cells in G0 phase can continue the cycle through the G1 phase [67, 68]. 

The eukaryotic cell cycle is regulated by the coordinated activity of a family of cyclin-

dependent kinases (CDKs). These are positively and negatively regulated by the cyclin and 

CDK inhibitor families [69, 70]. Based on the timing of their appearance in the cell cycle, 

cyclins can be divided into two groups, i.e. the mitotic cyclins A and B and the G1 cyclins of 

the D and E families [71]. Cyclin A promotes both G1/S and G2/M transitions, whereas 

cyclin B1 accumulates in the cytosol during late S phase and G2 and enters the nucleus at 

the onset of mitosis [72]. 

In mammalian cells, there are at least two distinct families of CDK inhibitors: the INK4 and 

the Cip/Kip inhibitors (p21, p27, p57). Both families play regulatory roles during the G1/S 

cell cycle checkpoint [73]. Because of their broader panel of CDKs with which they interact 

[74], the inhibitors of the Cip/Kip family control other checkpoints as well. p21 plays a role 

during the G2/M phase transition [75] and may also mediate S phase [76] and G2 arrest [77]. 

Overall it is correlated with cell cycle arrest before terminal differentiation [78]. Also, p27 

has the capacity to arrest cells in G2 [77]. p57 inhibits cyclin A- and E-associated CDKs and 

therefore regulates G1/S transition and completion of S phase [79] and is primarily 

expressed in terminally differentiated cells [80]. 
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Despite the importance in understanding the mechanisms controlling proliferation, little is 

known about how cytotrophoblast proliferation is coordinated with differentiation and 

what factors determine whether cytotrophoblast cells divide or differentiate and 

syncytialize. A few studies localized cell cycle regulators that are specifically expressed 

during key transitions and phases [81-83]. 

The hypothesis that the coordinated expression of cell cycle progression and inhibition 

factors will determine whether cytotrophoblasts proliferate or undergo cell cycle arrest or 

cell cycle exit allowing subsequent differentiation was tested by our team. The cell cycle 

promoters cyclin A, cyclin B1, proliferating cell nuclear antigen (PCNA), Ki67 and the cell 

cycle inhibitors p21, p27 and p57 were immunolocalized in tissue sections of first trimester 

pregnancies (weeks 6 and 9-12). Villous cytotrophoblasts were immunolabelled for Ki67 and 

cyclin A but only few were stained with anti-cyclin B1. The syncytiotrophoblast was devoid 

of immunoreactivity for any of the cell cycle progression factors. It expressed especially p21, 

whereas p27 and p57 were predominantly found in villous cytotrophoblasts. PCNA, Ki67, 

cyclin A and cyclin B1 were immunolocalized in proximal and distal EVTs of anchoring villi 

and in EVT which had invaded the upper decidual segments. All EVTs strongly expressed 

p27 and p57, but not p21. These data clearly suggest different functions for p21, p27 and p57 

in placental development with distinct roles for p21 and p57 in syncytiotrophoblast and EVT 

differentiation, respectively. p27 appears to be involved in both the processes. The results 

may also challenge the concept of differential mitotic activity in the proximal and distal 

parts of the first trimester cytotrophoblast cell column, but more functional studies are 

clearly needed. The presence of p27 and p57 in EVT cells, which invade the deciduas deeply, 

may account for the loss of mitogenic potential of these cells [84]. 

Although the architecture of the human and rodent placentas differs, their anatomical structures 

and molecular mechanisms have been compared [85, 86] and analogies drawn between the 

various cell types; furthermore, the molecular mechanisms of placental development are thought 

to be very similar between the two species. Thus, the rodent placenta is increasingly used as a 

model to study mechanisms underlying placental development [85, 87]. 

 

Figure 1. Schematic representation of cell cycle related proteins in rat placenta of our study [88]. 



 
The Effects of Glucocorticoids on Fetal and Placental Development 311 

We have been used to localize G1 cyclins (D1, D3, E), which are major determinants of 

proliferation, Cip/Kip inhibitors, p53 as a master regulator and proliferating cell nuclear 

antigen in all cell types of the rat term placenta. Schematic representation of cell cycle 

related proteins studied is showed in Figure 1. The proportion of each cell type 

immunolabeled was counted. Cyclin D1 and cyclin D3 were present mostly in cells of the 

fetal aspect of the placenta, whereas the G1/S cyclin E was present only in the spongio- and 

labyrinthine trophoblast populations. Among the Cip/Kip inhibitors, p21 was present only 

in cells of the fetal aspect whereas p27 and p57 were found in all cell types studied. p53 was 

only found in a small proportion of cells with no co-localization of p53 and p21 [88]. 

Schematic representation of our immunohistochemistry results in the rat placenta is showed 

in Figure 2. The data suggest that the cells of the fetal side of the rat placenta still have some 

proliferation potential which is kept in check by expression of the Cip/Kip cell cycle 

inhibitors, whereas cells of the maternal aspect have lost this potential. Apoptosis is only 

marginal in the term rat placenta. In conclusion, proliferation and apoptosis in rat placental 

cells appears controlled mostly by the Cip/Kip inhibitors in late pregnancy. It is still not 

known how coordination mechanisms of proliferation and differentiation are influenced by 

glucocorticoid induced IUGR in the placenta. 

 
Ch: Chorion, LZ: Labyrinth Zone (fetal placenta), JZ: Junctional Zone (maternal placenta) [88]. 

Figure 2. Schematic representation of our immunohistochemistry results in the rat placenta. 

We aimed to investigate the effects of maternally administered synthetic glucocorticoid Dex 

on cell proliferation, cell cycle arrest or apoptosis of placental development. We investigated 

the spatial and temporal immunolocalization of PCNA, Ki67, p27 and p57 in normal and 

Dex-induced IUGR placental development in pregnant rats. PCNA immunolabeling intensity 

in placentas of the control group was statistically significantly higher than that in the Dex-

induced IUGR group placentas on all days in junctional and labyrinth zones (JZ and LZ, 

respectively). We observed decreased Ki67 staining intensity in the labyrinth trophoblasts of 

Dex-induced IUGR placentas compared to controls on day 21. Ki67 immunolabeling intensity 

was higher in the control group than that in the IUGR group placentas on all days in both 

zones except for day 21 in the junctional zone. These differences were statistically significant 

on days 15, 17 and 19 in the junctional zone and on days 13, 15, 17 and 21 in the labyrinth 

zone. Ki67 staining intensity decreased gradually after day 15 in both zones of control and 
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IUGR placentas. Ki67 immunostaining intensities were stronger in the labyrinth zone 

compared to the junctional zone in both groups. Moreover, after day 17, scarcely any Ki67 

immunostaining was obtained in the IUGR placentas in the junctional zone. We found 

stronger p27 immunolabeling intensity in Dex-induced IUGR placentas when compared to 

control placentas in both junctional and labyrinth zones for all gestational days (Table 1) [89]. 

In accordance with this, in another study, it was observed that in the Dex-induced human 

choriocarcinoma JEG-3 cells p27 mRNAs were upregulated [90]. We observed that p57 

immunostaining intensities in Dex-induced IUGR placentas were stronger compared to 

controls in both zones for all gestational days. We found that Dex-induction results in p57 

upregulation in rat placental development [89]. In contrast to our results, p57 was not 

expressed in Dex-induced JEG-3 cells [90]. In another study, we wanted to determine the 

Ser/Thr protein kinase Akt and a MAPK (Mitogen-Activated Protein Kinase) ERK1/2 related 

proliferation and apoptosis mechanisms are influenced by Dex-induced IUGR placentas. 

Thus, we investigated the expression levels and spatio-temporal immunolocalization of Akt, 

p-Akt, ERK1/2 and p-ERK1/2 proteins in normal and Dex treated placental development of 

rats. We found that maternal Dex treatment led to a decrease in ERK1/2 and Akt activation 

during rat placental development together with placental and fetal weight loss. Akt 

activation was significant at junctional zones of the rat placenta, especially at 

spongiotrophoblast cells and giant cells, and reduced after dexamethasone treatment. On the 

other hand, ERK1/2 activation was seen in both junctional and labyrinth zones of the rat 

placentas and was weaker in labyrinth zones of IUGR group placentas. The decrease in 

ERK1/2 and Akt activation may result in cell survival inhibition or apoptosis stimulation. 

Consequently, Dex induced placental and embryonal developmental abnormalities could be 

associated with reduction of Akt and ERK1/2 activation [91]. In another study, decreased 

levels of placental Akt phosphorylation was observed after in utero exposure to Dex [92]. 

Antenatal Dex use is associated with reduction in fetal and placental weight with 

morphological changes in the placenta. Dex-treated mouse placentas showed swollen 

trophoblast cells in both the junctional and labyrinth zones and increased apoptosis of 

trophoblast cells in the junctional zone. Moreover, Dex-treated placentas were hydropic, 

friable and pale [58]. Increasing antenatal corticosteroid exposure was associated with 

villous fibrosis, stromal mineralization, and less frequent villous infarction [93]. In addition, 

treatment with Dex prevented the normal rise in VEGF expression and the associated 

increase in labyrinthine vascularity over the final third of pregnancy. Therefore, Dex 

appears to reduce labyrinth zone growth by preventing the normal development of the fetal 

vasculature within the labyrinth zone [59]. Moreover, microarray analysis showed that Dex 

caused a decrease in expression of genes involved in cell division such as cyclins A2, B1, D2, 

CDK 2, CDK 4 and M-phase protein kinase along with growth-promoting genes such as 

epidermal growth factor receptor, bone morphogenetic protein 4 and insulin-like growth 

factor-binding protein 3 [58]. In addition, 3H-thymidine incorporation assay revealed that 

proliferation of trophoblast cell lines JEG-3 and HTR-8/SV neo and human first-trimester 

primary trophoblasts was time- and dose-dependently inhibited by glucocorticoids [94]. 

Impaired growth in Dex-treated placentas was also characterized by decreased expression of 
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both prolactin-like protein-B and insulin-like growth factor (IGF)-II, particularly in the 

junctional zone of the rat placenta [92]. Dex-treatment increased apoptosis of trophoblast 

cells in mouse and rat placentas. Dex-induced trophoblast apoptosis was mediated through 

activation of caspases 1 and 3 [58, 95]. Apoptosis was also induced in primary cultures of 

third trimester human decidual cells when treated with cortisol, cortisone, or 

dexamethasone [34]. Likewise, Dex was shown to induce both apoptosis and necrosis in 

primary cultures of term human placental trophoblast, in an in vitro model of 

syncytialization and in the SGH-PL4 cell line derived from human extravillous trophoblasts 

by measuring the cytokines TNF-alpha and IFN-gamma using the TUNEL technique, 

Annexin V binding, fluorescence microscopy and ATP/ADP measurements [96]. In another 

study, using a human in vitro term placental explant model, Dex treatment was shown to be 

associated with morphological (accelerated apical microvilli formation, nuclear maturation,  
 

Gestational 

days 

Junctional 

Zone 

Labyrinth 

Zone 

Cell cycle 

protein 

13  

PCNA 

15  
17   

19  
21  

    

13  

Ki67 

15  
17  
19  
21  
    

13   

p27 

15  
17  
19  
21  
    

13  

p57 

15  
17  
19  
21   

Table 1. Immunolabeling intensity changes of PCNA, Ki67, p27 and p57 in the junctional and labyrinth 

zones of placentas of the IUGR group rat placentas compared to control of given gestational day 

(p=<0.05). −, statistically significantly unchanged; , statistically significantly increased; , statistically 

significantly decreased. 
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and increased cell organelle number) and functional (elevated hCG secretion, increased 11β-

HSD2 mRNA expression and reduced cytotrophoblast proliferation markers) of 

syncytiotrophoblast differentiation. These findings suggest that Dex stimulates 

syncytiotrophoblast differentiation and maturation [57]. In another study, BeWo and JEG-3 

choriocarcinoma cell lines used as models for human trophoblast were cultured with another 

synthetic glucocorticoid triamcinolone acetonide (TA). TA altered the number of viable and 

dead cells as well as cyclin B1 expression levels shown by Western blotting and to a lesser 

extent, invasion of BeWo and JEG-3 cell lines determined by Matrigel invasion assay and by 

measuring the secretion (ELISA) of matrix-metalloproteinases (MMP-2, MMP-9) [97].  

3. The effects of glucocorticoids on fetal and placental angiogenesis 

mechanisms 

Angiogenesis is a complex process that may be initiated by a large number of stimuli and 

that is performed through multiple biologic pathways and a variety of molecules. With the 

increased understanding of angiogenesis, it has become clear that many of its pathways are 

parallel and redundant, greatly complicating efforts to interrupt the process. The disruption 

of one pathway most likely does not abolish completely the formation of new blood vessels, 

which may explain the less than perfect clinical results achieved when treating neovascular 

processes with currently available regimens. Combination therapies and drugs that target 

more than one pathway have become more popular and intensively explored. 

Angiogenesis is required for the cyclic processes of endometrial growth, breakdown, and 

repair during the menstrual cycle, and it provides a richly vascularized tissue receptive for 

implantation and placentation [98]. Besides, the formation of new blood vessels is essential 

for organogenesis and successful embryonic and fetal development. 

For many years glucocorticoids have been used in pregnant women for several reasons such 

as risk of premature deliveries or treatment of a variety of medical disorders like bronchial 

asthma, systemic lupus erythematosous etc.. The dosages and types of glucocorticoids 

changes depending on the severity of the symptoms and treatment procedure [99].   

It is reviewed by Hadoka et al. [100] that endogenous GCs contribute to physiological 

angiogenesis mechanisms by regulating the new vessel formation processes. Endothelial 

cells are seem to be a target of glucocorticoid effect as they both express glucocorticoid and 

mineralocorticoid receptors [101, 102]. But overexposure to glucocorticoids during 

pregnancy has adverse effects on placental angiogenesis mechanisms. Therefore these 

steroids should be carefully used in pregnancy.  

Hewitt et al. [59] investigated the impact of increased glucocorticoid exposure on the spatial 

and temporal expression of the endothelial cell-specific mitogen; VEGF and associated 

placental vascularization over the final third of rat pregnancy. They showed that treatment 

with dexamethasone prevented the normal rise in VEGF expression as a LZ specific manner. 

Their data suggest that glucocorticoid induced restriction of fetal and placental growth is 

mediated, in part, via inhibition of placental VEGF expression and associated reduction in 
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placental vascularization. Therefore, dexamethasone appears to reduce LZ growth by 

preventing the normal development of the fetal vasculature within the LZ.  

As it is mentioned in the study above, GCs have adverse effect on placental 

angiogenesis mechanisms. This effect would be related with both angiogenic activity of 

the endothelial cells or maybe related with proliferation or cell survival processes. It 

was reported in a previous study that GCs inhibit tube formation of cultured 

endothelial cells [103] but the molecular mechanisms underlying this effect hasn’t been 

clearly understood [104].  

Recently, Logie et al. [105] reported that GCs do not affect the endothelial cell viability or 

proliferation but tube formation capacity.  This investigation addressed the hypothesis that 

the potent antiangiogenic action of glucocorticoids is due to prevention of tube formation by 

endothelial cells. Cultured human umbilical vein endothelial cells (HUVEC) and aortic 

endothelial cells (HAoEC) were used to determine the influence of glucocorticoids on tube-

like structure (TLS) formation, and on cellular proliferation, viability and migration. 

Dexamethasone or cortisol (at physiological concentrations) inhibited both basal and 

prostaglandinF-2α -induced and VEGF stimulated TLS formation in endothelial cells 

cultured on Matrigel, effects which were blocked with the glucocorticoid receptor antagonist 

RU38486. Glucocorticoids had no effect on endothelial cell viability, migration or 

proliferation. Time-lapse imaging showed that cortisol blocked VEGF-stimulated 

cytoskeletal reorganization and initialization of tube formation. Exposure to glucocorticoids 

reduced the formation of cell-cell contacts rather than increasing degradation of existing 

tubes. They concluded that glucocorticoids interact directly with glucocorticoid receptors on 

vascular endothelial cells (ECs) to inhibit TLS formation. This action, which was conserved 

in ECs from two distinct vascular territories, was due to alterations in cell morphology 

rather than inhibition of EC viability, migration or proliferation. These findings provide 

important insights into the anti angiogenic action of endogenous glucocorticoids in health 

and disease [105]. 

According to the results of an ongoing study of us, Triamcinolone treatment decreased 

VEGF expression in HUVECs. In this study, we tested the hypothesis that IUGR could be 

observed in fetuses as a result of insufficient nutrient transport depending on the 

glucocorticoid effect on placental angiogenesis mechanism that leads to inadequate vessel 

development. HUVECs were cultured at different concentrations (0.5, 5, 50 µmol/L) of the 

synthetic glucocorticoid triamnicinolone acetonide for 48 and 72 hours. After culture, RT-

PCR, ELISA, Western blot and Matrigel experiments were performed. On the other hand, 

dexamethasone was injected to rats during gestation. Placenta and blood samples were 

taken from rats on gestational days 14, 16, 18 and 20.  RT-PCR and Western blot analyses 

were performed on placentas while ELISA test was applied to sera and HUVEC culture 

media. We found that in HUVECs; VEGF, VEGFR1, VEGFR2, Placental Growth Factor 

(PIGF) and Fibroblast Growth Factor (FGF) gene levels on 48 and 72 hours decreased in 50 

mM TA groups compared to control. VEGF protein amount on 48 and 72 hours decreased 

in TA groups compared to control. VEGFR1 protein quantity decreased and VEGFR2 
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protein quantity increased in a dose- and time-dependent manner. According to ELISA 

results, VEGFR1 secreted by HUVEC cells decreased while VEGFR2 and FGF increased. In 

Matrigel experiments, decreased vessel tube structures were created by HUVEC cells 

exposed for 72 hours to 50 mM TA. The amount of VEGF in Dex treated rat sera 

statistically significantly decreased on days 14, 16 and 20, while there is no difference on 

day 18 compared to control. VEGF protein amount showed a decrease in all gestational 

days of IUGR group compared to control in rat placentas. VEGFR1 decreased in advancing 

pregnancy days of control group while increased in parallel to pregnancy days of IUGR 

group. VEGF and  VEGFR1 gene level was lower at term rat placentas compared to control 

group at gestational day 20. In conclusion our results showed that glucocorticoids had a 

negative effect on angiogenesis mechanism  (Figure 3) via altering the angiogenesis related 

protein and gene expression, and tube formation capacity and angiogenesis related 

proteins in sera  (A.Ozmen, G.Unek, D.K. Korgun, I.Mendilcioğlu and E.T.Korgun 

unpublished). 

 

Figure 3. A possible model for glucocorticoid effect on endothelial cells. In physiological conditions; in 

the case of moderate GC concentrations (left picture), vascular homeostasis is tightly regulated.  VEGF, 

VEGFR1&R2 expression, angiogenic cytokine production, endothelial cell migration, blood flow 

velocity etc… is maintained in a balance in functional endothelial cells. But when GC concentration is 

increased (right picture), endothelial cell are subjected to excess GC. And this GC overexposure results 

with endothelial dysfunction by downregulating VEGF and VEGFR1 expression, upregulating VEGFR2 

expression, altering angiogenic cytokine production and by inhibiting endothelial cell migration etc… 

(vWF: Von Willebrand Factor) 
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In another study of ours, we investigated the effects of glucocorticoids on rat placental 

development depending on the PI3K/Akt and MAPK-ERK1/2 pathways [91]. It was 

observed that, the IUGR group had significantly smaller embryos on day 20 of gestation 

and had smaller placentas on day 14, 16, 18 and 20 compared with control.  Maternal 

dexamethasone treatment led to a significant decrease in Akt activation on day 16, 18, and 

20. Total Akt protein expression was not significantly affected by the treatment. There was 

a significant decrease in ERK1/2 activation on day 18 in IUGR group; on the other hand 

there was a significant increase on day 16. Total ERK1/2 protein expression didn’t show 

any significant difference between groups. We observed that phospho-Akt 

immunolabelings were remarkable in junctional zone in control groups and weaker in 

IUGR groups. Phospho-ERK1/2 immunolabelings were considerable in the junctional and 

labyrinth zones in the control groups and weaker in IUGR groups. We found that ERK1/2 

activity was decreased in the dexamethasone treated IUGR groups. This decrease was 

especially seen in the LZ of the rat placenta. Concerning the importance of Erk1/2 on 

placental vasculature development [106-109], it could be said that the decrease in ERK1/2 

activity might be related with vascular failure and this could result with abnormal 

placental development. Besides it is mentioned in the literature that the PI3K/Akt 

pathway modulates the expression of some angiogenic factors such as nitric oxide and 

angiopoietins. Numerous inhibitors targeting the PI3K/Akt pathway have been 

developed, and these agents have been shown to decrease VEGF secretion and 

angiogenesis. [110]. Therefore, dexamethasone induced decreased Akt phosphorylation 

may negatively affect the placental angiogenesis mechanisms. There are some other 

studies [111, 112] mentioning the effect of GCs on fetal/placental vasculature during 

pregnancy. These studies report that GCs alter the physiological condition of the 

vasculature and leads pathological conditions. Aida et al. [111] determined a significant 

depression of total placental eNOS protein measured by ELISA (betamethasone treated vs 

control) and immunohistochemistry in both syncytiotrophoblast and vascular 

endothelium. In conclusion, maternally administered betamethasone produces a 

consistent decrease in several indices of placental eNOS function that may play a role in 

the altered cardiovascular dynamics and fetal growth retardation produced by 

betamethasone administration in late pregnancy.   

Angiogenesis is tightly regulated by hormones.  Hormones regulate blood vessel growth 

by controlling the production of local chemical mediators, often other hormones, but also 

growth factors, cytokines, enzymes, receptors, adhesion molecules, and metabolic factors. 

As mentioned above, GCs may show their effects directly on endothelial cells or indirectly 

for example by altering cytokine production that may affect placental vasculature. Xu et al. 

2005, [9] studied the effects of GCs on placental cytokine production. Villous explants were 

cultured with increasing concentrations of glucocorticoids (betamethasone and methyl-

prednisolone, 0.0025 mM, 0.25 mM and 25 mM). The dose effect of glucocorticoids on 

cytokine (TNF-α, IL-6 and IL-10) production was examined using ELISA. There was a 

stepwise reduction of TNF-α and IL-6 with increasing doses of betamethasone and methyl-

prednisolone from placentas of women with preeclampsia and normal pregnancy. 
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However, IL-10 was not altered in conditioned medium by increasing doses of 

glucocorticoids. In pregnancy, TNF-α can cause direct damage to endothelial cells, increase 

endothelial cell permeability, up-regulate endothelial adhesion molecules (ICAM-1, 

VCAM-1, E-Selectin) and promote vasoconstriction, all of which are identified in the 

pathogenesis of preeclampsia [113]. IL-10 is an immunosuppressive Th2-type cytokine 

which is produced by immune cells including T-cells, monocytes, macrophages, 

granulocytes and NK cells and also trophoblasts. IL-10 has been also shown to be a potent 

inhibitor of Th1 cell proliferation and the production of Th1-type cytokines such as TNF-α 

[114].  

To observe the influence of maternal betamethasone administration for fetal lung 

maturation on the arterial, venous and intracardiac blood flow of the fetus and the uterine 

arteries; twenty-seven women with singleton pregnancies were examined before the first, 

and 30 min and 8, 24, 48 and 72 h after the second of two single doses of 8 mg of 

betamethasone. The blood flow velocity waveforms of the umbilical artery (UA), the middle 

cerebral artery, the uterine arteries, the ductus venosus, the inferior vena cava and the right 

hepatic vein, the pulmonary trunk, the ductus arteriosus and the right and left 

intraventricular inflow of the heart was recorded. The resistance index of the UA showed a 

significant transient decrease 30 min after the second betamethasone dose. The peak systolic 

velocity of the ductus arteriosus increased significantly 30 min after the 2nd dose and then 

returned to non-significant values. No significant change was observed in any of the other 

vessels. So it could be said that Betamethasone causes short-term changes in fetal blood 

flow. However, this effect seems to be mild and reversible and does not appear to 

contraindicate the use of corticosteroids to promote fetal lung maturation [115]. Therefore, it 

could be mentioned that long term dexamethasone usage my result with decreased maternal 

blood velocity which would negatively affect angiogenesis mechanisms as maternal blood 

itself contains angiogenesis related proteins. 

 It is reviewed by Oliver et al. [116] that corticosteroids are believed to act at multiple levels 

of angiogenesis by regulating growth factors, proteases, and blood cell behavior, and have 

shown significant promise in clinical studies of neovascularization secondary to diabetes, 

age-related macular degeneration (AMD), and ocular histoplasmosis syndrome [117-121]. 

Angiostatic steroids have been proposed to inhibit angiogenesis by altering the capillary 

basement membrane composition, suppressing its dissolution, and inhibiting endothelial 

cell migration, in addition to their capacity of regulating the participation of inflammatory 

cells in the neovascular process [122-124]. There is a growing body of evidence that reports 

inhibitive effects of glucocorticoids on angiogenesis mechanisms [105, 125-128] but there is 

limited data about the impact of glucocorticoids on placental angiogenesis mechanisms. 

Glucocorticoid-mediated inhibition of angiogenesis is important in physiology, 

pathophysiology and therapy. However, the mechanisms through which glucocorticoids 

inhibit growth of new blood vessels have not been established. Over-exposure to GCs may 

alter intracellular signaling pathways such as MAPK/ERK1/2 and PI3K/Akt with a 

processes mediated by GR and finally expression of angiogenic proteins could be altered 

(Figure 4). 
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Figure 4. Glucocorticoids might show their effects on angiogenesis mechanisms by altering intracellular 

signal transduction pathways. GCs affect cellular processes via binding Glucocorticoid receptor. MAPK 

and PI3K/Akt (by phosphorylation of several downstream molecules; yellow dots in the picture) 

pathways mediate GC action on placental angiogenesis mechanisms like VEGF, VEGFR1&2 expression 

and endothelial cell cytoskeleton organization etc… (GC; Glucocorticoid, GR; Glucocorticoid Receptor) 

4. The effects of glucocorticoids on placental glucose transporters 

The Glut protein family belongs to the Major Facilitator Superfamily (MFS) of membrane 

transporters [129]. Most Glut proteins catalyze the facilitative (energy-independent) 

bidirectional transfer of their substrates across membranes. Up to now, 14 functional 

mammalian-facilitated hexose carriers (GLUTs) have been characterized by molecular 

cloning [130]. The Glut family members can be grouped into three (Class I, Class II and 

Class III) different classes based on their sequence similarities [131]. The isoforms GLUT1, 3 

and 4 are included in Class I and represent high-affinity transport facilitators.  

The existence of glucose transporters in the placenta have been known for many years. 

GLUT1 protein is present in placental endothelial cells  [132, 133]  and in the basal [132], or 

microvillous membranes of the syncytiotrophoblast  [133-135]. GLUT3 mRNA is distributed 

throughout the cells of villous tissue; GLUT3 protein appears to be expressed only in the 

vascular endothelium and, is not expressed in the syncytiotrophoblast layer of the placenta. 

A strong GLUT4 signal was observed in intravillous stromal cells, appearing to co-localize 

with insulin receptors [136], a discovery which complements the observation of GLUT4 in 

fibroblasts from amnion and chorion [137]. 
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GLUT proteins’ cell surface expression level, greatly influences the rate of glucose uptake 

into the cells [131]. Uptake of glucose by the placenta is facilitated primarily by GLUT1 and 

in part by GLUT3 transporters [133, 138-140]. A possible major glucose transfer mechanism 

in the human placental villi may be depicted as follows. Glucose in the maternal 

bloodstream passes the apical microvillous plasma membrane of syncytiotrophoblast cells 

by means of GLUT1. Glucose moves through the cytoplasm of the syncytiotrophoblast by 

simple diffusion and leaves the cytoplasm via GLUT1 in the basal plasma membrane. 

GLUT1 and GLUT3 proteins contribute to the uptake of glucose by placental endothelial 

cells, as well as facilitate the transfer of glucose into and out of the fetal blood vessels in the 

villous core [133, 138-140]. About 25% of glucose entering the placenta is metabolized within 

this tissue; the majority of glucose is passed to the fetus through placental endothelial cells 

[141]. 

Efficient placental (maternal to fetal) transport of glucose is crucial to sustain the normal 

development and survival of the fetus in utero because its own glucose production is 

minimal [142]. The factors regulating transplacental glucose transfer are largely 

unknown.  

In our recent study [143], we showed that Triamcinolone administration at doses of 0.5, 5 

and 50µmol/L, led to a significant up-regulation of placental GLUT1 and GLUT3 transcripts 

and protein levels in Human Placental Endothelial Cells (HPECs). After several passages, 

the endothelial cells were cultured in the presence or absence (controls) of 0.5, 5 and 

50µmol/L of TA. The lower (0.5 mmol) dose is a concentration in the lower range of doses 

generally used in previous cell culture studies [7] and considered comparable to the doses 

used to promote lung maturation in rats [144]. Other doses (5 and 50 mmol) were used to 

investigate the potentially detrimental effects of glucocorticoid excess. The highest TA dose 

administered to the endothelial cell cultures corresponds to the TA concentration in blood 

resulting after intravenous injection of a dose recommended by the manufacturers for 

therapy in humans. Our Western blot results showed that GC overexposure significantly 

increased placental GLUT1 and GLUT3 protein levels in all experimental groups of HPECs. 

RT-PCR analysis of placental GLUT expressions indicated that both GLUT1 and GLUT3 

mRNA levels were affected by the GC induction. It was supposed that GCs caused an 

increase in placental GLUT proteins and mRNA expression. 

The human placenta is a GC responsive organ consisting of multiple cell types including 

endothelial cells, fibroblasts and trophoblasts that demonstrate changes in gene 

expression after hormone treatment. However, little is known about the relative 

expression or activity of the Glucocorticoid Receptor among the various placental cell 

types. Previous studies have documented that placental endothelial cells expressed GR 

and Mineralocorticoid Receptor (MR) [101, 102] but the GR regulation of glucose transport 

have not been studied. We found that GR mRNA and protein expression down-regulated 

after 24-h cell culture of HPECs. Our results suggest that GC-mediated down-regulation 

of GR levels occurs through changes in protein and mRNA stability in HPECs after TA 

treatment. The data from the cell culture strengthens the hypothesis that increased GC 

levels specifically modulate GLUT expression via the GR. 
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Collectively, we conclude that TA is a potent regulator of HPECs’ GLUT1 and GLUT3 

expression (Figure 5). This effect is mediated by GR. We speculate that GC-induced up-

regulation of the placental glucose transporter systems contributes to the retarded fetal and 

placental growth observed with GC treatment.  

Similarly in a previous study [18], it is reported that exposure to excess glucocorticoids from 

day 15 of gestation modified rodent placental glucose transporter protein expression at day 

21 of gestation in a concentration-dependent manner.  

Dexamethasone treatment from day 15 to day 21 of pregnancy led to fetal 

hypoglycaemia. GLUT1 and GLUT3 protein expression were detectable in the rat 

placenta during late gestation, and dexamethasone treatment from day 15 to day 21 of 

pregnancy significantly decreased placental weight and up-regulated the placental 

protein expression of both glucose transporters during late gestation in a dose-

dependent manner.  

Dexamethasone administration at the lower dose (100µg/kg) led to modest up-regulation of 

placental GLUT1 protein expression, in the absence of any significant change in the protein 

expression of GLUT3. Dexamethasone at the higher dose (200µg/kg) led to significant up-

regulation of the placental expression of both GLUT1 and GLUT3 in rats, with a slightly 

more marked effect on GLUT3 [18]. It is concluded that, depending on the dose 

administered, either maturational glucose transporter isoform switching might be 

accelerated by dexamethasone treatment during late pregnancy or, at a higher dose, 

placental glucose transporter expression would be down-regulated. 

In another study of ours, the glucocorticoid effect on the glucose transporters in the 

diabetic rat placenta was questioned.  It was hypothesized that GCs regulate placental 

glucose transport in many cell types and tissues and depending on this hypothesis the 

relationship between glucose transport and the glucocorticoid metabolism in rat placental 

development of normal and diabetic pregnancy was investigated. The 

immunohistochemical results indicated that GR and GLUT1 are expressed ubiquitously in 

the trophoblast and endothelial cells of the labyrinthine zone. Amounts of GR and GLUT1 

proteins increased towards the end of gestation both in the control and the diabetic 

placenta. However, at days 17 and 19 of gestation, only the placental GR protein was 

significantly increased in the streptozotocin-induced diabetic rats compared to control rats. 

It is mentioned in this study that there might be a relationship between GR and GLUT1 

expressions at the cellular level. GLUT1 does not play a pivotal role in diabetic 

pregnancies. However, placental growth abnormalities during diabetic pregnancy may be 

related with the amount of GR [145].   

It was previously reported by Hahn et al. for the first time, that both GLUT1 and GLUT3 

transcripts and protein were significantly down-regulated in isolated human trophoblast 

cells and in rat placentas by GCs, suggesting regulation at the transcriptional level [7]. 

Hyperglycemia is one of the well known systemic effects following GC treatment. Thus, 

elevated glucose concentrations might have affected placental GLUT expression [146]. 

However, in the rat model, a single injection of TA resulted in only short term 
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hyperglycemia, followed by hypoglycemia. This hypoglycemia may be the reason for the 

smaller fetuses and placentas as well as for the markedly reduced weight gain of TA-

treated rats during gestational days 16 and 21.The human trophoblast cells were cultured 

under physiological glucose concentrations, yet their GLUTs were down-regulated similar 

to those in TA-treated rats. Collectively, the investigators concluded that the synthetic GC 

Triamcinolone is a potent regulator of human and rodent placental GLUT1 and GLUT3 

expression. This effect is mediated by the GR. They speculate that GC-induced down-

regulation of the placental glucose transporter systems contributes to the retarded fetal 

and placental growth observed with GC treatment. This would represent a pathogenetic 

mechanism different from that leading to intrauterine growth retardation in the absence 

of GC treatment, in which trophoblast GLUT1 is not altered [134]. However, it is difficult 

to determine the cause and effect relationships, and the growth restriction could occur 

first, followed by an appropriate down-regulation of the transporters so as to match fetal 

size. 

Consistent with this study, it was also reported that GLUT1 and GLUT3 mRNA levels were 

decreased in the dexamethasone treated group in the caruncles of the caw placenta [147]. In 

this study, plasma glucose concentrations of cows carrying a somatic cell clone fetus during 

late pregnancy and GLUT mRNA levels at parturition were examined. Parturition was 

induced by using dexamethasone and some other molecules. Cotyledon and caruncle tissues 

were removed just after parturition and were used for mRNA extraction. In the caruncules 

of the Dex induced parturition group GLUT1 and GLUT3 mRNA levels were decreased 

according to the Clone Pregnancy. 

In another rat model, female pregnant rats were subjected to % 50 food restrictions in order 

to investigate the effect of maternal nutrient on placental GLUTs. In this model fetuses were 

overexposured to glucocorticoids as maternal protein restriction induces it. At day 21 of 

pregnancy plasma corticosterone levels were increased. Correspondingly, placental GLUT3 

protein was decreased, GLUT1 and GLUT4 protein levels were not affected by maternal 

feeding regimen and therefore enhanced corticosterone level [148]. 

Besides placenta, GCs affect glucose transport in a variety of peripheral tissues, such as 

skeletal muscle, adipocytes, and endothelial cells [149-160]. High affinity low capacity GRs 

have been identified in the placenta of various species, including man, rat, and mouse [17, 

35, 161, 162]. This would have important clinical implications, because GC-induced down-

regulation of the placental glucose transport system(s) may contribute to the deleterious 

side-effects of GC treatment during pregnancy, such as the higher incidence of growth-

retarded fetuses [46, 163-165].   

Corticosteroids have also been shown to have major effects on fetal glucose homeostasis 

resulting in long-term persistence of these changes after birth in sheep and rats [166-172]. 

Prenatal corticosteroid exposure of mice resulted in programming of the fetus such that the 

adult progeny exhibited glucose intolerance [170, 171]. In addition, repeated courses of 

maternal corticosteroid administration have been shown to alter fetal glucose homeostasis 

and hepatic enzyme activity in rats [157, 173]. 
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Figure 5. Effect of glucocorticoid overexposure on GLUT1 and GLUT3 expression in placental 

endothelial cells. GCs bind to GR and activate cellular signal transduction pathways. These molecular 

mechanisms remain to be unknown. As a result of GC overexposure GLUT1 and GLUT3 mRNA and 

proteins are increased in placental endothelial cells. Left panel refers possible physiological conditions 

and right panel refers effects of GC overexposure on GLUTs. (GC; Glucocorticoid, GR; Glucocorticoid 

Receptor, GLUT; Glucose Transporter) 

In summary, the effects of glucocorticoids in placental glucose transport mechanisms in not 

fully understood. Further studies are needed to explain this issue. 

5. Conclusion 

Placental and fetal development is effected from glucocorticoids. Physiological 

glucocorticoid concentrations are necessary for healthy implantation, and pregnancy 

processes. On the other hand, glucocorticoid overexposure results with fetal and placental 

defects. Placentas of dexamethasone treated animals are smaller than healthy ones. In IUGR 

group placentas reduced placental proliferation and induced apoptosis seem to be a reason 

for decreased placental weigths. Dexamethasone caused a decrease in expression of genes 

involved in cell division such as cyclins A2, B1, D2, CDK 2, CDK 4 and M-phase protein 

kinase along with growth-promoting genes such as epidermal growth factor receptor. 

Moreover, in IUGR placentas cell cycle promoter proteins PCNA, Ki67 is decreased and cell 
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cycle inhibitor proteins p27 and 57 are increased. Altered MAPK and Akt pathways are also 

unfavorably affected from glucocorticoid treatment. Decreased Akt and MAPK activations 

would result with reduced proliferation and/or induced apoptosis and reduced 

angiogenesis. GCs may affect placental angiogenesis by altering VEGF, VEGFR1 and 

VEGFR2 expression both at protein and gene levels with a direct effect on endothelial cells. 

Besides, without effecting endothelial cell viability and proliferation, GCs may affect 

endothelial cell migration and/or capacity of tube formation. The indirect effects of GCs 

seem to be via altering placental cytokine production processes which have negative effects 

on angiogenesis mechanisms. Another mechanism by which GCs may alter placental 

development is glucose transport mechanisms. It seems that GCs affect Glucose transporters 

via cell type dependent manner. In human endothelial cells GCs will up-regulate GLUT1 

and GLUT3 expression but in trophoblast cells GCs adversely down regulates GLUT1 and 

GLUT3 expression in vitro. 

In summary glucocorticoid overexposure may alter fetal development by altering, in part, 

placental development and function. It is clearly reviewed that placental development, 

proliferation, angiogenesis and glucose transport mechanisms are negatively affected from 

excess maternal glucocorticoid.  
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