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Chapter 8
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1. Introduction

With the growing demand for cost-effective wind energy, optimization of wind turbine
components has been gaining increasing attention for its acknowledged contributions made
to design enhancement, especially in early stages of product development. One of the major
design goals is the accurate determination of structural dynamics and control, which is di‐
rectly related to fatigue life and cost of energy production: a major design goal in exploiting
wind energy. Modern wind turbines are designed with pitch-regulated rotor blades, which
have to be able to turn around their longitudinal axis several times per second in order to
face the rapidly changing wind direction. This fact emphasizes the need to improve the de‐
sign of pitch mechanisms using optimization techniques in order to increase availability of
the turbines and reduce their maintenance overheads. (Florin et al., 2004; Jason et al. 2005)
demonstrated the different tools for performing the analysis of the interaction between the
mechanical system of the wind turbine and the electrical grid as well as the calculation of
the dynamic loads on the turbine structure. In case of stronger winds it is necessary to waste
part of the excess energy of the wind in order to avoid damaging the wind turbine. All wind
turbines are therefore designed with some sort of power control. There are different ways of
doing this safely on modern wind turbines: pitch, active stall and passive stall controlled
wind turbines.

On a pitch controlled wind turbine (Hansen et al., 2005) the turbine's electronic controller
checks the power output of the turbine several times per second. When the power output
becomes  too  high,  it  sends  an  order  to  the  blade  pitch  mechanism which  immediately
pitches (turns) the rotor blades slightly out of the wind. Conversely, the blades are turned
back into the wind whenever the wind drops again. The rotor blades thus have to be able
to turn around their longitudinal axis (to pitch) as shown in Fig. 1. The pitch mechanism
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is usually operated using hydraulics or electric stepper motors. Fig. 2 shows the optimal
operational conditions of a pitch-controlled 2 MW wind turbine. During normal operation
the blades will pitch a fraction of a degree at a time, and the rotor will be turning at the
same time.  The  computer  will  generally  pitch  the  blades  a  few degrees  every  time the
wind changes in order to keep the rotor blades at the optimum angle to maximize output
power for all wind speeds.

Figure 1. Limiting power output using pitch control.

 

(a) (b) 

Figure 2. Operational conditions of a pitch-controlled, 2.0 MW wind turbine (Hansen et al., 2005)

On  the  other  hand,  passive  stall  controlled  wind  turbines  (Leithed  &  Conner,  2002;
Hoffmann, 2002) have the rotor blades bolted onto the hub at a fixed angle. The geome‐
try of the rotor blade profile however has been aerodynamically designed to ensure that
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the  moment  the  wind speed becomes too high;  it  creates  turbulence  on the  side  of  the
rotor  blade which is  not  facing the wind.  This  stall  prevents  the lifting force of  the ro‐
tor blade from acting on the rotor.  The rotor blade of a stall  controlled wind turbine is
twisted  slightly  along  its  longitudinal  axis.  This  is  partly  done  in  order  to  ensure  that
the  rotor  blade  stalls  gradually  rather  than  abruptly  when  the  wind  speed  reaches  its
critical  value.  The  basic  advantage  of  stall  control  is  that  one  avoids  moving  parts  in
the  rotor  itself,  and  a  complex  control  system.  On  the  other  hand,  stall  control  repre‐
sents a very complex aerodynamic design problem, and related design challenges in the
structural  dynamics  of  the  whole  wind  turbine,  e.g.  to  avoid  stall-induced  vibrations.
Around two thirds of  the wind turbines currently being installed in the world are stall
controlled machines.

Larger  wind  turbines  (1-MW  and  up)  are  being  developed  with  an  active  stall  power
control mechanism (Hoffmann, 2002). Technically the active stall machines resemble pitch
controlled machines, since they have pitchable blades. In order to get a reasonably large
torque  at  low  wind  speeds,  the  machines  will  usually  be  programmed  to  pitch  their
blades much like a pitch controlled machine at low wind speeds. One of the advantages
of  active stall  is  that  one can control  the power output  more accurately  than with pas‐
sive stall, so as to avoid overshooting the rated power of the machine at the beginning of
a gust of wind. Another advantage is that the machine can be run almost exactly at rat‐
ed power  at  all  high wind speeds.  A normal  passive  stall  controlled wind turbine  will
usually have a drop in the electrical  power output for higher wind speeds,  as the rotor
blades  go  into  deeper  stall.  As  with  pitch  control  it  is  largely  an  economic  question
whether  it  is  worthwhile  to  pay  for  the  added  complexity  of  the  machine,  when  the
blade pitch mechanism is added. One of the most cost-effective solutions in reducing the
produced vibrations and avoiding pitch-control failures on wind turbines (see Fig.3) is to
separate the natural frequencies of the blade structure from the critical exciting pitching
frequencies (Bindner et al., 1997). This would avoid resonance where large amplitudes of
torsional vibration could severely damage the whole structure.  The frequency-placement
technique (Pritchard & Adelman, 1990; Maalawi, 2007; Maalawi & Badr, 2010) is based on
minimizing an objective function constructed from a weighted sum of the squares of the
differences  between  each  important  frequency  and  its  desired  (target)  value.  Approxi‐
mate values of the target frequencies are usually chosen to be within close ranges; some‐
times  called  frequency-windows;  of  those  corresponding  to  a  reference  baseline  design,
which are adjusted to be far away from the critical exciting frequencies. Direct maximiza‐
tion of  the system natural  frequencies (Shin et  al.,  1988;  Maalawi & EL-Chazly,  2002) is
also favorable for increasing the overall stiffness-to-mass ratio level of the blade structure
being excited. This may further other design objectives such as higher stability and fati‐
gue life and lower cost and noise levels. (Maalawi & Negm 2002) considered the optimal
frequency design of a wind turbine blade in flapping motion. They used an exact power
series solution to determine the exact mode shapes and the aeroelastic stability bounda‐
ries,  where  conspicuous  design  trends  were  given  for  optimum  blade  configurations.
Both primal and dual optimization problems were thoroughly examined.
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Figure 3. Typical blade failure of a three-bladed, 2 MW wind turbine

The scope of this chapter is  not just  to apply optimization techniques and find an opti‐
mum solution for the problem under study. The main aim, however, is to first;  perform
the necessary exact dynamical analysis of a pitch-regulated wind turbine blade by solving
the exact governing differential equation using analytical Bessel's functions. Secondly, the
behavior of the pitching fundamental frequency augmented with the mass equality con‐
straint will be investigated in detail to see how it changes with the selected design varia‐
bles. The associated optimization problem is formulated by considering two forms of the
objective function. The first one is represented by a direct maximization of the fundamen‐
tal frequency, while the second considers minimization of the square of the difference be‐
tween the fundamental  frequency and its  target  or  desired value.  In  both strategies,  an
equality constraint  is  imposed on the total  structural  mass in order not  to violate  other
economic and performance requirements. Design variables encompass the tapering ratio,
blade chord and skin thickness distributions, which are expressed in dimensionless form,
making the formulation valid for a variety of blade configurations. The torsional stiffness
simulating the flexibility of the inboard panel near the rotor hub is also included in the
whole set of design variables. Case studies include the locked and unlocked conditions of
the pitching mechanism, in which the functional behavior of the frequency has been thor‐
oughly examined. The developed exact mathematical model guarantees full separation of
the frequency from the undesired range which resonates with the pitching frequencies. In
fact, the mathematical procedure implemented, combined with exact Bessel's function sol‐
utions, can be beneficial tool, against which the efficiency of approximate methods, such
as finite elements, may be judged. Finally, it is demonstrated that global optimality can be
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achieved from the proposed model and an accurate method for the exact placement of the
system natural frequencies has been deduced.

2. Structural dynamic analysis

The isolated blade structure to be analyzed herein is illustrated in figure 4. The inboard pan‐
el having ignored length relative to the outboard one is considered as a flexible segment
modeled by an equivalent torsion spring. The blade has a polar moment of area I spinning
about its longitudinal axis, x, at an angular displacement B(x,t) relative to the pitch bearing
at the rotor hub. The blade is analyzed considering the state of free torsional vibration about
its elastic axis. The pitching mechanism and the short segment near the hub are assumed to
have a linear torsional spring with stiffness Ks. Applying the classical theory of torsion (Rao,
1994), the governing equation of the motion is cast in the following:

∂
∂ x GJ (x)

∂Β(x, t)
∂ x =ρI (x)

∂2 Β(x, t)
∂ t 2 (1)

which must be satisfied over the interval 0<x<L.

The associated boundary conditions are described as follows:

Case (I): Pitch is active

at blade root (x=0)GJ
∂Β
∂ x |

x=0
=  0 a

at blade tip (x=L)GJ
∂B
∂ x |

x=L
=  0 . b

(2)

Case (II): Pitch is inactive

at blade root (x=0)GJ
∂Β
∂ x |

x=0
=  Ks B(0, t) a

at blade tip (x=L)|x=L =  0 b
(3)

where GJ(x) and ρI(x) represent the torsional stiffness and the mass polar moment of inertia
per unit length, respectively. The twisting angle B(x,t) is assumed to be separable in space
and time, Β(x, t)=β(x).q(t), where the time dependence q(t) is harmonic with circular fre‐

quency ω. Substituting for 
d 2q
dt 2 = −ω 2q, the associated eigenvalue problem can be written di‐

rectly in the form

d
dx GJ (x)

dβ
dx + ρI (x)ω 2β(x)=0 (4)
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Figure 4. Isolated blade in pitching motion.

The boundary conditions can be obtained from Eqs. (2) and (3). Considering a tapered blade
with thin-walled airfoil section (refer to Figures1 & 4), the torsional constant and the second
polar moment of area are directly proportional to h and C3, which are assumed to have the
same linear distribution described by the expressions:

C =Co(1−αx̂) a
h =h o(1−αx̂) b

(5)

x̂ and α are dimensionless parameters defined as:

x̂ =
x

L , α =(1−Δ), Δ =Ct /  C0 (6)

where Δ is the taper ratio of the wind turbine blade.

3. Solution procedures

For thin-walled, cellular blade construction, the total structural mass M, the torsional con‐
stant J(x), and the polar moment of area I(x) can be determined from the expressions:

Advances in Wind Power210



M = f 1 ∫
0

L

Ch (x)dx a

J (x)= f 2C
3h (x) b

I (x) =  f 3C
3h (x) c

(7)

where f1, f2 and f3 are shape factors depend upon the shape of the airfoil section, number of
interior cells and the ratios between the shear web thicknesses and the main wall thickness
h(x). It is convenient first to normalize all variables and parameters with respect to a refer‐
ence design having uniform stiffness and mass distributions with the same material proper‐
ties, airfoil section, and type of construction as well (see Table 1). The dimensionless
expressions for the total mass, torsional constant and polar moment of area are, respectively
given by:

Mass M̂ = ∫
0

1

Ĉĥ d x̂ a

Torsion constant Ĵ = Ĉ3ĥ b
Polar moment of area Î = Ĉ3ĥ c

(8)

Therefore, dividing by the corresponding reference design parameters, the governing differ‐
ential equation takes the following dimensionless form:

β ″−
4α

(1−αx̂) β ′ + ω̂2β =0; 0≤  ≤1 (9)

Quantity Notation Dimensionless expression

Circular frequency ω ω̂ = ω L ρIr / GJ r

Spatial coordinate x x̂=x/L

Airfoil chord C Ĉ = C / Cr

Shear wall thickness h ĥ = h / h r

Structural mass M M̂ = M / M r

Torsion constant J Ĵ = J / J r  ( = Ĉ 3ĥ )

Polar moment of area. I Î = I / Ir  ( = Ĉ 3ĥ )

Stiffness coefficient at root Ks K̂ s =
Ks

(GJ r / L )

Reference parameters: Mr=structural mass, Jr= torsion constant, Ir=2nd polar moment of area, where Cr=Chord length,

hr=wall thickness, blade taper Δ=1.

Table 1. Definition of dimensionless quantities

A Model for Dynamic Optimization of Pitch-Regulated Wind Turbines with Application
http://dx.doi.org/10.5772/53347

211



The boundary conditions to be satisfied are β ′ =0 at both blade root and tip for the unlocked

pitching condition and β ′ =(
K̂ s
Ĵ 0

)β at root, β ′ =0 at tip for the locked condition, where the

prime denotes here differentiation with respect to x̂. Using the transformation x̂ =
1
α −

1
ω̂ y

(α ≠0), Eq. (9) takes the form:

d 2β
d y 2 +

4
y

dβ
dy + β =0; δ ≤ y ≤  γ (10)

which can be further transformed to the standard form of Bessel’s equation by setting

β =ψ / y 3, to get

y 2 d 2ψ
d y 2 + y

dψ
dy + (y 2−

9
4 )ψ =0 (11)

This has the solution

ψ(y)=C1J3/2 + C2J−3/2 (12)

where C1 and C2 are constants of integration and J3/2 and J-3/2 are Bessel’s functions of order k=
±3/2, given by (Edwards & Penney, 2004):

J3/2(y)=
2

π y 3 (siny − ycosy) a

J−3/2(y)= −
2

π y 3 (cosy + ysiny) b

(13)

The exact analytical solution of the associated eigenvalue problem is:

β(y)= A
ycosy −siny

y 3 + B
ysiny + cosy

y 3 (14)

where A and B are constants depend on the imposed boundary conditions. Applying the
boundary conditions, given in Eqs. (2) and (3), and considering only nontrivial solution the
frequency equation can be directly obtained. The final derived exact frequency equations for
both active and inactive pitching motion in appropriate compacted closed forms are sum‐
marized in the following:

Baseline design with rectangular planform (D=1) ω̂tanω̂ = K̂ s / (ĥ oĈ o
3) (15)
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Active pitching tanω̂ =
3ω̂(3 + γδ)

(γδ)2−3γ 2(1 + Δ 2) + 9(1 + γδ)
(16)

Locked pitching mechanism tanω̂ =
(1−3θ)(3ω̂ −γδ 2)−3γ 2δθ

3γδ(1−3θ) + (3−δ 2)(1−3θ + θγ 2)
(17)

The definition of the various quantities in Eqs. (15), (16) and (17) is given in Table (1) and the
appendix of nomenclature.

4. Optimization problem formulation

Attractive goals of designing efficient structures of wind generators include minimization of
structural weight, maximization of the fundamental frequencies (Maalawi & EL-Chazly,
2002; Maalawi & Negm, 2002; Maalawi & Badr, 2010), minimization of total cost per energy
produced, and maximization of output power (Maalawi & Badr, 2003). Another important
consideration is the reduction or control of the vibration level. Vibration can greatly influ‐
ence the commercial acceptance of a wind turbine because of its adverse effects on perform‐
ance, cost, stability, fatigue life and noise. The reduction of vibration can be attained either
by a direct maximization of the natural frequencies or by separating the natural frequencies
of the blade structure from the harmonics of the exciting torque applied from the pitching
mechanism at the hub. This would avoid resonance and large amplitudes of vibration,
which may cause severe damage of the blade. Direct maximization of the natural frequen‐
cies can ensure a simultaneous balanced improvement in both of the overall stiffness level
and the total structural mass. The mass and stiffness distributions are to be tailored in such a
way to maximize the overall stiffness/mass ratio of the vibrating blade. The associated opti‐
mization problems are usually cast in nonlinear mathematical programming form (Vander‐
plaats, 1999). The objective is to minimize a function F(X) of a vector X of design variables,
subject to certain number of constraints Gj(X) ≤ 0, j=1,2,…m.

In the present optimization problem, two alternatives of the objective function form are im‐
plemented and examined. The first one is represented by a direct maximization of the fun‐
damental frequency, which is expressed mathematically as follows:

Maximize  F (X
¯

 )= - ω̂1 (18)

where ω̂1 is the normalized fundamental frequency (see Table1) and X =(Ĉ o, ĥ o, Δ) is the
chosen design variable vector. The second alternative is to minimize the square of the differ‐
ence between the fundamental frequency ω̂1 and its target or desired value ω̂*, i.e.

Minimize  F (X
¯

)= (ω̂ - ω̂*)2 (19)
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Both objectives are subject to the constraints:

Mass constraint: M̂ = ∫
0

1

Ĉ  ĥ  d x̂ = 1 (20)

Side constraints :X
¯L≤X

¯
≤X

¯u (21)

where XL and XU are the lower and upper limiting values imposed on the design variables vec‐
tor X in order not to obtain unrealistic odd-shaped designs in the final optimum solutions. Ap‐
proximate values of the target frequencies are usually chosen to be within close ranges;
sometimes called frequency – windows; of those corresponding to an initial baseline design,
which are adjusted to be far away from the critical exciting pitching frequencies. Several com‐
puter program packages are available now for solving the above design optimization model,
which can be coded to interact with structural and eigenvalue analyses software. Extensive
computer implementation of the models described by Eqs. (18-21) have revealed the fact that
maximization of the fundamental frequency is a much better design criterion. If it happened that
the maximum frequency violates frequency windows, which was found to be a rare situation,
another value of the frequency can be chosen near the global optima, and the frequency equa‐
tions (15-17) can be solved for any one of the unknown design variables instead. Considering the
frequency-placement criterion, it was found that convergence towards the optimum solution,
which is also too sensitive to the selected target frequency, is very slow.

5. Optimization techniques

The above optimization problem described by Eqs.(18-21) may be thought of as a search in
an 3-dimensional space for a point corresponding to the minimum value of the objective
function and such that it lie within the region bounded by the subspaces representing the
constraint functions. Iterative techniques are usually used for solving such optimization
problems in which a series of directed design changes (moves) are made between successive
points in the design space. The new design Xi+1 is obtained from the old one Xi as follows:

X
¯ i+1 = X

¯ i + aiS¯ i (22)

Such that  F (X i+1) <  F (X i) (23)

where the vector Si defines the direction of the move and the scalar quantity αi gives the step
length such that Xi+1 does not violate the imposed constraints, Gj(X). Several optimization
techniques are classified according to the way of selecting the search direction Si. In general,
there are two distinct formulations (Vanderplaats, 1999): the constrained formulation and
the unconstrained formulation. In the former, the constraints are considered as a limiting
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subspace. The method of feasible directions is one of the most powerful methods in this cat‐
egory. In the unconstrained formulation, the constraints are taken into account indirectly by
transforming the original problem into a series of unconstrained problems. A method,
which has a wide applicability in engineering applications, is the penalty function method.

The MATLAB optimization toolbox is a powerful tool that includes many routines for differ‐
ent types of optimization encompassing both unconstrained and constrained minimization
algorithms (Vekataraman, 2009). One of its useful routines is named “fmincon” which imple‐
ments the method of feasible directions in finding the constrained minimum of an objective
function of several variables starting at an initial design. The search direction Sj must satisfy
the two conditions Sj.∇F< 0 and Sj.∇Gj < 0, where ∇F and ∇Gj are the gradient vectors of
the objective and constraint functions, respectively. For checking the constrained minima,
the Kuhn-Tucker test (Vanderplaats, 1999) is applied at the design point XD, which lies on
one or more set of active constraints. The Kuhn-Tucker equations are necessary conditions
for optimality for a constrained optimization problem and their solution forms the basis to
the method of feasible directions.

6. Results and discussions

The developed mathematical model has been implemented for the proper placement of the fre‐
quencies of typical blade structure in free pitching motion. Optimum solutions are obtained by
invoking the MATLAB routine “fmincon” which interacts with the eigenvalue calculation rou‐
tines. The target frequencies, at which the pitching frequencies needed to be close to, depend on
the specific configuration and operating conditions of the wind machine. Various cases of study
are examined including, blades with both locked and unlocked pitching conditions. The main
features and trends in each case are presented and discussed in the following sections.

6.1. Unlocked pitching mechanism condition

Considering first the case of active pitching, figure 5 shows the variation of the first three
resonant frequencies with the tapering ratio. It is seen that the frequencies decrease with in‐
creasing taper. Blades having complete triangular planforms shall have the maximum fre‐
quencies which is favorable from structural design point of view. However, such
configurations violate the requirement of having an efficient aerodynamic surface produc‐
ing the needed mechanical power. Now, in order to place any frequency at its desired value
ω̂ i

*, i=1,2,3, the first step is to calculate the dimensionless frequency ω̂ i, i=1,2,3, for known
properties of the blade material and airfoil section, and then obtain the corresponding value
of the taper ratio from the curves presented in figure 5. The next step is to choose appropri‐
ate value for the dimensionless thickness ĥ o at the blade root and find the corresponding
chord length Ĉ o at the determined taper ratio (see figure 6), which should satisfy the equali‐
ty mass constraint expressed by Eq. (20). It is to be noticed here that the dimensionless wall
thickness ĥ o at root shall be constrained to be greater than a preassigned lower bound,
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which can either be determined from the minimum available sheet thicknesses or from con‐
siderations of wall instability that might happen by local buckling.

Figure 5. Normalized frequencies of free pitching motion (Unlocked blade)

Figure 6. Optimized tapered blades with constant mass (Ĉ o- Level curves, M̂ =1)
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6.2. Condition of locked pitching mechanism

Extensive computer solutions for the frequency equation (17) have indicated the existence of
the frequency level curves in the selected design space. Figures 7, 8 and 9 depicts, respec‐
tively, the developed frequency charts for the design cases of locked pitching mechanism
with K̂ s= 10, 100 and 1000 representing flexible, semi-rigid and rigid blade root. Any other
specific case can be easily obtained by following and applying the same procedures outlined
before in sections 3 and 4. It is seen from the figures that the frequency function is well be‐
haved and continuous in the selected design space (ĥ o, Ĉ o). Actually, these charts represent
the fundamental pitching frequency augmented with the equality mass constraint. There‐
fore, they reveal very clearly how one can place the frequency at its target value without the
penalty of increasing the total mass of the main blade structure. Such charts also can be uti‐
lized if one is seeking to maximize the frequency under equality mass constraint. Maximiza‐
tion of the natural frequencies has the benefit of improving the overall stiffness/mass ratio of
the vibrating structure (Maalawi and Negm, 2002).

Figure 7. Augmented frequency-mass contours (ω̂1) for a blade with flexible blade root: K̂ s = 10 (M̂ =1)

As seen, the developed contours depicted in figure 7 has a banana- shaped profile bounded
by two curved lines; the one from above represents a triangular blade (Δ=0) and the other
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lower one represents a rectangular blade geometry (Δ=1). It is not allowed to penetrate these
two borderlines in order not to violate the imposed mass equality constraints. Each point in‐
side the feasible domain in the middle corresponds to different mass and stiffness distribu‐
tions along the blade span, but the total structural mass is preserved at a constant value
equals to that of the rectangular reference blade. The lower and upper empty regions repre‐
sent, respectively, infeasible blade designs with structural mass less or greater than that of
the baseline design. The global optimal design is too close to the design point {Ĉ o, ĥ o

Δ }={1.202, 2.011, 0.207} with ω̂1,max=2.6472. If it happened that such global optima violates
frequency windows, another value of the frequency can be taken near the optimum point,
and an inverse approach is utilized by solving the frequency equation for any one of the un‐
known design variables instead.

Figure 8. Level curves of ω̂1 for a semi-rigid blade root; K̂ s=100, M̂ =1.

Other cases for semi-rigid and rigid blade root are shown in figures 8 and 9.  It  is  seen
that  the  contour  lines  become  more  flatten  and  parallel  to  the  two  borderlines  as  the
hub stiffness increases. The calculated maximum values of the fundamental pitching fre‐
quency are  4.2161 at  the design point  {1.5,  2,  0}  for  K̂ s=100 and 4.4825 at  the same de‐
sign  point  for  K̂ s=1000.  Such  optimal  blade  designs  having  triangular  planform  are
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favorable  from  structural  point  of  view.  However,  such  configurations  violate  the  re‐
quirement of  having an efficient  aerodynamic surface producing the needed mechanical
power.  In  all,  it  becomes  now  possible  to  choose  the  desired  maximum  frequency,
which  is  far  away  from  the  excitation  frequencies,  and  obtain  the  corresponding  opti‐
mum variables directly from the developed frequency charts.  Actually,  the charts repre‐
sent  the  fundamental  frequency  function  augmented  with  the  imposed  mass  equality
constraint  so  that  the  problem may be treated as  if  it  were  an unconstrained optimiza‐
tion problem. Table 2 summarizes the final optimum solutions showing that good blade
patterns ought to have the lowest possible tapering ratio.  This means that the optimum
design point  is  always very close  to  the lower limiting value imposed on the blade ta‐
pering ratio, i.e. 0.25.

Figure 9. Level curves of ω̂1 for a rigid blade root; K̂ s=1000, M̂ =1.

Figure 10 depicts the variation of the maximum fundamental frequency with the stiffness at
blade root. It is seen that the frequency decreases sharply with increasing the stiffness coeffi‐
cient up to a value of 10, after which it increases in the interval between K̂ s=10 and 100 and
then remain approximately constant at the principal values π/2 and π. The average attained
optimization gain reached a value of about 86.95 % as measured from the reference design.
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Figure 10. Variation of the constrained maximum fundamental frequency ω̂1,max with blade root stiffness K̂ s, (M̂ =1)

Stiffness coefficient

(K̂ s)

Reference rectangular

(Ĉ o,ĥ o , Δ )=(1, 1, 1)
Optimized tapered blade

ω̂1 ω̂1,max (Ĉ o,ĥ o , Δ )optimum

0.0

(Unlocked pitch)
3.1416 (π) 4.4871 (1.4520, 1.5861, 0.2514)

0.01 2.9235 4.3891 (1.7289, 1.3122, 0.2522)

0.1 2.5987 4.1871 (1.5973, 1.4221, 0.2541)

1 1.9546 3.6542 (1.3794, 1.6583, 0.2527)

10 1.2322 2.6467 (1.1651, 1.9546, 0.2504)

100 1.59811 3.2741 (1.2533, 1.7982, 0.2532)

1000 1.5731 3.2435 (1.4523, 1.5822, 0.2531)

∞

(Perfect rigidity)
1.5708 (π/2) 3.2389 (1.4763, 1.5428, 0.2529)

Equality mass constraint : M̂ =1

Inequality side constraints: 0.5 ≤ Ĉ o ≤ 2.0

0.25 ≤ ĥ o ≤ 2.0

0.25 ≤ Δ ≤ 0.75

Table 2. Constrained optimal solutions for different blade root flexibility.

Advances in Wind Power220



6.3. Model validation: Actual operation case

As a part of the ministry of electricity plans for wind energy programs in Egypt, a study is
currently performed concerning the design and manufacture of an upwind, two-bladed,
pitch-controlled, horizontal-axis wind turbine producing 100 KW electrical power output.
The wind turbine will be erected for testing and experimental investigation in the western
coast of the Gulf of Suez near Hurghada, which has the most favorable wind condition with
average wind speeds between 7-12 m/s. The followings are the relevant values of the refer‐
ence blade design parameters:

• Planform: rectangular (taper Δ=1), chord Cr=1.0 m, Elastic length L=12.5 m.

• Cross section: NACA 4415 airfoil, single cell construction.

• Wall thickness hr=5.0x10-3 m.

• Torsion constant Jr=1.536 x 10-4 m4.

• 2nd moment of area Ir=7.462 x 10-4 m4.

• Type of material: E-glass/Epoxy composite.

• Equivalent in-plane shear modulus G=4.7 GPa, mass density ρ=1800 kg/m3

• Total structural mass: Mr=250.0 kg.

• Dimensionless circular frequency:

ω̂r= π for unlocked pitch

= π/2 for locked pitch

∴Dimensional circular frequency ωr = 58.65 ω̂r  rad/sec. (refer to Table 1).

Frequency in HZ: fr=ωr/2π

=29.325 HZ (Unlocked condition)

= 14.6625 HZ (Locked condition)

• Excitation frequency f=20.0 HZ.

The final attained optimal design for the case of active pitch is (see Table 2 and Figure 5):

• The first three frequencies are fi,max= 41.8846, 67.802, 95.548 HZ, which corresponds to the
optimal chord and thickness distributions:

C( x̂ )= 1.452 (1-0.7486 x̂ ) m 

h( x̂ )= 7.931x10-3(1-0.7486 x̂ ) m, 0 ≤ x̂ ≤ 1.

Δ=0.2514.

Other cases with different blade root flexibilities can be obtained using the dimensionless
optimal solutions given in Table 2.
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7. Conclusions

Efficient model for optimizing frequencies of a wind turbine blade in pitching motion has
been presented in this chapter. The mathematical formulation is given with dimensionless
quantities so as to make the model valid for a real-world wind turbine blade of any size and
configuration. It provides exact solutions to the vibration modes of the blade structure in
free pitching motion, against which the efficiency of other numerical methods, such as the
finite element method, may be judged. Design variables include the chord length of the air‐
foil section, shear wall thickness and blade tapering ratio. Useful design charts for either
maximizing the natural frequency or placing it at its desired (target) value has been devel‐
oped for a prescribed total structural mass, and known torsional rigidity near blade root.
The fundamental frequency can be shifted sufficiently from the range which resonates with
the excitation frequencies. In fact the developed frequency charts given in the paper reveal
very clearly how one can place the frequency at its proper value without the penalty of in‐
creasing the total structural mass. Each point inside the chart corresponds to different mass
and stiffness distribution along the span of constant mass blade structure. The given ap‐
proach is also implemented to maximize the frequency under equality mass constraint. If it
happened that the obtained maximum frequency violates frequency windows, another val‐
ue of the frequency can be taken near the optimum point, and an inverse approach can be
applied by solving the frequency equation for any one of the unknown design variables in‐
stead. Other factors under study by the author include the use of material grading concept
to enhance the dynamic performance of a wind turbine blade. Exciting frequencies due to
the turbulent nature of the wind, especially in large wind turbines with different types of
boundary conditions, are also under considerations. Another extension of this work is to op‐
timize the aerodynamic and structural efficiencies of the blade by simultaneously maximiz‐
ing the power coefficient and minimizing vibration level under mass constraint using a
muli-criteria optimization technique.

Appendix

B(x,t) pitch angle about blade elastic axis: Β(x, t)=β(x).q(t),

C chord length of the airfoil section

Ct chord length at blade tip

Co chord length at blade root

G shear modulus of blade material

h skin thickness of the blade

ho skin thickness at blade root

I second polar moment of area
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J torsion constant of the blade cross section

Ks torsional stiffness coefficient at blade root

L effective blade length

q(t) time dependence of blade pitch angle.

t time variable

X design variables vector.

x distance along blade span measured from chord at root

α = (1 – Δ)

β(x) amplitude of the pitch angle

ω circular frequency of pitching motion

ω̂ normalized frequency

γ (= ω̂ / α)

δ (=γΔ)

ρ mass density of blade material

Δ blade taper ratio (Ct/Co)

θ (=αĥ oĈ o
3 / K̂ s)
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