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1. Introduction

Chapter 1

Hybrid laser-arc welding has received increasing interest in both academia and industry in
last decade!?. As shown in Fig. 1, hybrid laser-arc welding is formed by combining laser
beam welding and arc welding. Due to the synergic action of laser beam and welding arc,
hybrid welding offers many advantages over laser welding and arc welding alone3*, such as
high welding speed, deep penetration’, improved weld quality with reduced susceptibility

to pores and cracks®1¢, excellent gap bridging ability'”??, as well as good process stability
and efficiency, as shown in Fig. 2.
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Figure 1. Schematic sketch of a hybrid laser-arc welding process.
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4 Welding Processes

Figure 2. Comparison between (a) a laser weld and (b) a hybrid laser-arc weld in 250 grade mild
steel.

Development of the hybrid laser-arc welding technique can be divided into three stages!.
The concept of hybrid laser welding was first proposed by Steen et al.> 2 2 in the late
seventies. In their studies, a CO:z laser was combined with a tungsten inert gas (TIG) arc for
welding and cutting applications. Their tests showed clear benefits of combining an arc and
a laser beam in the welding process, such as a stabilized arc behavior under the influence of
laser radiation; a dramatic increase in the speed of welding of thin metal sheets; and an
increase in penetration depth compared with laser welding. Japanese researchers continued
Steen’s effort and developed various methods and corresponding devices for laser-arc
welding, cutting, and surface treatment. However, these efforts did not advance this joining
technique into engineering applications particularly because laser welding itself was not yet
an economic and viable joining technique at that time?®. In the second stage of the
development of the hybrid laser-arc welding technique, the observed influence of the arc
column behavior by laser radiation was used to improve the efficiency of arc welding
processes, which leads to the laser-enhanced arc welding technology!. A characteristic
feature of this technology was that only a low-intensity laser beam was needed, i.e., the
required laser power was small compared to the arc power. For TIG welding, Cui and
Decker?2 demonstrated that a low-energy COz laser beam with a power of merely 100 W
could facilitate arc ignition; enhance arc stability; improve weld quality; and increase
welding speed due to a reduced arc size and higher arc amperages. However, despite such
reported improvements of the arc welding process through laser support, there were neither
subsequent extensive investigations of this subject nor known industrial applications of the
laser-enhanced arc welding technology. The third stage of hybrid welding technology
started in the early 1990s with the development of combined welding processes using a
high-power laser beam as the primary and an additional electric arc as the secondary
heating source?-%. At that time, although the continuous wave CO: laser welding process
was already well established in industry, it had some known disadvantages, e.g., high
requirements of edge preparation and clamping; fast solidification leading to material-
dependent pores and cracks; as well as the high investment and operating costs for the laser
equipment. Additionally, some welding applications of highly practical interest could not be
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solved satisfactorily by the laser welding process alone, e.g., joining of tailored blanks in the
automotive engineering; welding of heavy plates in shipbuilding industry; as well as high
speed welding of crack-susceptible materials. In searching for suitable solutions, the hybrid
laser welding was developed into a viable joining technique with significant industrial
acceptance during the last decade.

According to the combination of various heating sources used, hybrid welding can be
generally categorized as: (1) laser-gas tungsten arc (GTA) welding; (2) laser-gas metal arc
(GMA) welding; and (3) laser-plasma welding®. Since laser welding offers deep
penetration, primary heating sources commonly used in hybrid welding are COg,
Nd:YAG, and fiber lasers. The first two types of lasers are well established in practice and
used for various hybrid welding process developments. While the fiber laser is still in
development for industrial applications, it seems to be a future primary heating source for
hybrid welding due to its high beam quality. The secondary heating sources used in
hybrid welding are mainly electric arcs. Dedicated processes can be divided into GMA
welding with consumable electrodes and GTA welding with non-consumable tungsten
electrodes. In GMA welding, the arc is burning between a mechanically supplied wire
electrode and the workpiece. The shielding gas used in GMA welding was found to have
significant effects on arc shape and metal transfer’®3°. Hence, GMA welding can be
subdivided into metal inert-gas (MIG) and metal active-gas (MAG) welding according to
the type of shielding gas used. In GTA welding, a chemically inert gas, such as argon or
helium, is often used. A special form of this is the plasma arc welding (PAW), which
produces a squeezed arc due to a special torch design and results in a more concentrated
arc spot.

In hybrid welding, laser and arc are arranged preferably in a way that they can compensate
and benefit from each other during the welding process, which implies the creation of a
common interaction zone with changed characteristics in comparison to the laser welding
and the arc welding alone. In contrast to this is the arrangement in which laser and arc are
serving as two separate heating sources during the welding process. Several configurations
have been proposed. In a parallel arrangement, there is a distance in either the vertical or
horizontal direction along the path between both heating sources. In a serial arrangement,
the primary and secondary heating sources are moved along the same welding path with a
certain working distance, and the secondary heating source can either lead or follow the
primary heating source!. The first one enables a preheating of the region to be welded. It can
increase the efficiency of the laser welding process because materials to be welded are
locally preheated and energy losses through heat conduction are reduced. In comparison,
the second one often acts like a short-time post-heat treatment of the weld that can change
the weld microstructure favorably. There exists a key difference between parallel and serial
process arrangement. In a serial arrangement, additional energy is dissipated within the
weld seam region, whereas in the parallel arrangement, the heat flow is reduced only across
the weld seam. The option to move the working area temporally enables flexibility in
influencing the cooling rates in order to avoid defects.
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In the hybrid laser-arc welding process, the workpiece is first heated up and melted due
to the laser irradiation. The plasma arc between the consumable electrode and the
workpiece continues to heat up and melt the base metal and the droplets generated at the
electrode tip periodically detach and impinge onto the workpiece. Then a cavity with
large depth-to-width ratio called keyhole was formed in the weld pool under the
dynamical interaction of laser irradiation, plasma arc and filler droplets. An externally
supplied shielding gas provides the protection of molten metal from exposing to the
atmosphere. The successive weld pools create a weld bead and become a part of a welded
joint when solidified. The numbers of process parameters are greatly increased in the
hybrid welding, mainly including laser beam parameters, electric power parameters,
laser-arc interval, electrode diameter, wire feed speed, welding speed and shielding gas.
Bagger and Olsen® reviewed the fundamental phenomena occurring in laser-arc hybrid
welding and the principles for choosing the process parameters. Ribic et al.*” reviewed the
recent advances in hybrid welding with emphases on the physical interactions between
laser and arc, and the effects of the combined laser-arc heat source on the welding
process.

Current understanding of hybrid laser-arc welding is primarily based on experimental
observations. Hybrid laser-arc welding is restricted to specific applications, predominantly
the joining of thick section plain carbon steels. In order to expand the applications of this
joining technique and optimize the processes for its current applications, fundamental
understanding of the transport phenomena and the role of each parameter becomes critical.
Numerical investigations were often carried out for this purpose. Ribic et al.*” developed a
three-dimensional heat transfer and fluid flow model for laser-GTA hybrid welding to
understand the temperature field, cooling rates and mixing in the weld pool. Kong and
Kovacevic® developed a three-dimensional model to simulate the temperature field and
thermally induced stress field in the workpiece during the hybrid laser-GTA process.
Mathematical models have also been developed to simulate the weld pool formation and
flow patterns in hybrid laser-GMA welding by incorporating free surfaces based on the VOF
method. Generally, the typical phenomena in GMA welding such as droplets impingement
into the weld pool, electromagnetic force in the weld pool and the typical phenomena in
laser beaming welding such as keyhole dynamics, inverse Bremsstrahlung absorption and
Fresnel absorption were considered in these models. Surface tension, buoyancy, droplet
impact force and recoil pressure were considered to calculate the melt flow patterns. In the
following, fundamental physics, especially transport phenomena involved in hybrid laser-
arc welding will be elaborated.

2. Fundamentals of hybrid laser-arc welding

Since hybrid laser-arc welding involves laser welding, arc welding and their interactions as
well, complicated physical processes like metal melting and solidification; melt flow;
keyhole plasma formation; arc plasma formation and convection are typically involved,
which results in very complex transport phenomena in this welding process*. As known,
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transport phenomena in welding, such as heat transfer; melt flow; and plasma flow, can
strongly affect both metallurgical structures and mechanical properties of the weld*-. In
the following, transport phenomena in hybrid welding will be discussed and particular
attentions are given to 1) arc plasma formation and its effect on metal transfer and weld pool
dynamics; 2) laser-induced plasma formation and laser-plasma interaction; 3) recoil pressure
and other possible mechanisms contributing to keyhole formation and dynamics; 4) the
interplay among various process parameters; and 5) plasma - filler metal - weld pool
interactions.

Due to the different natures of heat and mass transfer mechanisms in metal and plasma,
different models are developed to study the fundamental physics in hybrid laser-arc
welding. One is for the metal region containing base metal, electrode, droplets, and arc
plasma. The other is for the keyhole region containing laser-induced plasma. There is a free
surface (liquid/vapor interface) separating these two regions. For the metal region,
continuum formation is used to calculate the energy and momentum transport?. For the
keyhole plasma region, laser-plasma interaction and the laser energy absorption mechanism
will be discussed. These two regions are coupled together and the VOF technique is used to
track the interface between these two regions.

2.1. Transport phenomena in metal (electrode, droplets, and workpiece) and arc
plasma

Differential equations governing the conservation of mass, momentum and energy based on
continuum formulation are given below*:

Conservation of mass

g(p)w.(pv):o (1)

where t is the time, pis the density, and V' is the velocity vector.

Conservation of momentum
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0 u Cp’
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1

(4)

where 1, v and w are the velocities in the x-, y- and z-directions, respectively, and Vr is the
relative velocity vector between the liquid phase and the solid phase. J is the current field
vector and B is the magnetic field vector. The subscripts s and [ refer to the solid and
liquid phases, respectively; Subscript 0 represents the reference conditions; p is the
pressure; u is the viscosity; f is the mass fraction; K, the permeability, is a measure of the
ease with which fluid passes through the porous mushy zone; C is the inertial coefficient;
pr is the thermal expansion coefficient; g is the gravitational acceleration; and T is the
temperature.

Conservation of ener gy

ﬁ(ph)JrV(pVh) =V-(£Vh}—V-{£V(hS —h)]—
ot c c
11 5k, = Vh
—V~(p(V-Vs)(hl—h))+i— Rt 2] —
o, 2e” ¢,
where & is the enthalpy, k is the thermal conductivity, and ¢ is the specific heat. The first
two terms on the right-hand side of Eq. (5) represent the net Fourier diffusion flux. The third
term represents the energy flux associated with the relative phase motion. o. is the electrical
conductivity; Sr is the radiation heat loss; kv is the Stefan-Boltzmann constant; and e is the

electronic charge.

The third and fourth terms on the right-hand side of Eqs. (2)-(4) represent the first and
second order drag forces of the flow in the mushy zone. The fifth term represents an
interaction between the solid and the liquid phases due to the relative velocity. The second
term on the right hand side of Eq. (5) represents the net Fourier diffusion flux. The third
term represents the energy flux associated with the relative phase motion. All these
aforementioned terms in this paragraph are zero except in the mushy zone. In addition, the
solid phase is assumed to be stationary (Vs=0).

Conservation of species

IV =DV J=9(0DV (557 )| = (v -V )@

where D is a mass diffusivity and f“ is a mass fraction of constitute. Subscript, ! and s,

represents liquid and solid phase respectively.
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2.2. Transport phenomena in laser induced plasma

The vapor inside the keyhole is modeled as a compressible, inviscid ideal gas. No vapor
flow is assumed in the keyhole and the energy equation is given in the following form*”:

%

o K,

5(pvhv) =V (C_th] +V '(_qr)+ kpl s Ilaser '(1_0(1‘3,1) +
) @)

* z kplIlaser '(1_0{1'3,1)'(1_0[1:1’) '(1_aiB,mr)

mr=1

where ho and pv represent the enthalpy and density of the plasma; ko and co represent the
thermal conductivity and specific heat of the plasma. The first term on the right-hand side of
Eq. (7) represents the heat conduction term. The second term represents the radiation heat
term and gr stands for the radiation heat flux vector. The fourth term represents energy
input from the original laser beam. The last term represents the energy input from multiple
reflections of the laser beam inside the keyhole.

2.3. Electrical potential and magnetic field

Arc plasma from GMA welding will not only provide heat to the base metal, but will also
exert magnetic force on the weld pool. The electromagnetic force can be calculated as
follows*s:

Conservation Of current
V-(o,Vp) =0 (8)

J= -0,V (9)

where ¢ is the electrical potential. According to Ohm's law, the self-induced magnetic field
Byis calculated by the following Ampere's law:

B,="0"
r

o oJ-rdr (10)
where w = 4n x 107 H m?! is the magnetic permeability of free space. Finally, three

components of the electromagnetic force in Egs. (2)-(4) are calculated via

. X=X,
JxB|, ==Byj, —* (11)
_pi¥
JxB| =—Byj. < (12)

]xBL =-B,j (13)
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2.4. Arc plasma and its interaction with metal zone (electrode, droplets, and weld
pool)

In welding, shielding gas is ionized and forms a plasma arc between the electrode and
workpiece. In the arc region, the plasma is assumed to be in local thermodynamic equilibrium
(LTE)*, implying the electron and the heavy particle temperatures are equal. On this basis, the
plasma properties, including enthalpy, specific heat, density, viscosity, thermal conductivity
and electrical conductivity, are determined from an equilibrium composition calculation®. It is
noted that the metal vaporized from the metal surface may influence plasma material
properties, but this effect is omitted in the present study. It is also assumed that the plasma is
optically thin, thus the radiation may be modeled in an approximate manner by defining a
radiation heat loss per unit volume®. The transport phenomena in the arc plasma and the
metal are calculated separately in the corresponding arc domain and metal domain, and the
two domains are coupled through interfacial boundary conditions in each time step.

Heat transfer

At the plasma-electrode interface, there exists an anode sheath region®. In this region, the
mixture of plasma and metal vapor departs from LTE, thus it no longer complies with the
model presented above. Since the sheath region is very thin, it is treated as a special
interface to take into account the thermal effects on the electrode. The energy balance
equation at the surface of the anode is modified to include an additional source term, S0
for the metal region.
kerr(Tarc—Ta)

Sq = - s + Jabw — Graa — evap (14)
The first term on the right-hand side of Eq. (14) is the contribution due to heat conduction from
the plasma to the anode. The symbol ke represents the thermal conductivity taken as the
harmonic mean of the thermal conductivities of the arc plasma and the anode material. 6 is the
length of the anode sheath region. Tur is the arc temperature and Tu is the temperature of the
anode. The second term represents the electron heating associated with the work function of
the anode material. i is the current density at the anode and ¢,, is the work function of the
anode material. The third term g« is the black body radiation loss from the anode surface. The
final term geusp is the heat loss due to the evaporation of electrode materials.

Similar to the anode region, there exists a cathode sheath region between the plasma and the
cathode. However, the physics of the cathode sheath and the energy balance at the
nonthermionic cathode for GMA welding are not well understood®-%. The thermal effect
due to the cathode sheath has been omitted in many models and reasonable results were
obtained®*>*. Thus, the energy balance equation at the cathode surface will only have the
conduction, radiation, and evaporation terms.

Sa = M — Qrad — Yevap (15)
where ke is the effective thermal conductivity at the arc-cathode surface taken as the
harmonic mean of the thermal conductivities of the arc plasma and the cathode material. d is
the length of the cathode sheath. T« is the cathode surface temperature.
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Force balance

The molten part of the metal is subjected to body forces, such as gravity and electromagnetic
force. It is also subjected to surface forces, such as surface tension due to surface curvature,
Marangoni shear stress due to temperature difference, and arc plasma shear stress and arc
pressure at the interface of arc plasma and metal. For cells containing a free surface, surface
tension pressure normal to the free surface can be expressed as””

ps =YK (16)
where v is the surface tension coefficient and « is the free surface curvature.

The temperature-dependent Marangoni shear stress at the free surface in a direction
tangential to the local free surface is given by

_oyar

TMS - OT Os (17)

where s is a vector tangential to the local free surface.

The arc plasma shear stress is calculated at the free surface from the velocities of arc plasma
cells immediately adjacent the metal cells

av
Tps = Hyp (18)

where p is the viscosity of arc plasma.

The arc pressure at the metal surface is obtained from the computational result in the arc
region. The surface forces are included by adding source terms to the momentum equations
according to the CSF (continuum surface force) model”. Using F of the VOF function as the
characteristic function, surface tension pressure, Marangoni shear stress, arc plasma shear
stress, and arc pressure are all transformed to the localized body forces and added to the
momentum transport equations as source terms for the boundary cells. Based on these
assumptions, Hu et al. has successfully simulated the arc and droplet formation and effects
of current density and the type of shielding gas on arc formation in a GMA welding process,
as shown in Fig. 3.

t=20 ms t= 70 ms t=100ms t=114 ms t=116 ms

TR

Figure 3. Arc formation in a GMA welding process.
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2.5. Laser-induced recoil pressure and keyhole dynamics

In the laser welding process, the laser beam is directed to the metal surface, which first melts
the material and produces a small molten pool in the workpiece. The liquid metal is then
heated to high temperatures resulting in large evaporation rates. The rapid evaporation
creates a large recoil pressure on the surface of the molten layer depressing it downwards.
Thus, a cavity with large depth-to-width ration called keyhole is formed. Many investigators
believe that the balance between the recoil pressure and surface tension force determines the
shape of the keyhole. So, understanding the formation and behavior of the recoil pressure
becomes very important for studying the laser welding process. The recoil pressure results
from the rapid evaporation of the liquid metal surface. When the liquid metal on the surface
is heated to its boiling point, evaporation begins to occur. There is a very thin layer called
Knudsen layer adjacent to the liquid surface where the vapor escaping from the liquid
surface is in a state of thermodynamic non-equilibrium, i.e., the vapor molecules do not
have a Maxwellian velocity distribution. This occurs when the equilibrium vapor pressure
(i.e., the saturation pressure) corresponding to the surface temperature is large compared to
the ambient partial pressure of the vapor. Under these conditions the vapor adjacent to the
surface is dominated by recently evaporated material that has not yet experienced the
molecular collisions necessary to establish a Maxiwellian velocity distribution. The Knudsen
layer is estimated to be a few molecular mean free paths thick in order to allow for the
molecular collisions to occur that bring the molecules into a state of translational
equilibrium at the outer edge of the Knudsen layer. The flow field around the Knudsen
layer is shown in Fig. 4.

(

Figure 4. A schematic of the gas dynamic of vapor and air away from a liquid surface at elevated
temperature.
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Anisimov® and Knight® did the early investigations on the Knudsen layer. Here a kinetic
theory approach® is used in the present study. The analysis proceeds by constructing an
approximate molecular velocity distribution adjacent to the liquid surface. Equations
describing the conservation of mass, momentum and energy across the Knudsen layer are
developed in terms of this velocity distribution. This gives Eqgs. (19) and (20), as given
below, for gas temperature, T, and density, p, , outside of the Knudsen layer as functions
of the liquid surface temperature and the corresponding saturation density, o, .
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2

T —1m) -1
K| g L2 g (19)
T, y+12 y+12
Pk TL ( 2 1] m? m:| 1TL|: m?
——= |=||m +—=|e" erfc(m)——= |+ ——= 1-rme™ er c(m) (20)
Psat TK|: 2 f \/; 2TK f

The quantity, m, is closely related to the Mach number at the outer edge of the Knudsen
layer, M, , and is defined as, m=u /2R, Ty =M;2/y, , where y,, and R, are the

ratio of specific heats and the gas constant for the vapor, respectively. The value of m
depends on the gas dynamics of the vapor flow away from the surface. The gas
temperature, pressure and density throughout the vapor region (outside of the Knudsen
layer) are uniform. The contact discontinuity, that is, the boundary between vapor and air,
is an idealization that results due to the neglect of mass diffusion and heat conduction.
The velocity and pressure are equal in these regions, u, =uy; and P, =P;, where the

subscript, S, denotes properties behind the shock wave. Note that, in general, T, #T; and
Px * Ps -

The thermodynamic state and velocity of the air on each side of the shock wave are related
by the Rankine-Hugoniot relations, where the most convenient forms to this application are

given by Egs. (21) and (22). M, is the Mach number in the vapor, My =u, /|2y, R, Ty .

2
P, R, T, +1 R, T +1 R, T
S =14+ yM, YvRyig | Ve M, Wik 4] Ye M, Ty Ry dg 1)

T. P, P P
S __5 1+7_+1_5 / ]/_H_,__S (22)
T, P y—1P, y—=1 P,

o0

The saturation pressure, P, ,, is obtained from Eq. (23), where A, B and C are constants
which depend on the material. This is used to obtain the saturation density,
Poyy =Py / (RVTL ) , assuming an ideal gas.

sat

sat

log(P,y ) =—2- - Blog(T, ) +C (23)

L
Egs. (20)-(23) are solved as a function of T, using an iterative solution method. The vapor

was assumed to be iron in the form of a monatomic gas with a molecular weight of 56, and
7y =1.67 . Quantities of particular interest are the recoil pressure, P,, and rate of energy loss

due to evaporation, g,, and they are given below.
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2
P, =Py + pgig, q, =Hy pyuig (24)

2.6. Laser-plasma interaction and multiple reflections of laser beam in keyhole

In the keyhole, the laser beam is reflected and absorbed multiple times on the keyhole wall.
Each time when the laser beam travels inside the keyhole, it will interact with the keyhole
plasma. Multiple reflections of the laser beam and its absorption mechanism are critical in
determining the energy transfer in laser welding, which are discussed below.

Inverse Bremsstrahlung (IB) absorption

With the continuous heating of the laser beam, the temperature of the metal vapor inside the
keyhole can reach much higher than the metal evaporation temperature, resulting in strong
ionization, which produces keyhole plasma. The resulting plasma absorbs laser power by
the effect of Inverse Bremsstrahlung (IB) absorption. Egs. (25) and (26) define the IB
absorption fraction of laser beam energy in plasma by considering multiple reflection

effects®2:
So
apq =1-exp —_[ kplds (25)
0
g e =1 exp{j kpldsJ (26)
0
here, A is the absorption fraction in plasma due to the original laser beam; gy is the

Sy S
absorption fraction due to the reflected laser beam. Ikplds and I k,ds are, respectively, the
0 0

optical thickness of the laser transportation path for the first incident and multiple
reflections, and ky is the plasma absorption coefficient due to inverse Bremsstrahlung
absorption®:

0.5
nnze®2x m o |-
k,=—= £ 1-exp| —||g (27)
i 6x/3medchw’m? (ZﬂkTe] { ( kT, ﬂ
where Z is the average ionic charge in the plasma, wis the angular frequency of the laser
radiation, &, is the dielectric constant, k is the Boltzmann’s constant, n. and n: are particle

densities of electrons and ions, & is Planck’s constant, m. is the electron mass, T is the
excitation temperature, c is the speed of light, and gis the quantum mechanical Gaunt

factor. For the weakly ionized plasma in the keyhole, the Saha equation®® can be used to
calculate the densities of plasma species:
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15
M1 _ 8e8i (Z”mekTe) exp( E; j (28)

Fresnel absorption

As discussed before, part of the laser energy will be absorbed by keyhole plasma and part of
the laser energy can reach the keyhole wall directly. So, the energy input (gq,,,,) for the

keyhole wall consists of two parts: 1) Fresnel absorption of the incident intensity directly
from the laser beam (I, . ) and 2) Fresnel absorption due to multiple reflections of the beam

inside the keyhole (I

o, mr )

qlaser = Ioz,Fr + Ia,mr (29)
Ia,Fr = Ilaser '(1_aiB,1) 'aFr((ol) (30)
n
Ia,mr = Z Ilaser ’ (1 - aiB,l) ’ (1 - aFr ) ’ (1 - aiB,mr ) ' aPr (wmr) (31)

mr=1

where | is the incoming laser intensity. We assume the laser beam has in the simplest

laser

case a Gaussiam-like distribution:

2
4 2¢2
I laser(x’ y,Z) = IO L_fJ exp[ 2 J (32)
rfO rf

where rf is the beam radius and v is the beam radius at the focal position; Io is the peak
intensity. arr is the Fresnel absorption coefficient and can be defined it in the following
formula®:

oy (p)=1-+ (33)

(1+(1—gcosg0)2 N &% —2&cos @ +2cos’ goJ
2

1+(1+gcosg0)2 &> +2ecosp+2cos’ ¢

where ¢ is the angle of incident light with the normal of keyhole surface, # is the total number

incident light from multiple reflections, I is the unit vector along the laser beam radiation

direction and 7 is unit vector normal to the free surface. ¢is a material-dependent coefficient.

2.7. Radiative heat transfer in laser-induced plasma

When an intense laser beam interacts with metal vapor, a significant amount of the laser
radiation is absorbed by the ionized particles. The radiation absorption and emission by the
vapor plume may strongly couple with the plume hydrodynamics. This coupling, shown on
the right-hand side of Eq. (7), will affect the plasma laser light absorption and radiation
cooling terms. The radiation source term V-(—q, ) is defined via

15
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V-q, =k, (4zl, - [ 1dQ) (34)
4r

where ki, I and 2 denote the Planck mean absorption coefficient, blackbody emission
intensity and solid angle respectively. For the laser-induced plasma inside the keyhole, the
scattering effect is not significant compared with the absorbing and emitting effect. So it will
not lead to large errors to assume the plasma is an absorbing-emitting medium. The
radiation transport equation (RTE) has to be solved for the total directional radiative
intensity [%:

(s-V)I(x,8) =k, (I, - I(1,8)) (35)

where s and r denote a unit vector along the direction of the radiation intensity and the
local position vector. The Planck mean absorption coefficient is defined in the
following®:

05 15 5> ¢—
k Z(ﬁkj (LJ Ze’g ;. (36)

a 27 m, hO'C3 Tv3.5

where ni and 7. represent the particle density of ions and electrons, Tv is the temperature of
the plasma, Z stands for the charge of ions, e is the proton charge and me. is the mass of
electrons.

2.8. Tracking of free surfaces

The algorithm of volume-of-fluid (VOF) is used to track the moving free surface*®. The fluid
configuration is defined by a volume of fluid function, F(x,y,z,t), which is used to track the
location of the free surface. This function represents the volume of fluid per unit volume
and satisfies the following conservation equation:
aF _OF L (v.v)F=0 (37)
dt ot
When averaged over the cells of a computing mesh, the average value of F in a cell is equal
to the fractional volume of the cell occupied by the fluid. A unit value of F means a cell full
of fluid and a zero value indicates a cell containing no fluid. Cells with F values between
zero and one are partially filled with fluid and identified as surface cells.

3. Results and discussions

Based on the aforementioned scientific principles governing the hybrid laser-arc welding
process, Zhou et al #0970 have successfully developed mathematical models to simulate the
transport phenomena like heat and mass transfer, melt flow; energy transport in keyhole
plasma, etc. in both pulsed and three-dimensional moving hybrid laser-MIG welding.
Detailed discussions are given in the following sections.
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3.1. Two-dimensional hybrid laser-MIG welding

In this study, the base metal is assumed to be a stainless steel 304 containing 100 ppm of sulfur.
The laser energy is assumed to be in the Gaussian distribution and the divergence of the laser
beam is negligible because the focus length of the laser beam is less than 3mm. The laser
power and beam radius at the focus are 1800 W and 0.2 mm respectively. The laser power is
turned on at t = 0 s and shut down at t = 15 ms. To simulate the MIG process, droplet is
assumed to be spherical and is generated in a steady manner. The diameter of filler droplet is
assumed to be 0.35 mm, its initial speed is 0.5 m/s right above the weld surface, its initial
temperature is 2400 K, and its generation frequency is 1000 Hz. The droplet is assumed to be
fed into the keyhole from the top. Droplet generation and formation are actually related to
wire size and wire feed speed. Further information can be found in Ref. [13].

Fig. 5 shows the comparison of the cross-sectional view of a hybrid laser-MIG weld and a
laser weld. As shown, there is a "pore" in the laser weld, which is due to the rapid
solidification in laser welding. Detailed discussion on the formation of porosity in the weld
can be found in Ref. [14]. It is also noticed that there are some "undercuts" near the top edge
of the laser weld which is one of the major disadvantages of laser welding. In hybrid laser-
MIG welding, the reason why there is no pore found in the final weld was believed to be
mainly due to the addition of filler metal in the process. The momentum and energy carried
by the filler droplets greatly impact the fluid flow and heat transfer in the weld pool and the
shape of the solidified weld pool as well. The overall effect depends on the droplet size,
droplet generation frequency and droplet generation duration as well. With an optimal
operation window, a weld with desired shape and quality can be achieved in hybrid laser-
MIG welding. In addition, it is found that the additional heat input from the arc in hybrid
laser welding is transferred to the weld pool mainly in the region near the top of the weld,
which makes the top portion of the weld wider than that in laser welding. It is further found
the undercuts frequently observed in laser welding are eliminated and the shape of the final
weld can be modified by the extra filler metal coming from the MIG process. However, the
penetration depth in hybrid welding is noticed to be almost the same as that in laser
welding, which means the penetration depth in hybrid laser-arc welding mainly depends on
the laser power used, but not the arc power.

r{mm) r{mm)

Figure 5. Comparison of weld bead shape between laser welding and hybrid laser-MIG welding.
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3.2. Interaction between filler droplets and weld pool

Fig. 6 shows typical interactions between droplets and weld pool in hybrid laser-arc
welding. The corresponding distributions of temperature, sulfur concentration, and melt
flow velocity are given in Figs. 7, 8 and 9, respectively. Since only the interaction between
filler droplets and weld pool is concerned in this discussion, the keyhole formation process
is ignored which can be found in Ref. [14]. As shown in Fig. 6, after the laser is shut off at t =
15.0 ms, the laser-induced recoil pressure decreases quickly. Under the action of surface
tension and hydrostatic pressure, the molten metal near the keyhole shoulder has tendency
to "fill up" the keyhole. At about t = 17.5 ms, the first droplet impinges onto the liquid metal
at the bottom of the keyhole. The downward momentum carried by the droplet causes the
droplet liquid to flow downward and outward along the keyhole wall, which can be seen
clearly by the sulfur composition shown in Fig. 8. Under the action of hydrostatic force and
surface tension, the liquid along the keyhole wall has a tendency to flow downward along
the keyhole wall. So the upward flow caused by the filler droplet impingement will be
weakened. So when the subsequent droplets falls into the keyhole, the liquid level in the
center of the keyhole rises, as shown in Fig. 6 at t = 21.5 ms. For the first several droplets, the
filler metal mainly diffuses along the longitude direction. Only the first droplet can spread
out along the solid-liquid interface driven by the downward momentum. However, as more
and more droplets impinge into the weld pool, a vortex is created, which helps the filler
metal to diffuse outwards in the latitude direction, as shown in Fig. 8.
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Figure 6. Droplet and weld pool interaction in hybrid laser welding.
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Figure 8. The corresponding sulfur concentration distributions as shown in Fig. 6

19



20 Welding Processes

As shown in Fig. 9, there is an anticlockwise vortex in the middle waist of the keyhole. As
mentioned before, the liquid on the shoulder of the keyhole has a tendency to fill back along
the keyhole wall. When the droplets impinge into the keyhole, the outer liquid layer along
the keyhole wall has the same flow direction as the filler metal. So the flow direction of the
liquid metal here remains downward. Since the liquid is incompressible, the downward
flow will push up some amount of liquid upward. The kinetic energy of the fluid flow in the
center will be transferred into the potential and kinetic energy of the outward flow. So the
downward momentum becomes smaller and smaller and finally it changes its direction. As
shown in Fig. 9 at t = 21.5 ms, the flow direction changes from downward to outward at the
bottom of the vortex and then bounds upward on the solid keyhole wall. During the
upward flow process along the solid-liquid interface of the keyhole wall, the kinetic energy
is transferred into the potential energy and the velocity becomes smaller and smaller. Finally
the flow direction is changed to be inward by the back-filling momentum from the liquid on
the shoulder of the keyhole. As droplets continue to drip into the keyhole, more and more
downward momentum is added into the center of the keyhole, the vortex affected zone is
enlarged and the strength of the vortex is enhanced, which helps the filler metal to distribute
outward along with the vortex flow, as shown in Fig. 8. At t = 24.5 ms, the diffusion zone of
filler metal is much larger compared with that at t = 21.5 ms. Since the latitude diffusion of
filler metal has a close relationship with the vortex, the evolution of the vortex can be
deduced from the shape of the diffusion zone of the filler metal in the final fusion zone.
Moreover, at t = 24.5 ms, the downward velocity of the liquid in the center is quite large, the
mass from droplets is not enough to compensate the downward mass flow in the center of
the keyhole, which leaves the liquid surface decrease here.

After t = 25.0 ms, no droplet will be added into the keyhole. The fluid near the center of the
keyhole is bounced back under the action of hydrostatic force and surface tension force. As
shown at t = 29.0 ms in Fig. 9, the liquid in the keyhole starts to flow inward and downward,
which causes the size of the keyhole to become smaller and smaller. Finally the keyhole will be
filled, as shown at t =49.0 ms in Fig. 6. During the backfill process, the vortex becomes weaker
and weaker. So the diffusion of filler metal is not improved much in the latitude direction,
which can be found by comparing those figures at t = 29.0 ms and at t = 46.0 ms in Fig. 5.9.
Moreover, from the distribution of filler metal at t = 46.0 ms as shown in Fig. 8, it can be
concluded that during the backfill process, majority of the filling metal comes from the upper
shoulder of the keyhole because only a little of the filler metal is located near the center of the
keyhole, which is brought here by the bouncing flow. As shown in Fig. 7, the filler droplet also
brings some heat into the weld pool, which will delay the solidification process. Since the
diffusion of filler in the fusion zone is greatly limited by the solidification, the delayed
solidification will give more time for the filler to diffuse. After the termination of droplets, the
heat input carried by droplets also decreases. Due to heat loss to the base metal through
conduction and to the surroundings through radiation and convection, the size of the molten
pool becomes smaller and smaller as a result of solidification. At t = 46.0 ms, the melt flow in
the weld pool is almost diminished and the temperature distribution is more uniform than
before, as shown in Figs. 9 and 7, respectively. The shape and composition of the weld will not
change much comparing with the completely solidified one.
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Figure 9. The corresponding velocity distributions as shown in Fig. 6.

3.3. Modification of composition by adding filler metal

Since crack sensitivity of the weld is believed to be strongly related with the composition of
the weld pool, adding filler metal with anti-crack elements into the weld pool in hybrid laser
welding can thus improve the weld bead quality. However, the effect depends greatly on
the diffusion process in the weld pool. In the following, the effects of factors such as droplet
size, droplet generation frequency, impingement velocity of the droplet and its lasting
duration on the diffusion process are discussed by changing the condition of one specific
parameter, while keeping the rest of the parameters unchanged. If not specially mentioned,
the welding condition is defined as follows: the droplet diameter is 0.35 mm, its initial
velocity is 0.5 m/s, the generation frequency is 1000 HZ and the duration of droplet feeding
is 10.0 ms which starts at t = 15.0 ms and ends at t =25.0 ms.
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3.3.1. Effect of droplet size on the diffusion process in hybrid laser welding

Three studies are carried out with a droplet size of 0.3 mm, 0.35 mm and 0.4 mm
respectively. As shown in Fig. 10, with the increase of droplet size, the latitude diffusion of
filler metal is enlarged. From the previous discussions on the diffusion process, the latitude
diffusion of the filler metal is found to be closely related to the vortex in the weld pool. The
strength and the affected zone of the vortex depend on the downward momentum carried
by droplets, which is the product of droplet mass and velocity. As the droplet size increases,
the downward momentum increases, which will lead to a stronger vortex. So the diffusion
zone is enlarged outward, especially in the middle depth of the keyhole where the vortex is
located. This is clear shown by comparing those figures for d = 0.30 mm and d = 0.35 mm in
Fig. 10. Meanwhile, larger downward momentum from larger droplet also leads to a strong
bouncing flow near the center of keyhole after termination of droplet feeding, which helps
filler metal to diffuse into the upper layer in the final weld, as shown in Fig. 10 for d = 0.40
mm. Moreover, larger droplet size brings more filler metal into the keyhole. The heat input
carried by droplets also increases, which helps delay the solidification of the fusion zone.
Thus, the filler metal has more time to diffuse into the weld pool before its solidification.
More filler metal also helps to increase the filler concentration in the final weld. However,
larger droplets also lead to some negative effects on the diffusion of filler metal near the
center of the weld zone. After the termination of droplet feeding, the melt surface near the
center of the keyhole will continue to go down due to the larger hydrodynamic pressure
caused by the downward momentum. This will lead to a deep hole there. During the
backfill process of this hole, some metal from the upper part of the keyhole may flow into
the bottom part of this hole. Since the concentration of filler metal in the upper part of
keyhole is very low, it leaves a low diffusion zone of filler metal in the center of the final
weld, as shown in Fig. 10 for d = 0.40 mm.

Figure 10. Effect of droplet size on diffusion process in hybrid laser welding.

3.4. Effect of droplet generation frequency on diffusion of filler metal in fusion
zone

In the hybrid laser welding process, the droplet is generated at a specific frequency that is
controlled by the wire feed rate. The effect of droplet generation frequency on diffusion of
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filler metal in the fusion zone is shown in Fig. 11. In the study, the droplet generation
frequency is 500 HZ, 667 HZ and 1000 HZ, which corresponds to the generation of one
droplet every 2.0 ms, 1.5 ms and 1.0 ms. As shown, the diffusion of filler metal in the weld
pool is improved with the increase of generation frequency. This can be interpreted through
the above analysis on the interaction between the droplets and weld pool. As mentioned
before, the latitude diffusion of filler is mainly through the vortex flow induced by the
impingement of droplets. With the increase of generation frequency, more droplets fall into
the weld pool per unit time, which results in higher downward momentum per unit time. So
the vortex in the weld pool is enhanced, which helps the filler metal diffuse in the latitude
direction. Meanwhile, the total amount of filler metal added into the weld pool also
increases with higher generation frequency, which also helps increase the concentration of
filler metal in the final weld and increase the diffusion time, as mentioned before.
Furthermore, the longitude distribution of filler metal is found to be improved with higher
generation frequency. As shown, in the case f = 500 HZ, there exists a low filler metal
concentration zone in the lower part of the keyhole due to the weak strength of the vortex in
the weld pool and a long delay time between the droplet generation. When frequency
increases to 1000 HZ, the size of this zone is greatly reduced.
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Figure 11. Effect of droplet generation frequency on diffusion process in hybrid laser welding.

3.5. Effect of droplet generation duration on diffusion of filler metal in fusion
zone

In hybrid laser welding, the termination of droplet generation can be achieved through
the control of removal of the filler wire. The effect of controlling the droplet generation
duration on metal diffusion in the weld pool is investigated. As shown in Fig. 12, three
cases are carried out with droplet generation duration at 5.0 ms, 10.0 ms and 15.0 ms,
respectively. For short duration of 5.0 ms, the vortex induced by the downward
momentum of the droplet is not completely developed because of lower downward
momentum, which leads to poor latitude distribution of filler metal. In this case, most of
the filler metal is located in the lower part of the keyhole. During the backfill process, the
bounced flow is not strong enough to push the filler metal upward to the upper part of
the keyhole. The keyhole is filled with the base metal liquid where no filler metal exists.
So the longitude filler diffusion is also poor with a short duration of droplet generation.
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With the increase of the duration length to 10.0 ms, more filler metal will fall into the
keyhole. The vortex in the weld pool is enhanced with the increased downward
momentum which improves the latitude diffusion. Meanwhile, the droplets are
distributed along the entire depth of the keyhole, which leads to better longitude
distribution of filler metal. Moreover, the total amount of filler metal also increases with
the increase of duration, which also helps the diffusion of filler metal in the fusion zone,
as mentioned before. So both the longitude and latitude diffusion of filler metal are
improved, as shown. However, with a further longer droplet generation to 15.0 ms, the
downward momentum is accumulated due to the continuous impingement of the droplets
into the weld pool, which leads to a deep hole in the weld pool. During the backfill
process of this hole, the filler metal is mainly located in the bottom, which cannot bounce
back in time before the base metal fluid from the upper shoulder arrives at the bottom of
this hole, which leaves a low diffusion zone of filler metal in the center of final weld, as
shown in Fig. 12.
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Figure 12. Effect of droplet impingement duration on diffusion process in hybrid laser welding.

3.6. Three-dimensional hybrid laser-MIG welding

Fig. 13 shows a schematic sketch of a three-dimensional hybrid laser-MIG welding. In this
study, the laser power is 2.0 kW and the laser beam radius is 0.2 mm and the focal plane is on
the top surface of the base metal. The laser beam is started at x = 3.75 mm. The laser beam
begins to move after being held for 20.0 ms for the keyhole to reach a certain depth. The
welding speed is 2.5 cm/s and the arc power is 1 kW. Droplet begins to fall onto the base metal
at t =20.0 ms and the radius of the droplet is 0.25 mm. The droplet feeding frequency is 86 Hz
and its initial speed is 30 cm/s. The distance between arc center and laser beam center is 1 mm.
Fig. 14 is the side-view (at Y = 0) of the hybrid laser welding process showing a sequence of a
droplet impinging onto the weld pool at different times. Fig. 15 shows the corresponding
sulfur concentration distribution during the hybrid welding process, indicating the mixing
process in the welding. Fig. 16 shows the corresponding velocity distributions in the weld
pool. As shown in Fig. 15, the filler droplet did not mix well with the base metal in this case.
Most of the droplet is just stacking on the top of the weld coupon and only small amount of
the filler metal is diffused into the base metal near the solid-liquid interface. The poor mixing
may have been caused by the relative long distance between the laser beam and MIG arc
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center. The filler droplet is impinging into the weld pool where only a small amount of liquid
metal exists. Since the temperature of this part of liquid metal is low, due to the quick
solidification process there, the liquid metal there solidifies very quickly. The droplet flowing
downward does not have enough time to flow around and exchange the momentum and mix
with the base metal before it solidifies, as shown in Fig. 16. Therefore, most of the filler metals
are just stacking on top surface of the base metal.
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Figure 13. Schematic sketch of 3-D hybrid laser keyhole welding.
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Figure 14. A typical sequence showing the impinging process and temperature distributions in 3-D
moving hybrid laser keyhole welding.
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Figure 15. The corresponding sulfur concentration distributions as shown in Fig. 14.
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Figure 16. The corresponding velocity distributions as shown in Fig. 14.



Hybrid Laser-Arc Welding 27

There are a lot of process parameters which can affect the mixing of filler droplets into the
weld pool in three-dimensional hybrid laser-arc welding. These include laser-arc distance,
laser and arc powers, welding speed, wire feed speed and filler droplet size, etc. In the
following study, the effect of laser-arc distance on diffusion is conducted by decreasing the
laser-arc distance to 0.6 mm. Fig. 17 shows the mixing process during the welding. As
shown, the droplet is now mixing with the base metal much better than in the previous case.
In this case, since the laser-arc distance is decreased, the filler droplet can impinge into a
region in the weld pool where there exists a lot of liquid metal with strong velocity and high
temperature. This strong velocity liquid metal flow will interact with the impinging
droplets, creating a strong momentum exchange between the droplets and weld pool, which
can force the droplet to flow in all directions. Hence, a better mixing can be achieved. Also,
in this case, there are more hot liquid metals in the droplet-weld pool interaction zone, thus
creating relatively longer time for the droplet to mix and diffuse into the base metal. Hence,
a better mixing of droplets into the weld pool is achieved.
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Figure 17. Diffusion process in 3-D hybrid laser keyhole welding with shorter laser-arc distance.

4. Future trends

Although hybrid laser-arc welding has been under investigation and development and
gaining increasing acceptance in recent years, good understanding of the underlying
physics remains a challenge. For example, the interaction between the laser and the arc has
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been observed to enhance arc stability and push the arc towards the laser keyhole, resulting
in a deeper penetration. However, the origin of this synergistic interaction between the arc
and laser plasma is not well understood. Measuring the distributions of electron
temperatures and densities in the plasma can provide a better understanding of the laser-arc
interaction’. Porosity formation is believed to be strongly related to the keyhole collapse
process. Hence, better understanding of keyhole stability and dynamics through
experimental and theoretical studies would be beneficial. Hybrid welding is known to
produce welds with desirable widths and depths, but the maximum gap tolerance and weld
penetration for various welding conditions have not been quantified. In the future,
advanced mathematical modeling of the heat transfer and fluid flow will enable accurate
predictions of weld profile and cooling rates in the welding process, which is critical in
understanding the evolution of weld microstructures and residual stress formation in welds.
Thus, the hybrid welding process can be optimized to obtain quality welds with no
cracking, no brittle phase and less thermal distortion. Better sensing and process control of
the hybrid welding process would also be helpful in expanding its applications®.
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