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1. Introduction 

The main purpose of the chapter is clarify description of the role of intracellular enzyme-

dehydrogenase in the soil environment, as well as presentation of soil factors, influencing 

an enzymatic activity, by either stimulation or inhibition effect on soil dehydrogenase 

activity (DHA).  

The most common laboratory procedure used for DHA determination is the method 

developed by Casida et al. (1964). According this method, specific dyes such as the 

triphenyltetrazolium chloride (TTC), that can specify the flow of electrons are useful 

indicators of electron transport system (ETS) activity. By the reduction of colorless, water 

soluble substrate (TTC) by dehydrogenases present in the soil environment, an insoluble 

product with red color (triphenylformazan-TPF) is formed. TPF can be easily quantified 

calorimetrically at the range of visible light (485 nm). This test however, reflected positive 

answer only at neutral range of pH and in presence of calcium carbonate for buffering soil 

system. Briefly, if the red colors of soil samples prepared for spectrophotometer analyses are 

more intensive, the measured level of DHA is higher. Consequently, soil samples without 

red colors or those with light red colors are characterized by lower DHA values. 

Determination of DHA in the soil samples gives us large amount of information about 

biological characteristic of the soil. It was confirmed that although oxygen and other 

electron acceptors can be utilized by dehydrogenases, most of the enzyme is produced by 

anaerobic microorganisms. In other words, soil DHA strongly increases under anaerobic 

conditions.  

Several environmental factors, including soil moisture, oxygen availability, oxidation-

reduction potential, pH, organic matter content, depth of the soil profile, temperature, 

season of the year, heavy metal contamination and soil fertilization or pesticide use can 

affect significantly DHA in the soil environment. In the current chapter we would like to 

concentrate on precise description of mentioned factors effect on soil DHA level. Presented 
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results of laboratory experiments were conducted on different soil types, representing 

dominant types of arable soils in Poland, in order to demonstrate changeability and 

variability of DHA at diverse soil environment. 

2. Role of dehydrogenase activity in the soil environment 

There are lots of enzymes in soil the environment, such as Oxidoreductases, Hydrolases, 

Isomerases, Lyases and Ligases. Each of them play key biochemical functions in the overall 

process of material and energy conversion (Gu et al., 2009). 

Soil dehydrogenases (EC 1.1.1.) are the major representatives of the Oxidoreductase 

enzymes class (Gu et al., 2009). Among all enzymes in the soil environment, dehydrogenases 

are one of the most important, and are used as an indicator of overall soil microbial activity 

(Quilchano & Marañon, 2002; Gu et al., 2009; Salazar et al., 2011), because they occur 

intracellular in all living microbial cells (Moeskops et al., 2010; Zhao et al., 2010; Yuan & 

Yue, 2012). Moreover, they are tightly linked with microbial oxidoreduction processes 

(Moeskops et al., 2010). What is important dehydrogenases do not accumulate extracellular 

in the soil.  

Dehydrogenases play a significant role in the biological oxidation of soil organic matter 

(OM) by transferring hydrogen from organic substrates to inorganic acceptors (Zhang et al., 

2010). Many specific dehydrogenases transfer hydrogen to either nicotinamide adenine 

dinucleotide or nicotinamide adenine dinucleotide phosphate (Subhani et al., 2001). 

Throughout mentioned co-enzymes hydrogen atoms are involved in the reductive processes 

of biosynthesis. Due to this fact, the overall DHA of a soil depends on the activities of 

various dehydrogenases, which are fundamental part of the enzyme system of all living 

microorganisms, like enzymes of the respiratory metabolism, the citrate cycle, and N 

metabolism (Subhani et al., 2011). Thus, DHA serves as an indicator of the microbiological 

redox-systems and could be considered a good and adequate measure of microbial oxidative 

activities in soil.  

Brzezińska et al. (2001) found that active dehydrogenases can utilize both O2 and other 

compounds as terminal electron acceptors, although anaerobic microorganisms produce 

most dehydrogenases. Therefore, DHA reflects metabolic ability of the soil and its activity is 

considered to be proportional to the biomass of the microorganisms in soil. However, the 

relationships between an individual biochemical property of soil DHA and the total 

microbial activity is not always obvious, especially in the case of complex systems like soils, 

where the microorganisms and processes involved in the degradation of the organic 

compounds are highly diverse (Salazar et al., 2011). 

3. Soil factors stimulating dehydrogenase activity 

Among different environmental factors with special emphasis on enzymatic activities in the 

soil environment it is possible to screen some, which have positive impact on DHA. The 

most important soil factors stimulating soil DHA are described below.  
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3.1. Soil moisture 

Life in the soil environment, as well as land use is related to alternate cycles of 

humidification and drainage (Wolińska & Bennicelli, 2010). Water availability strongly 

affects on soil microbial activity, community composition (Geisseler et al., 2011), and 

consequently on soil enzymatic activities. As soils dry, the water potential increases, and as 

well microbial activity as intracellular enzyme activity slows down (Geisseler et al., 2011). In 

the case of wet soils, increased moisture could bring into soil solution soluble OM, what 

might be responsible for increase of bacterial population number (Subhani et al., 2001). 

What is important, we should have consciousness that any compound, which alters the 

number or activity of microorganisms, could on the other hand affect on soil biochemical 

properties, and ultimately also on soil fertility and plant growth (Subhani et al., 2001).  

A basic hydrophysical characteristic of soil is water retention, that can be described as a 

dependence between soil water content and soil water potential.  Soil water content in the 

function of the soil water tension is described by pF curve, which provides information about 

the ability for water retaining by the soil pores at any given water tension, or conversely, how 

tightly a water is held between soil aggregates (Wolińska & Bennicelli, 2010).  

The Figure 1 demonstrates diminishing trend for DHA behaviour at different soil moisture, 

described as water potential values. During this experiment gig set of soils (n=315), 

including all representatives among the most typical Polish mineral soils (Eutric Cambisol, 

Eutric Histosol, Eutric Fluvisol, Mollic Gleysol, Orthic Podzol, Rendzina Leptosol, Haplic 

Phaeozem) were investigated. However, each of soil unites displayed DHA reducing trend 

with increase of soil pF value, what means that maximum values of DHA in the soil profiles 

are indirectly connected with maximum soil moisture (pF 0). 

 

Figure 1. DHA (µgTPFg-1min-1) dependence from water potential (pF) at different mineral Polish soil 

types, during reoxidation (n=315), according to Wolińska (2010) 

Statistical relationships between DHA and soil water content, described as pF value in the 

range of pF0 – pF3.2, determined by Wolińska & Bennicelli (2010) are presented in Table 1. 

Founded significant negative relationships between DHA and pF are confirmed by our 

above mentioned observations, that DHA is strongly affected by soil moisture. These strong 
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correlations are undoubtedly connected with the fact that the metabolism and the survival 

of soil microorganisms are also strongly impacted by the availability of water (Uhlirova et 

al., 2005), what is essential for microbial survival and activity. Consequently, low water 

availability can inhibit microbial activity by lowering intracellular water potential, and thus 

by reducing of hydration and enzymes activity (Wall & Heiskanen, 2003). Periods of 

moisture limitation may affect microbial communities through starvation. Thus, the most 

common environmental stress for soil microorganisms is perhaps drought (Wolińska & 

Stępniewska, 2011). 

It was shown in many studies that DHA is significantly influenced by water content and 

dropped with the decrease of soil humidity. For example, Gu et al. (2009) observed higher 

DHA level (even by 90%) in flooded soil, rather than in non-flooded conditions. The higher 

DHA values in flooded conditions agreed also with results presented by Zhao et al. (2010) 

and Weaver et al (2012).  

 

DHA

response 

Depth

(cm) 
pF 

Rendzina Leptosols 
0-20 

50-60 

-0.98*** 

-0.95** 

Eutric Fluvisol 
0-20 

50-60 

-0.97*** 

-0.22 n.s. 

*, **, *** - indicate significance at the 5, 1 and 0.1% level, respectively, n.s. – not significant differences 

Table 1. Statistical significance of differences between DHA and pF described by correlation coefficient 

(R) (95% LSD method, n=15), according to Wolińska & Bennicelli, 2010 

The decline of DHA with an increase of pF value, could be also explained by the fact, that 

flooding of soil with water significantly increased the electron transport system (Wolińska & 

Stępniewska, 2011). Dehydrogenases however, are responsible for electron transport in the 

soil environment. It was also reported that DHA is higher in flooded, anaerobically soils, 

than aerobically incubated soils (Trevors, 1984; Subhani et al., 2001). 

3.2. Soil aeration state (redox potential and oxygen diffusion rate) 

Oxygen diffusion rate (ODR) is usually considered to be the most critical proximal regulator of 

microbial activities (Hutchinson, 1995). Moreover, it is often assumed that a decrease of soil 

water content (higher value of pF), cause a significant (P<0.001) increase of ODR and redox 

potential (Stępniewski et al., 2000; Wolińska & Bennicelli, 2010). The available literature shows 

that low ODR level, ranged below its critical values (35 µg O2 m-2s-1), is favorable and optimal 

for DHA (Stępniewski et al., 2000; Brzezińska et al., 2001; Wolińska & Bennicelli, 2010).  

We confirmed that dehydrogenases are sensitive enzymes, indirectly depended on the soil 

aeration status (Wolińska & Bennicelli, 2010). Based on performed measurements we found, 

that pF constitutes a significant factor, determining ODR in the soil environment, as well as 

its DHA level (P<0.01). The reoxidation processes, occurring in the direction from pF 0 to pF 
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3.2, were the reason of DHA inhibition and stimulation of ODR level in the Rendzina 

Leptosols and Eutric Fluvisol soil samples (Fig. 2). We also stated that soil DHA at pF 3.2 was 

lower by about 60.86%, in comparison to the activity estimated at pF 0. 

 

Figure 2. The response of soil DHA to varied aeration factors (pF and ODR), at surface layers of 

Rendzina Leptosols and Eutric Fluvisol , during reoxidation process (according to Wolińska & Bennicelli, 

2010). Averaged values of three replicates with standard deviations are presented 

The Figure 3. demonstrates that low oxygen diffusion rate (2.8-25 µg O2 m-2 s-1) was optimal 

for DHA, what was also confirmed by correlation coefficient (Wolińska & Bennicelli, 2010; 

Wolińska, 2010). Our results and founding’s are compatible with work of Stępniewski et al. 

(2000), Brzezińska et al. (2001), and Yang et al. (2005). 

Statistical relationships between DHA and ODR, determined for two soil types (Rendzina 

Leptosols and Eutric Fluvisol) by Wolińska & Bennicelli (2010) are presented in Table 2. At 

every case negative correlations DHA-ODR were determined. 
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Figure 3. Relationship between DHA (µgTPFg-1min-1 * 10-6) and ODR (µg m-2 s-1), in surface layer of 

different mineral Polish soil types (n=315, P<0.05), according to Wolińska (2010) 
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DHA

response 

Depth

(cm) 
ODR 

Rendzina Leptosols 
0-20 

50-60 

-0.90** 

-0.84* 

Eutric Fluvisol 
0-20 

50-60 

-0.96** 

-0.16 n.s. 

*, **, *** - indicate significance at the 5, 1 and 0.1% level, respectively, n.s. – not significant differences 

Table 2. Statistical significance of differences between DHA and ODR described by correlation 

coefficient (R) (95% LSD method, n=15) 

Redox potential (Eh) is the next, important, environmental factor, which expresses the 

tendency of an environment to receive or to supply electrons in solution (Stępniewski et al., 

2005). The well-oxygenated soils are characterized by high values of Eh (600-800 mV), in 

quite well-oxygenated soils Eh ~ 500-600 mV, whereas in anaerobic conditions drop of Eh 

below 300 mV or even lower values were observed (Pett-Ridge & Firestone, 2005; 

Stępniewski et al., 2000).  

It is well known, that Eh play a crucial role in regulating microbial activity as well as 

community structure (Pett-Ridge & Firestone, 2005; Song et al., 2008), and affecting on soil 

enzymatic activity, especially DHA. Brzezińska et al. (1998) indicated that among all 

aeration parameters, Eh plays the most important role in determining soil DHA level. 

Similar conclusions were also reported by Włodarczyk et al. (2001) and Menon et al. (2005).  

We founded significant negative relationships between DHA and Eh (Fig. 4) at surface 

layers of Mollic Gleysols, Eutric Fluvisols, Rendzina Leptosols and Haplic Phaeozems, where 

determined correlation coefficients equaled as follows: r=-0.91*, r=-0.43*, r=-0.47** and r=-

0.48** (Wolińska, 2010).  

 

Figure 4. Relationship between soil DHA level and Eh at Mollic Gleysol (n=9, r=-0.91*), according to 

Wolińska (2010) 
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Negative correlations DHA-Eh were also described by Brzezińska et al. (1998), who 

determined r=-0.75***, r=-0.83*** and r=-0.87*** for temperature 10, 20 and 30ºC, respectively, 

and by Stępniewski et al. (2000), and Nyak et al. (2007). 

Mentioned relationships DHA-Eh have significant negative character, what means that 

increase of soil DHA level is indirectly connected with decrease of Eh values, as most of 

microorganisms, which are responsible for DHA prefer rather anaerobic conditions, and 

belong to obligate anaerobes. What is more, anaerobic conditions are consequence of 

flooding and decrease of oxygen availability in soil environment. Competition for oxygen 

limits aerobic processes and the subsequent oxygen deficiency creates local anaerobic 

microsites, which stimulates growth of anaerobic bacteria (Wolińska & Stępniewska, 2011), 

and finally DHA. Also, in the absence of oxygen in the soil a decline of Eh and the reduction 

of oxidized forms (nitrate, Mn4+, Fe2+ and SO42-) takes place. Bohrerova et al. (2004) reported 

that the most common ions forming the redox couples of soil include NO3-/NO2-, Fe3+/Fe2+, 

and Mn4+/Mn2+. In the literature data, it was also assumed that DHA is strongly affected by 

both Fe as Mn presence in the soil (Brzezińska et al., 1998; Włodarczyk et al., 2002). 

3.3. Organic matter content 

Soil organic matter (OM) has important effects not only on soil enzymes activities but first of 

all on microorganisms activities. Soil OM has been considered as an indicator of soil quality 

(similarly like dehydrogenases,) because of its character of nutrient sink and source that can 

enhance soil physical and chemical properties, and also promote biological activity (Salazar 

et al., 2011). Interestingly, not only amount of OM in the soil is important but most of all its 

quality, as OM affects the supply of energy for microbial growth and enzyme production 

(Fontaine et al., 2003).  

It is evident that soil enzymatic activity is strongly connected with soil OM content. The 

higher OM level can provide enough substrate to support higher microbial biomass, hence 

higher enzyme production (Yuan & Yue, 2012). Several authors reported positive correlation 

between DHA and OM content (Chodak & Niklińska, 2010; Moeskops et al., 2010; Romero 

et al., 2010; Zhao et al., 2010; Yuan & Yue, 2012).  

Zhang et al. (2010) indicated also that as well DHA and CaCO3 correlated with OM content, 

and what is more DHA, OM and CaCO3 were correlated with each other in their spatial 

distribution, suggesting that abundant OM content contributed to the formation of 

pedogenic calcium carbonate. 

Salazar et al. (2011) hypothesized that activities of dehydrogenases in different forest 

ecosystems are involved in the carbon cycling, and they also reported their positive 

relationships. Dehydrogenases, are highly associated with microbial biomass (MB), which in 

turn affects on decomposition of OM and the release of  CaCO3  (Zhang et al., 2010). 

We also investigated effect posed by total organic carbon (TOC) and response of DHA in the 

agricultural used Mollic Gleysol, taken from Kosiorów village (SE part of Poland). We 
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determined significant (P<0.0001) correlation between TOC-DHA (Fig. 5). Mentioned strong 

relationship was also confirmed by high value of correlation coefficient (r=0.99***). In our 

laboratory conditions the optimal value of TOC content for reaching maximal values of soil 

DHA was its level above 25%. 

 

Figure 5. Relationship between DHA and TOC content in the Mollic Gleysol (n=9, r=0.99***), according 

to Wolińska & Stępniewska (unpublished data) 

Analogically to our investigations also Koper et al. (2008) found and reported strong 

significant relationships between DHA and organic carbon content in Haplic Podzol soil 

samples, and they described mentioned correlations by r coefficient ranged between 0.56* 

and 0.98*. 

The study of Kumar et al. (1992) indicated that DHA displayed the close, positive 

correlations not only with OM content but also with fungal population abundance in four 

forest stands (two at low and two at higher attitudes).  

High correlation coefficient reported for enzymatic activities and TOC level suggested an 

important role of these enzymes in transformations of basic components of soil OM 

(Wolińska & Stępniewska, 2011). There is in general agreement with previous results 

indicated by Pascual et al. (2000), who found that soils characterized with low microbial and 

biological activity (e.g. low microbial carbon and low respiration rate), also display the 

lowest values of DHA. 

Summarizing, the higher content of OM, the more active the soil microorganisms. 

Microorganisms accelerate the degradation of OM, which is reflected in soil respiration and 

release of carbon dioxide from the rizosphere (Zhang et al., 2010), thus DHA is positively 

correlated with OM content. Similarly, increase of DHA with higher microorganisms 

number was reported (Fontaine et al., 2003). 
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3.4. pH 

The literature data, currently available, referring to the connections between DHA and soil 

pH are still ambiguous.  

Generally, enzyme activities tend to increase with soil pH (Błońska, 2010; Moeskops et al., 

2010) – please put a space before Moeskops. Błońska (2010) determined significant positive 

correlation (r=0.50***) DHA-pH(water) in the pH range 3.67-5.88.  

Fernandez-Calviño et al. (2010) noted significantly positive correlations among soil DHA 

and pH in the range of 4.1 (pHKCl) and 4.9 (pHwater), suggesting that acidity suppressed 

potential enzyme activity.  

Adequately, a study by Levyk et al. (2007) demonstrated that acidic conditions in the pH 

range between 1.5–4.5 resulted with strong DHA inhibition in relation to alkaline soils, 

whereas Ghaly & Mahmoud (2006) noted that under acidic conditions with pH less than 6.5, 

the rate of TTC - specific substrate for DHA, did not decrease. 

According to Frankenberger & Johanson (1982), the weakening of enzymatic activity in soil 

with the increase of soil acidity is the effect of destroying ion and hydrogen bonds in 

enzyme active centre. 

On the other hand, study performed by Włodarczyk et al. (2002) indicated maximum DHA 

at pH 7.1, similarly to the work of Ros et al. (2003), where optimum for DHA was noted for 

pH 7.6-7.8. Also Brzezińska et al. (2001) reported that the best pH conditions for DHA 

ranged between 6.6-7.2.  

Natywa & Selwet (2011) noted positive correlation between DHA and pH in soils under 

maize growth at pH range from 5.17 to 7.27.  

Trevors (1984) concluded that very little DHA is observed below pH 6.6. and above pH 9.5. 

According to Nagatsuka & Furosaka (1980) the optimum range for DHA is contained 

between 7.4–8.5. However we should realize that many heterogeneous soil types might not 

be included in mentioned above range. 

Our investigations, performed on Mollic Gleysol sample (from Kosiorów village) indicated 

however, that DHA also reached high level at lower pH values–between 5.5-5.73 (Fig. 6). 

Significant inhibition of DHA (even by 95%) we scarcely noted when soil pH was above 

5.75.  

It is often assumed that pH may affects soil enzymes level in three different ways (Shuler & 

Kargi, 2010):  

1. by changing in the ionic form of the active sites of the enzymes, which consequently 

affect the enzyme activity and hence the reaction rate, 

2. by altering the three-dimensional shape of enzyme, and 

3. by affecting the affinity of the substrate to the enzyme. 

Thus, the pH factor is considered to be the best predictor of DHA in the soil environment 

(Quilchano & Marañon, 2002; Moeskops et al., 2010).  
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Figure 6. Relationship between DHA and pH values in the Mollic Gleysol (n=18, r=-0.70**), according to 

Wolińska & Stępniewska (unpublished data) 

3.5. Temperature 

Many researchers have studied effect posed by temperature incubation on soil DHA and/or 

on soil microorganisms abundance (Subhani et al., 2001;  Ghaly & Mahmoud, 2006; Trasar-

Cepeda et al., 2007). Taking into account the important fact that DHA is found inside the 

viable soil microbial cells only, its activity must be the highest at a temperature close to 

optimum temperature for microorganisms growth and their development (Wolińska & 

Stępniewska, 2011).  

It is known that, the rate of enzyme catalysis generally increases with increase in 

temperature until the unfavorable temperature, at which enzyme becomes denaturized and 

hence its activity reduces (Wolińska &  Stępniewska, 2011).  

Our investigations were concentrated on investigations of DHA changeability at 

temperature range 5-30ºC, what reflect natural changes of soil temperature during seasons. 

Surface layer (0-20 cm) of Mollic Gleysol was used for experiment. Soil samples were 

incubated at the following temperatures: 5, 10, 20 and 30ºC. DHA was measured after 30 h 

incubations at proper temperature and after ethanol extractions. Absorbance was tested at 

λ=485 nm (UV-1800 Shimadzu). Received results are presented in Fig. 7. 

We found growing, linear trend for DHA with increase of temperature at the range from 5 

to 30ºC, what we described by R2=0.97. The differences between DHA level estimated at 5 

and 30ºC were significant (P<0.01), analogically like between 5 and 20ºC (P<0.05). The lowest 

values of DHA at 5ºC were found, where DHA equaled 1.259 (µg TPF g-1 min-1*10-6), whereas 

the same soil sample incubated at 30ºC reached DHA level of 3.149 (µg TPF g-1 min-1*10-6), 

what was by c.a. 60% higher in relation to DHA level from 5ºC. Quite high DHA level (2.741 

µg TPF g-1 min-1*10-6) was also estimated at 20ºC, where mentioned value was only by 13% 

lower than maximum DHA, from 30ºC.  
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Figure 7. The dependence between DHA and temperature incubation in the Mollic Gleysol, according to 

Wolińska & Stępniewska (unpublished data). Averaged values of three replicates with standard 

deviations are presented 

Casida et al. (1964) indicated that incubation of soil samples at 37ºC increased of soil DHA 

above the value normally observed at lower temperatures.  

Trevors (1984) described positive significant correlation among DHA and temperature in the 

range from 5 to 70ºC and determined r coefficient on the level of 0.99*. Moreover, study by 

Trasar-Cepeda et al. (2007) reported that increased temperatures up to 57-70ºC enhanced the 

product formation in the reaction catalyzed by soil dehydrogenases increased with, 

explained by the fact that specific substrate (TTC), used for DHA determination, is 

chemically reduced at high temperatures.  

Analogically, Subhani et al. (2001) noted positive correlation in soil samples incubated at 10, 

25 and 40ºC (under constant moisture – flooded conditions), what confirmed by r=0.82*.  

As suggested by Cirilli et al. (2012) optimum temperature for soil DHA is 30ºC, what is in 

agreement with our findings. Similarly, Brzezińska et al. (1998) indicated that under 

laboratory conditions DHA demonstrated the highest activity at 28-30ºC. 

3.6. Season of the year  

Seasonal variations in both microbial biomass and soil enzymatic activities reflect the 

combine effects of temperature, moisture, substrate availability and other environmental 

factors. Dehydrogenases belong to the enzymes displaying strong fluctuations in their 

activities caused by season of the year, as they are in close relationships with dynamic of 

microbial activity. 
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Yuan & Yue (2012) stated the highest DHA level in autumn season and the lowest value of 

DHA in winter time. The study performed by Piotrowska & Długosz (2012) indicated that 

DHA level in Luvisols revealed significantly higher values in April (by 96%) than in August, 

probably due to intensive winter wheat growth with an increased secretion of substrates 

such as polysaccharides, organic acids, which may have affected the growth and activity of 

microorganisms. 

Similarly, our investigations demonstrated the highest level of DHA in Eutric Fluvisol 

sample taken in May (0.0087 µg TPF g-1 min-1), than in the same soil type taken in October, 

where DHA was reduced by 42.5 % (Fig. 8). Quite high level of DHA (lower by 14.9% from 

its maximum reaching in May) we also noted in July. Moreover, we did not found 

significant differences (P>0.05) in DHA values during autumn season, where DHA 

remained on similar level equaled 0.000598 (µg TPF g-1 min-1) and 0.0005 (µg TPF g-1 min-1), 

for September and October, respectively. 

 

Figure 8. Effect of the season of the year on soil DHA in the Eutric Fluvisol, according to Wolińska & 

Stępniewska (unpublished data). Averaged values of three replicates with standard deviations are 

presented 

Analogical trend like our observations, related to high Oxidoreductases activity at the time 

form spring to autumn was noted by Januszek (1993). A study by Włodarczyk (2000) 

performed on Orthic Luvisol sample, showed that DHA demonstrated seasonal pattern and 

reached the highest values in September, whereas the lowest in winter time. Similarly effect 

noted Tripathi et al. (2007), who indicated maximum DHA in September and its reduction in 

January. 

Spring season is strongly connected with increase in microbial activity, intensification of 

oxido-reduction reactions and temperature change, what is indirectly impacted with DHA, 
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and is the reason of slight DHA increase during this time. Moreover, taking into account 

that DHA is present inside viable microbial cells, its activity must be the highest at 

temperature 20-30ºC (temperature characteristic for summer and early autumn), close to the 

optimum temperature for microbial growth, activity and development (Wolińska & 

Stępniewska, 2011).  

4. Soil factors inhibiting dehydrogenase activity 

Some of environmental factors have ability to affect negatively on DHA, by reducing its 

activity. In the role of enzyme inhibitors usually different molecules are involved, which by 

binding to enzymes activation sites are the reason of prohibition the enzymes from 

catalyzing its reaction, and finally decrease their activity. The most important soil factors 

inhibiting soil DHA are described below. 

4.1. Depth of the soil profile 

Depth of the soil profile is one of the most known and popular environmental factor 

reducing soil DHA level. It is well known that the highest microorganisms abundance is in 

the surface layer of the soil profile (till to the depth of 30 cm), at the deepest part of the soil 

the number of microbial cells is limited, and consequently also DHA level display 

diminishing trend.  

 

Figure 9. DHA (µgTPFg-1min-1) at different depth of the Mollic Gleysol profile (n=18, P<0.001), according 

to Wolińska founding (unpublished data) 

The confirmation of the above statement might be the Fig. 9, where effect of depth on DHA 

in Mollic Gleysol is presented. The highest level of DHA we noted in surface layer (0-20 cm), 
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whereas at the deepest part of the soil profile (40-60 cm) DHA was reduced by 95%, in 

relation to the surface layer. This trend is undoubtedly connected with presented in 

literature data and mentioned above spatial distribution of soil microorganisms (Agnelli et 

al., 2004; Levyk et al., 2007; Wolińska, 2010), and its preference to inhabiting the surface 

layers, where optimum conditions for its growth and development are guaranteed. 

Our results are in agreement and might be supported by the findings of Xiang et al. (2008), 

who observed that DHA was roughly 4-fold higher in surface (till to 5 cm depth), than in 

subsoil (90-100 cm). It was also suggested by study of Gajda (2008), that values of DHA 

noted in the anthropogenic soil, till depth to 4 cm were by c.a. 30% higher in relation to the 

deeper part of the soil profile.  

Brzezińska (2006), reported even 9-fold increase of DHA in the surface layer of the soil, than 

in the subsurface parts and 25-fold higher enzymatic activity in surface than in subsoil.  

Generally it is possible to state, that both diversity, abundance as distribution of 

microorganisms are more even under oxic (surface layers) conditions, relative to anoxic 

(deeper layers) conditions (Fierer et al., 2003; Wolińska & Stępniewska, 2011). 

4.2. Fertilization and pesticide amendment 

Organic and inorganic fertilizers are commonly used to increase nutrient availability (Macci 

et al., 2012). The balanced fertilization of major elements (N, P, K) for plant nutrient could be 

beneficial for the growth of plant aboveground parts and roots (Chu et al., 2007), and also 

for improvement of soil structure (Macci et al., 2012).  

However, fertilization could affect on the population of soil microorganisms and 

consequently soil enzymatic activities. It is often assumed, that inorganic fertilizers had 

relatively less effect on soil enzymes activity than organic fertilizers (Chu et al., 2007; Xie et 

al., 2009; Romero et al., 2010). Macci et al. (2012) noted, that DHA usually reached higher 

level in the organic treatments.  

As was suggested by Chu et al. (2007) and Xie et al. (2009) long-term balanced fertilization 

greatly increased DHA level in the soil environment, rather than nutrient-deficiency 

fertilization. Zhao et al. (2010) indicated, that soils with higher fertility are more capable of 

maintaining the original biological functions (i.e. have a higher functional stability).  

On the other hand, Moeskops et al. (2010) compared the effect of organic and conventional 

farming practices on soil enzymatic activities. On the organic farms, soil fertility was 

maintained mainly with composted OM, in contrast to conventional farmers, who combined 

fresh manure and chemical fertilizers, and typically applied large amounts of pesticides. As 

a consequence, a strong negative impact of intensive fertilizer and also pesticide use on 

DHA was demonstrated (Moeskops et al., 2010). 

Soil DHA is an indicator of soil quality and microbial activity and also is the most frequently 

used to determining the influence of various pollutants (like pesticides or excessive 

fertilization) on the microbiological quality of soils (Xie et al., 2009; Tejada et al., 2010).  
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Despite the fact that pesticides are important tools in agriculture that help to minimize 

economic losses caused by weeds, insects and pathogens, they also are recognized as a 

source of potential adverse environmental impacts (Tejada et al., 2010). It is often assumed 

that less than 0.3% of the pesticide reaches its target pest, the remaining 99.7% is released to 

the environment, representing a potential hazard for non-target organisms (Muñoz-Leoz et 

al., 2011).   

Stepniewska et al. (2007) noted the relationship between soil DHA and Fonofos (Stauffer 

Chemical Co., Westport, USA) concentration in the Mollic Gleysol. In the investigated 

samples influence of pesticide on soil enzymatic activity started to be observed after one 

week of incubation, but since 14th day to the end of experiment this effect was significant 

and noticeable (Fig. 10). Generally, 1µg g-1 dose of Fonofos was responsible for about 26% 

inhibition of soil DHA, whereas ten times higher factor reduced activity for 46.6% at 21st day 

of incubation time, later fall of enzymatic activity ranged from 22.5% to 30% in relation to 

the control samples was considered.  

 

Figure 10. Dynamic of DHA during incubation at 20ºC (0 - control, 1 - 1µg g-1 Fonofos supplement; 10 - 

10 µg g-1 Fonofos supplement), according to Stępniewska et al., 2007. Averaged values of three 

replicates with standard deviations are presented 

Our results suggest a negative effect of Fonofos on soil DHA in the first stage after 

application (1-7 day), later an initial, almost linear growth of DHA was observed and the 

final day of incubation resulted in significant extension of DHA, presumably because the 

process of Fonofos decomposition in the soil environment was almost completely finished. 

Tejada et al. (2010) indicated that MCPA herbicide rate of 1.5 l ha-1 (manufactures rate 

recommended) was the reason of 39.3% soil DHA inhibition, what suggest that the MCPA 
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caused toxic effect on soil enzymatic activity. A field half-life of MCPA ranged from 14 days 

to 1 month, dependently on soil moisture, pH and microorganisms abundance. The most 

important soil factor in predicting MCPA effect on soil enzyme activities is pH, as at acidic 

conditions persistence of pesticide may last even 5 years, whereas at alkaline pH only 6 

days. Moreover, decrease of soil moisture and reduction of microbial abundance influence 

on elongation of MCPA decomposition process. 

We also studied effect posed by MCPA (Organika Sarzyna, Poland) on soil DHA behavior 

(Fig. 11). The following MCPA dosage were introduced into the soil samples: 0.165; 0.30 

and 3.3 mg MCPA per g of soil. Non-amended with pesticide soil sample was marked as 0 

and used as a control. As a result of realized experiment we found linear inhibition of 

DHA by increasing MCPA doses (R2=0.99). Decrease of DHA level at 3.3. mg g-1 MCPA 

dose by c.a. 38.5%, in comparison to the control sample, was noted. However, registered 

inhibition was not significant (P>0.05). Our conclusions are comparable with results 

presented by Tejada et al. (2010). 

 

Figure 11. Effect of MCPA pesticide on DHA level in Eutric Fluvisol, according to Stępniewska 

founding (unpublished data). Averaged values of three replicates with standard deviations are 

presented 

Other pesticide, which we take into account in our investigations was Glyphosate – 

commonly used by Polish farmers (in the form of RUNDUP), a broad spectrum, non-

selective, systemic and post-emergence herbicide, widely popular in soil cultivation, 

forestry, rights-of-way and aquatic systems to prevent grass and weeds competition with 

plant seedlings (Bennicelli et al., 2009). At low doses it is used as a plant growth regulator.  

Glyphosate (Monsanto Co., USA) is a polar substance that is highly soluble in water (12 g l-1 

at 25°C), and insoluble in most organic solvents. In soil is moderately persistent; its half-life 
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is reported between 1 to 174 days (Bennicelli et al., 2009). Glyphosate in soil is transformed 

to aminomethylphosphonic acid (AMPA), which is non-persistent metabolite. As a effect of 

mentioned transformations and in presence of dehydrogenases (microorganisms), 

Glyphosate give CO2 and H2O (Forlani et al., 1999). Glyphosate degradation in soil is mainly 

the reason of microbial activity, while the chemical decomposition and photolysis play a 

minor role (Bennicelli et al., 2009). As was reported by Zabaloy et al. (2008), Glyphosate, as 

an organophosphonate can be used as a source of P, C or N by either gram-positive as gram 

negative bacteria. 

The purpose of our study was to research the influence of Glyphosate on soil DHA in the 

Mollic Gleysol (from Wieprz river valley), Eutric Fluvisol (from Vistula river valley) and Terric 

Histosol (from Bystrzyca river valley), taken from surface layer (0-20 cm). Soil samples were 

enriched with Glyphosate, as follows: with 1 µg (first combination), and 10 µg (next 

version), and 0 µg (control) of pesticide per 1g of soil. Thus prepared samples were 

incubated in thermostatic chamber at 20ºC. Received results are presented in Fig. 12.  

 

Figure 12. Mean DHA in Terric Histosols, Eutric Fluvisols and Mollic Gleysols, in three combinations of 

Glyphosate doses: 0-control; 1-1µg g-1; 10-10µg g-1 (according to Bennicelli et al., 2009) 

We found that both 1 and 10 µg of Glyphosate additions to soils caused a decrease of DHA, 

dependently on the pesticide doses. The strongest effect of Glyphosate was observed in 

Terric Histosols and Eutric Fluvisol (10 µg g-1 of soil),where reduction of DHA by 33-47%, 

relative to control soils (non-amended with Glyphosate), was noted. The most resistant to  

Glyphosate supplement seemed to be Mollic Gleysol, in 10 µg g-1 of soil dose, where DHA 

dropped by c.a. 24%. 
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Suggested by us inhibition effect, may be supported by founding’s of Zabaloy et al. (2008), 

who in typical Ardiudoll from Argentina observed reduction of DHA for about 48%, as an 

effect of Glyphosate contamination, in comparison to control sample. 

Results, suggesting inhibitory pesticide effect on DHA level are also in agreement with 

those obtained by other plaguicides such as: chlorpyrifos (Kadian et al., 2012), or 

vermicompost (Romero et al., 2010). Moreover, Muñoz-Leoz et al. (2011) noted that DHA 

was inhibited by 14%, as a effect of application 5 mg kg-1 tebuconazole fungicide dosage.  

Conversely, others have found also different results. For example, Tejada et al. (2011) noted 

insignificant (by 10%) growth of DHA, when the Prochloraz fungicide applied to the soil 

increased, possibly because the fungicide is commonly used by bacterial communities, as a 

source of energy and nutrients. Also Andreá et al. (2003), noted that DHA was slight higher 

after month from Glyphosate application. In that case authors reported, that Glyphosate 

stimulated DHA, which means that the herbicide might stimulate the soil oxidative 

processes. 

4.3. Heavy metals presence 

Heavy metals, even though they are natural constituents of soil, could have long-term 

hazardous impacts on the health of soil ecosystems, and adverse influences on soil 

biological processes (Pan & Yu, 2011). Generally, it was assumed that heavy metals can 

reduce enzyme activity by interacting with the enzyme-substrate complex, denaturing the 

enzyme protein or interacting with the protein-active groups, they could also affect the 

synthesis of enzyme microbial cells (Pan & Yu, 2011). 

Xie et al. (2009) noted that Cu of 100 mg kg-1 could suppress DHA significantly, while Cd of 

5 mg kg-1 had relative greater influence on soil microbial diversity, what suggest that the 

effect of each soil pollutant on soil microbes and their enzymatic activities was specific.  On 

the contrary, a study by Fernandez-Calviño et al. (2010) indicated adverse effect of Cu on 

DHA (r=-0.24, P<0.01). Threshold Cu concentrations at which changes in the enzyme 

activities became evident were 150-200 mg total Cu kg-1 and 60-80 mg bioavailable Cu kg-1.  

A study by Pan & Yu (2011) undertaken with brown soil, showed that DHA was 

significantly lower by 37.8% and by 51.1% in Cd and Pb treatments, than in control. 

Moreover, mentioned researchers noted that the effect of Cd and Pb combined on DHA 

were higher, than Cd or Pb alone.  

We also investigated effect posed by Cd (2 and 20 mg kg-1) on soil DHA (Fig. 13). Incubation 

of soil material with mentioned Cd doses lasted 42 days. After that DHA was determined 

via Casida et al. (1964) method.  

We observed that Cd presence at concentration of 2 mg kg-1 had stimulating effect on soil 

DHA level, and we noted increase of DHA by 8.8%, in comparison with control sample 

(without Cd contamination). However, 10-fold higher Cd amendment (20 mg kg-1) 
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consequence with strong DHA inhibition, by as follows: 29.4% and 35%, in relation to 

control and 2 mg kg-1 sample, respectively. Observed inhibition effect was probably caused 

by Cd interaction with enzyme-substrate complex, what resulted with strong decrease of 

DHA level.  

 

Figure 13. Effect of Cd on DHA in Eutric Fluvisol (according to Stępniewska & Wolińska, unpublished 

data) from Cd introduction into the soil. Averaged values of three replicates with standard deviations 

are presented 

Our results, may be supported by findings of Moreno et al. (2001), who by investigating the 

influence of Cd on DHA stated, that Cd content strongly affected on DHA, by reducing its 

activity, and this effect is noticeable even after 3 hours.  

Negative effect of heavy metals on DHA was reported also by Kizilkaya et al. (2004), who 

organized the following order of this inhibition: Cu > Cd > Co. Analogically, strong 

reduction of DHA by Cd contamination was indicated by Welp (1999), who tested the effect 

of Co, As, Hg, Cd, Pb and Cu on soil DHA, and demonstrated that the strongest effect was 

displayed by Hg and Cd.  

Stępniewska & Wolińska (2005) found that the application of trivalent and hexavalent 

chromium compounds had a noticeable negative effect on soil DHA (Fig. 14). The soil 

sample (Haplic Luvisol) was amended with Cr (III), as a CrCl3 and with Cr (VI), as a K2Cr2O7 

in the concentration range from 0 to 20 mg kg−1 and 0-100 µg kg-1, for Cr (III) and Cr (VI), 

respectively. The differences in Cr (III) and Cr (VI) doses resulted from the fact that Cr (VI) 

is highly toxic and much mobile form of Cr, and is considered to cause much stronger effect 

on living organisms, than Cr (III). 
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Figure 14. The variations of DHA in Haplic Luvisol at different Cr (III) and Cr (VI) concentrations 

(according to Stępniewska & Wolińska, 2005). Averaged values of three replicates with standard 

deviations are presented 

Non-amended soil samples were used as a control, and their enzymatic activity were 

estimated as 100%. Effect posed by Cr content was calculated as a decrease of its level, in 

relation to the control value. We found that the lowest values of DHA were the effect of 

increasing Cr(III) and Cr(VI) doses. Haplic Luvisol seemed to be very sensitive on Cr 

contamination. DHA was reduced to 18-20% in the samples enriched in Cr (III) forms. 

Surprisingly, the more dangerous form of Cr (VI) was less harmful for DHA in the Haplic 

Luvisol, because enzymatic activity remained on the level of 84%, with a 1µg kg-1 addition 

and decreased to the value of 14% with the highest supplement of Cr (VI). One possible 

explanation for this fact is that. the more dangerous form of Cr (VI) was reduced to the 

less toxic form of Cr (III) by microorganisms, living in the soil (Stępniewska & Wolińska, 

2005). 

In the same way we investigated effect of Cr forms on Eutric Cambisol (Stępniewska & 

Wolińska, 2004). Received results are shown in Fig. 15. We stated that excess of Cr forms in 

soil disturb homeostatic metabolism of microbes, what reflect their enzymatic activity. DHA 

demonstrated a tendency to decrease with increase of Cr concentration. The lowest content 

of both Cr (III) and Cr (VI), at the level of 2 mg kg-1 reduced soil DHA to 51-66%, 

respectively. But at the same time the highest Cr (III) and Cr (VI) supplement at the level of 

20 mg kg-1 limited DHA to 6-15%, in relation to the control.  

Inhibition of DHA by applied Cr compounds was also reported by Wyszkowska et al. 

(2001), who noted that decrease of enzymatic activity in soil should be considered as very 

unfavourable in terms of soil fertility, because soils of good quality and high content of soil 

OM show high enzymatic activity. 

The decrease of soil DHA by several metallic elements (Al, Be, Cu, U) was also discussed by 

Antunes et al. (2011), whereas a study by Nowak et al. (2002) found that DHA decreased by 

up to 85% at 5 mM selenic acid (IV) presence. 

B
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Figure 15. The variations of DHA in Eutric Cambisol at different Cr (III) and Cr (VI) concentrations 

(according to Stępniewska & Wolińska, 2004). Averaged values of three replicates with standard 

deviations are presented 

5. Conclusions 

Soil is a part of the terrestrial compartment, and supports all terrestrial life forms. Thus, 

without proper soil protection policies, numerous problems may arise, like reduction of soil 

fertility, erosion, groundwater contamination, insufficient water holding capacity and loss of 

biodiversity. To asses soil quality, it is essential to measure all potential changes in 

biological soil properties, because they are highly sensitive to any environmental 

perturbations and stresses. A usual approach to diagnose soil quality, is to use a soil 

microbial indicators, which are very sensitive and respond quickly to environmental 

alterations.  

Among different soil indicators, DHA is one of the most adequate, important and one of the 

most sensitive bioindicators, relating to soil quality and fertility. Moreover, their routine 

measurement is simple and low-cost under laboratory condition. However, we should not 

remind about limitations, resulting from laboratory conditions, when we are able to 

measure and estimate only potential DHA, similarly like we are able to cultivate only small 

percentage of soil microorganisms, on artificial media.  

Soil enzymes are strongly associated with microorganisms. Soil enzymatic activity plays an 

important role in catalyzing reactions indispensable in life processes of soil microorganisms, 

decomposition of organic residues, circulation of nutrients, as well as forming organic 

matter and soil structure. Thus, it is possible to say that without proper soil enzymes 

system, soil life processes will be disturbed. 
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DHA is related to quantitative changes in microorganisms populations, as only strictly 

intracellular enzymes can truly reflect microbial activity, because with respect to the 

degradation processes of extracellular soil enzymes, they will be quickly mineralized by 

other enzymes (i.e. proteases), unless they are either adsorbed by clays or immobilized by 

humic molecules. 

It should be also remind, that overall soil DHA level depends most of all from the activities 

of various types of dehydrogenases, which are fundamental part of the enzyme system of all 

living soil microorganisms, i.e. the respiratory metabolism, the citrate cycle, and N 

metabolism.  

Due to this fact, DHA is proposed as the best indicator of the microbiological redox-systems, 

and could be considered as good and adequate parameter of microbial oxidative activities in 

soil. Furthermore, soil DHA is also used as a measure of any soils disruption posed by 

pesticides, heavy metals, or other soils contaminates and improper management practices. 

As DHA is strictly connected with living microbial cells, its activity depends from the same 

environmental factors, which influence on microorganisms abundance, activity and life 

processes. Consequently, when entertaining soil DHA behavior in the soil environment, we 

should be not only limited to DHA, but it is necessity to consider on the most important 

soils factors and conditions, affecting measuring by us DHA level.  

In the presented chapter we described the most important soil parameters, affecting DHA, 

which poses ability either for stimulation or inhibition its activity.  

To sum up the forgoing observations it was demonstrated, that DHA display increasing 

trend under anaerobic conditions, what suggest that the facultative and anaerobic member 

of soil microbial community become more important in soil respiration processes. Thus, soil 

DHA was reported to be negatively correlated with soil water potential, oxygen diffusion 

rate, and redox potential, what means that DHA reached higher values at lower soil water 

potential, lower oxygen diffusion rate and lower redox potential conditions. Analogically, 

negative correlation we also found in the case of soil depth–what was connected with spatial 

stratification of microorganisms abundance and its preference for inhabiting the surface 

layers of the soil profiles. Inhibiting effect on DHA level have also pesticides and soil 

contamination with heavy metals. 

Important parameter affecting soil biological activity is pH. Our investigations 

demonstrated, that optimal pH range for DHA is between 5.5-5.73, what was confirmed by 

correlation coefficient (r=-0.70*).  

Soil DHA depends also from the season of the year, similarly like dynamics of microbial 

activity, and reached the highest level in May, as spring season is strongly connected with 

increase in microbial activity, and intensification of oxido-reduction reactions, what is 

indirectly linked with DHA. 

Positive relationships we noted between DHA and two parameters: TOC and temperature, 

what means that DHA reached higher values at soils with higher TOC content (what is also 
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preferred by soil microorganisms), analogically like increase of temperature to 30°C 

(temperature close to optimum for microorganisms growth and development) resulted in 

DHA stimulation.  

Presented and discussed above results are based on our several years studies, however 

additional investigations are needed and recommended to determine the relative 

contribution of the different environmental effects on soil DHA. However, the discussion 

highlights the strong interactions between the soil environment, soil enzymes 

(dehydrogenases especially) and soil microorganisms.  
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