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1. Introduction 

The level of prosperity of a community is related to its ability to produce goods and 

services. But producing goods and services is strongly related to the use of energy in an 

intelligent way. Energy can be exploited in several forms such as thermal, mechanical and 

electrical (Boldea & Nasar, 2002). Electrical energy, measured in kWh, represents more than 

30% of all used energy and it is on the rise (Boldea & Nasar, 2002). The larger part of 

electrical energy is converted into mechanical energy in electric motors. Among electric 

motors, the induction motor is without doubt the most frequently used electrical motor and 

is a great energy consumer. About 70% of all industrial loads on a specific utility are 

represented by induction motors (Maljkovic, 2001). The vast majority of induction motor 

drives are used for heating, ventilation and air conditioning (Blanusa, 2010; Cunkas & 

Akkaya 2006). 

The design of an induction motor aims to determine the induction motor geometry and all 

data required for manufacturing to satisfy a vector of performance variables together with a 

set of constraints (Boldea & Nasar, 2002). Because induction motors are now a well 

developed technology, there is a wealth of practical knowledge, validated in industry, on 

the relationship between their performance constraints and their physical aspects. 

Moreover, mathematical modeling of induction motors using circuit, field or hybrid models 

provides formulas of performance and constraint variables as functions of design variables 

(Boldea & Nasar, 2002). 

The journey from given design variables to performance and constraints is called analysis, 

while the reverse path is called synthesis. Optimization design refers to ways of doing 

efficient synthesis by repeated analysis such that some single (or multiple) objective 

(performance) function is maximized and/or minimized while all constraints (or part of 

them) are fulfilled (Boldea & Nasar, 2002). The aim of this chapter is to present an optimal 
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design method for induction motors using design of experiments (DOE) and particle swarm 

optimization (PSO) methods.  

The outline of this paper is as follows. The current section is the introduction. Section  2 

introduces and explains the DOE method. Section  3 gives an overview of the PSO method. 

In Section  4 the application of the DOE and PSO to optimize induction motors is explained 

and its results are also presented and discussed in detail. Finally, the conclusions are drawn 

in Section  5. 

2. Design of Experiments (DOE) 

With modern technological advances, the design and optimization of induction motors or 

any other electromechanical devices are becoming exceedingly complicated. As the cost of 

experimentation rises rapidly it is becoming impossible for the analyst, who is already 

constrained by resources and time, to investigate the numerous factors that affect these 

complex processes using trial and error methods (ReliaSoft Corporation, 2008). Computer 

simulations can solve partially this issue. Rather than building actual prototypes engineers 

and analysts can build computer simulation prototypes. However, the process of building, 

verifying, and validating induction motor simulation model can be arduous, but once 

completed, it can be utilized to explore different aspects of the modeled machine. Moreover, 

many simulation practitioners could obtain more information from their analysis if they use 

statistical theories, especially with the use of DOE.  

In this section the DOE method is explained in order to make its use in this chapter 

understandable. The aim here is not to explain the whole method in detail (with all the 

mathematical developments behind), but to present the basics to demonstrate its interesting 

capabilities.  

2.1. Why DOE? 

Compared to one-factor-at-a-time experiments, i.e. only one factor is changed at a time 

while all the other factors remain constant, the DOE technique is much more efficient and 

reliable. Though, the one-factor-at-a-time experiments are easy to understand, they do not 

tell how a factor affects a product or process in the presence of other factors (ReliaSoft 

Corporation, 2008). If the effect of a factor is altered, due to the presence of one or more 

other factors, we say that there is an interaction between these factors. Usually the 

interactions’ effects are more influential than the effect of individual factors (ReliaSoft 

Corporation, 2008). This is because the actual environment of the product or process 

comprises the presence of many factors together instead of isolated occurrences of each 

factor at different times.  

The DOE methodology ensures that all factors and their interactions are systematically 

investigated. Therefore, information obtained from a DOE analysis is much more reliable 

and comprehensive than results from the one-factor-at-a-time experiments that ignore 
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interactions between factors and, therefore, may lead to wrong conclusions (ReliaSoft 

Corporation, 2008). 

Let’s assume, for instance, that we want to optimize an induction motor taking into account, 

for simplicity, only two factors: the length and the external radius. Hence, the length is the 

first factor and is denoted by  while the external radius is the second factor and it is 

denoted by . Each factor can take several values between two limits, i.e. ,  and , . We desire to study the influence of each of these factors on the system 

response or output for example the torque called Y. The classical or traditional approach 

consists of studying the two factors  and	 , separately. First we put  at the average level 

 and study the response of the system when  varies between and  using 

for example 4 steps (experiments) as shown in Fig. 1. Similarly, we repeat the same 

procedure to study the effect of . Accordingly, the total number of tests is 8. However, we 

should ask a paramount question here, are these 8 experiments sufficient to have a good 

knowledge about the system? The simple and direct answer to this question is no. To get a 

better knowledge about the system, we have to mesh the validity domain of the two factors 

and test each node of this mesh as shown in Fig. 2. Thus, 16 experiments are needed for this 

investigation. In this example only two factors are taken into account. Therefore, if for 

example 7 factors are taken into account, the number of tests to be performed rises to 4 = 16384 experiments, which is a highly time and cost consuming process.  

Knowing that it is impossible to reduce the number of values for each factor to less than 2, 

the designer often reduces the number of factors, which leads to incertitude of results. To 

reduce both cost and time, the DOE is used to establish a design experiment with less 

number of tests. The DOE, for example, allows identifying the influence of 7 factors with 2 

points per variable with only 8 or 12 tests rather than 128 tests used by the traditional 

method (Bouchekara, 2011; Uy & Telford, 2009). 

Recently, the DOE technique has been adopted in the design and testing of various 

applications including automotive assembly (Altayib, 2011), computational intelligence 

(Garcia, 2010), bioassay robustness studies (Kutlea, 2010) and many others. 

 

Figure 1. Traditional method of experiments. 
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Figure 2. One experiment at each node of the mesh. 

2.2. Methodology 

The design and analysis of experiments revolves around the understanding of the effects of 

different variables on other variable(s). The dependent variable, in the context of DOE, is 

called the response, and the independent variables are called factors. Experiments are run at 

different values of the factors, called levels. Each run of an experiment involves a 

combination of levels of the investigated factors. The number of runs of an experiment is 

determined by the number of levels being investigated in the experiment (ReliaSoft 

Corporation, 2008). 

For example, if an experiment involving two factors is to be performed, with the first factor 

having  levels and the second having  levels, then ×  combinations can possibly be 

run, and the experiment is an ×  factorial design. If all ×  combinations are run, 

then the experiment is a full factorial. If only some of the ×  combinations are run, then 

the experiment is a fractional factorial. Therefore, in full factorial experiments, all factors 

and their interactions are investigated, whereas in fractional factorial experiments, certain 

interactions are not considered. 

2.3. Mathematical concept 

Assume that  is the response of an experiment and	{ , , , … , } are  factors acting on 

this experiment where each factor has two levels of variation 	and	 . The value of	 , is 

approximated by an algebraic model given in the following equation: = + + +⋯+ +⋯+ +⋯ + … …  (1)

where  are coefficients which represent the effect of factors and their interactions on the 

response of the experiment. 
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2.4. Full factorial design 

As mentioned above, the study of full factorial design consists of exploring all possible 

combinations of the factors considered in the experiment (Kleijnen et al., 2005). Note that the 

design 	means that this experiment concerns a system with  factors with 	levels. 

Usually, two levels of the ’s are used. The use of only two levels implies that the effects are 

monotonic on the response variable, but not necessarily linear (Uy & Telford, 2009). For each 

factor, the two levels are denoted using the "rating Yates” notation by -1 and +1 respectively 

to represent the low and the high levels of each factor. Hence, the number of experiments 

carried out by a full factorial design for k factors with 2 levels is = 2 . For example, Table 1 

shows the design matrix of a full factorial design for 2 factors while, Fig. 3 shows the mesh 

of the experimental field where points correspond to nodes. 

Run Factor Factor Response 

1 -1 -1 

2 -1 +1 

3 +1 -1 

4 +1 +1 

Table 1. Design Matrix for a full factorial design for 2 factors with 2 levels. 

 

Figure 3. Strategy of experimentation; points corresponding to nodes in the mesh of the experimental 

field for a full factorial design for 2 factors with 2 levels. 

2.5. Fractional factorial design 

The advantage of full factorial designs, is their ability to estimate not only the main effects 

of factors, but also all their interactions, i.e. two by two, three by three, up to the 

interaction involving all k factors. However, when the number of factors increases, the use 

of such design leads to a prohibitive number of experiments. The question to be asked 

here is: is it necessary to perform all experiments of the full factorial design to estimate the 

system’s response? In other words, is it necessary to conduct a test at each node of the 

mesh?  

It is not necessary to identify the effect of all interactions because the interactions of order 

≥ 2 (like ) are usually negligible. Therefore, certain runs specified by the full 
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factorial design can be used instead of using all runs. To illustrate this phenomenon, an 

analogy can be made with a Taylor series approximation where the information given by 

each term decreases when its order increases. So, fractional factorial designs can be used 

to estimate factors effect and interactions that influence the experiments more with a 

reduced number of runs (Bouchekara, 2011). Taguchi Tables (Pillet, 1997), or Box 

generators (Demonsant, 1996), can be used to generate the fractional factorial design 

matrix of experiments. 

To illustrate fractional factorial designs let’s take an example. If = 3, the design matrix of 

these three factors is given by Box generators in a way that the third factor is the product of 

the two other factors. The factor  and interaction  are either confused or aliased, and 

there is a confusion of these aliases because only their sums are reachable (Pillet, 1997; 

Costa, 2001).  

Table 2 shows a full factorial design for 3 factors with 2 levels. The number of runs is 2 = 8. 

This number is reduced to 4 using a fractional factorial design as shown in Table 3 where 

the third factor is generated using Box generator for 3 factors given in Table 4. The 

comparison of the 2 designs is shown in Fig. 4.  

 
Run Factor Factor Factor Response 

1 -1 -1 -1 

2 -1 -1 +1 

3 -1 +1 -1 

4 -1 +1 +1 

5 +1 -1 -1 

6 +1 -1 +1 

7 +1 +1 -1 

8 +1 +1 +1 

Table 2. Design Matrix for a full factorial design for 3 factors with 2 levels. 

 

Run Factor Factor Factor Response 

1 -1 -1 +1 

2 -1 +1 -1 

3 +1 -1 -1 

4 +1 +1 +1 

Table 3. Design Matrix for a fractional factorial design for 3 factors with 2 levels. 

 

Resolution Design name Number of Runs Generators

3 23-1 4 = × 	
Table 4. G. Box generator of fractional factorial design for 3 factors. 
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Figure 4. Comparison between the design experimental field of full and fractional factorial designs 

with 3 factors. (a) full factorial design; (b) fractional factorial design 

2.6. Estimation of model coefficients 

The coefficient  of (1) is estimated from the arithmetic average of all observed responses 

and it is given by: 

= = 1
 (2)

where	  is the response observed for the experiment  and  is the total number of 

experiments. 

The effect of a factor  at the level  can be calculated thus, the coefficient associated with 

this effect can be identified using the following equations: = = −  (3)

and 

= 1
 (4)

where  is the response observed for experiment  when  is at level	 ,  is the number 

of experiments when  is at level  and  is the effect of coefficient	 . 

Once the method of how to calculate the coefficients of the model and how to identify the 

existing confusion between these factors has been presented, we can evaluate the 

contributions of contrasts (the sum of confusions) and therefore the most significant factors 

(affecting the response).  

(a) (b)
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In (Demonsant, 1996) the identification of the significant factors has been proposed by 

evaluating the coefficients contribution (or contrasts, for fractional designs) on the model 

response from the normalization of their values compared to the sum of squared responses, 

such as given in the following equations: 

= ( ) [%] (5)

with 

( ) = ( − )  (6) 

=  (7) 

where  is the number of levels (equals to 2 in this case),  is the effect of coefficient	 , and 

 is the contribution of the contrast associated with the coefficient .  

According to (Demonsant, 1996): 

 The contribution given by (5) is significant if it is higher than 5%. 

 The interactions of order higher than two are negligible. 

 If a contrast is negligible, all effects composing this contrast are negligible also. 

 Two significant factors can generate a significant interaction. On the other side, two 

insignificant factors do not generate a significant interaction. 

3. Particle Swarm Optimization 

3.1. Introduction 

PSO (Kennedy & Eberhart, 1995; Kennedy et al., 2001; Clerc, 2006) is an evolutionary 

algorithm for the solution of optimization problems. It belongs to the field of Swarm 

Intelligence and Collective Intelligence and is a sub-field of Computational Intelligence. PSO 

is related to other Swarm Intelligence algorithms such as Ant Colony Optimization and it is 

a baseline algorithm for many variations, too numerous to list (Brownlee, 2011). PSO was 

developed by James Kennedy and Russell Eberhart in 1995 (Kennedy & Eberhart, 1995).  

PSO has similar techniques to traditional stochastic search algorithms, but the difference is 

that PSO is not totally stochastic. PSO can avoid trapping on suboptimal and provide a 

highly adaptive optimal method. Because of fast convergence, PSO has gradually been 

applied in identification of graphics, optimization of clustering, scheduling assignment, 

network optimization and multi-objective optimization. For an analysis of the publications 

on the applications of particle swarm optimization see (Poli, 2008). 



 
Optimization of Induction Motors Using Design of Experiments and Particle Swarm Optimization 189 

3.2. Strategy 

The goal of the algorithm is to have all the particles locate the optima in a multi-

dimensional hyper-volume. This is achieved by assigning initially random positions to all 

particles in the space and small initial random velocities. The algorithm is executed like a 

simulation, advancing the position of each particle in turn based on its velocity, the best 

known global position in the problem space and the best position known to a particle. The 

objective function is sampled after each position update. Over time, through a 

combination of exploration and exploitation of known good positions in the search space, 

the particles cluster or converge together around an optimum, or several optima 

(Brownlee, 2011). 

3.3. Procedure 

The Particle Swarm Optimization algorithm is comprised of a collection of particles that 

move around the search space influenced by their own best past location and the best past 

location of the whole swarm or a close neighbor (Brownlee, 2011). In each iteration a 

particle’s velocity is updated using: 

( + 1) = ( ) + × ( ) × − ( ) + × () × (p – ( ))	 (8)

where ( + 1) is the new velocity for the  particle,  and  are the weighting 

coefficients for the personal best and global best positions respectively, ( ) is the  

particle’s position at time t,  is the  particle’s best known position, and p  is the 

best position known to the swarm. The () function generates a uniformly random 

variable ∈ [0, 1]. 

Variants on this update equation consider best positions within a particles local 

neighborhood at time t. A particle’s position is updated using: 

( + 1) = ( ) + ( )  (9) 

3.4. PSO algorithm 

It is important to mention here that PSO has undergone many changes since its 

introduction in 1995. As researchers have learned about the technique, they have derived 

new versions, developed new applications, and published theoretical studies of the effects 

of the various parameters and aspects of the algorithm. (Poli, 2007) gives a snapshot of 

particle swarming from the authors’ perspective, including variations in the algorithm, 

current and ongoing research, applications and open problems. Algorithm 1 provides a 

pseudocode listing of the Particle Swarm Optimization algorithm for minimizing a cost 

function used in this chapter. 
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Algorithm 1: Pseudocode for PSO (Brownlee, 2011). 

 

According to (Brownlee, 2011): 

 The number of particles should be low, around 20-40 

 The speed a particle should be bounded. 

 The learning factors (biases towards global and personal best positions) should be 

between 0 and 4, typically 2. 

 A local bias (local neighborhood) factor can be introduced where neighbors are 

determined based on Euclidean distance between particle positions. 

 Particles may leave the boundary of the problem space and may be penalized, be 

reflected back into the domain or biased to return back toward a position in the 
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problem domain. Alternatively, a wrapping strategy may be used at the edge of the 

domain creating a loop, torrid or related geometrical structures at the chosen 

dimensionality. 

 An inertia coefficient can be introduced to limit the change in velocity. 

4. Induction motor design: An optimization problem 

Induction motors with power below 100 kW (Fig. 5) constitute a sizable portion of the global 

electric motor markets (Boldea & Nasar, 2002). The induction motor design optimization is a 

nature mixture of art and science. Detailed theory of design is not given in this chapter. Here 

we present what may constitute the main steps of the design methodology. For further 

information, see (Vogt, 1988; Boldea & Nasar, 2002; Murthy, 2008). The suitability of the 

DOE and the PSO techniques in induction motor design optimization will be demonstrated 

in this section. 

 

Figure 5. Low power 3 phase induction motor with cage rotor (Boldea & Nasar, 2002). 

4.1. The algorithm 

The main steps in induction motor design optimization are shown in Fig. 6. 

Step (1): Initialization 

The design process may start with design specifications and assigned values of: rated 

power, nominal voltage, frequency, power factor, type (squirrel Cage or slip-ring), 

connection (star or delta), ventilation, ducts, iron factor, insulation, curves like B/H, 

losses, Carter coefficient, tables like specific magnetic loading, specific electric loading, 

density etc. Then, design constraints for flux densities, current densities are specified. 

After that, the computer program is formulated with imposing max & min limits for rotor 

peripheral speed, length/pole pitch, stator slot-pitch, number of rotor slots.  

Finally, suitable values for certain parameters are assumed and objective functions are 

defined. 
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Figure 6. Flowchart for computer-aided optimal design of 3-ph induction motor. 
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Step (2): Parameter selection 

In this step the parameters to be taken into account in the optimization process are selected. 

The selection of parameters may be chosen by the designer or imposed by the user (for 

specific application for instance). 

Step (3): Parameter screening 

While there are potentially many parameters (factors) that affect the performance (objective 

functions) of the induction motor, some parameters are more important, viz, have a greater 

impact on the performance. The DOE provides a systematic & efficient plan of 

experimentation to compute the effect of factors on the performance of the motor, so that 

several factors can be studied simultaneously (Bouchekara, 2011). As said earlier, the DOE 

technique is an effective tool for maximizing the amount of information obtained from a 

study while minimizing the amount of data to be collected (Bouchekara, 2011). The DOE 

technique is used here to reduce the number of parameters (screening) to be taken into 

account in the optimization process. This goal is achieved by identifying the effect of each 

parameter on the objective function to be optimized. Only significant parameters (with 

contribution higher than 5%) are considered in the optimization step. 

Step (4): Design 

Total design is split into six parts in a proper sequence as shown in Fig. 6. The sequential 

steps for design of each part are briefly describes in the following sub sections. For more 

details see (Murthy, 2008). 

Part I: Design of magnetic frame 

In this part the output coefficient (C0) is calculated by: C0 = 11 × kW× Bav × q × EFF × pf × 10  (10) 

where: kW is the rating power, Bav is the specific magnetic loading, q is the specific electric 

loading, EFF is the efficiency and pf is the power factor. 

Then the rotor volume that is (rotor diameter D)2 × (rotor length L) is computed using the 

following formula: 

D L = kWCO × ns (11)

where: ns is the synchronous speed measured in rps. 

Finally, the flux per pole  is calculated by: 

ϕ = τ × L × Bav10 (12) 

where: τ  is the pole pitch and its is given by: 
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τ = π × DP (13)

Part II: Design of stator winding 

The first step of this part consists of calculating the size of slots using the following 

equations: Slot Width(Ws) = [Zsw × (Tstrip + insS) + insW] (14) Slot Height (Hs) = [Zsh × (Hstrip + insS) + Hw + HL + insH] (15) 

where: Zsw is the width-wise number of conductors, Tstrip is the assuming thickness of 

strip/conductor, insS is the strip insulation thickness, insW is the width-wise insulation, 

Zsh is the number of strips/conductors height-wise in a slot, Hstrip is the height of the 

strip, HL is height of lip, Hw is the height of wedge and insH is the height-wise 

insulation. 

Then, the copper losses and the weight of copper are calculated by: 

Copper Losses (Pcus) = 3 × Iph × Rph (16)

Weight of Copper (Wcus) = Lmt × Tph × 3 × As × 8.9 × 10  (17)

where: Iph is the current per phase, Rph is the resistance at 20°C, Lmt is the mean length of 

turn, Tph represents the turns per phase and As is the area of strip/conductor. 

Finally, the iron losses are calculated by multiplying the coefficient deduced from the curve 

giving the losses in (W/kg) in function of the flux density in (T) by the core weight. 

Part III: Design of Squirrel Cage Rotor 

First, the air gap length is calculated by: 

Air − Gap Length (Lg) = 0.2 + 2 × D × L × 10  (18) 

Then, the rotor diameter is calculated using the following formula: Rotor Diameter (Dr) = D − 2 × Lg (19)

Finally, the copper losses and the rotor weight are calculated using equations (20), (21) and 

(22). Total	Rotor	Copper Loss (Pcur)= Copper Loss in the Bars + Copper Losses in the 2 End Rings	 (20)
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Weight of Rotor Copper (Wcur) = Lb × Sr × Ab × 8.9 × 10  (21)Weight	of Rotor End − Rings (Weue) = π × Dme × 2 × Ae × 8.9 × 10  (22)

where: Lb is the length of bar, Sr is the number of Rotor Slots, Ab is the rotor bar area, Ae 

the area of cross sectional of end ring and Dme is mean diameter of end-ring. 

Part IV: Total ampere turns and magnetizing current 

First, the total ampere turns (ATT) for the motor are calculated using (23). Then, the 

magnetizing current (Im) is calculated using (24). Finally, the no load phase current (I0) and 

the no load power factor (pf0) are calculated using respectively (25) and (26). ATT = ATS + ATR + ATg (23)

Im = P × ATT2 × 1.17 × kW × Tph (24)

I0 = Iw + Im  (25)

pf0 = IwI0  (26)

where: ATS, ATR and ATg are the total ampere turns for the stator, the rotor and the air gap 

and Iw is the Wattful current. 

Part V: Short-circuit current calculation 

In this part the total reactance per phase, short-circuit current, and short-circuit power factor 

are calculated using the following formulas: Total Reactance ph⁄ = Xs + X0 + Xz (27)

Short Circuit Current	(Isc) = VphZ  (28)

Short Circuit pf = RZ (29)

where: Xs is the slot reactance, X0 is the overhang reactance , Xz is the zig-zag reactance, R is 

the resistance and Z is the impedance. 

Part VI: Performance calculation 

In this last part of the design the performance of the induction motor are evaluated. The 

efficiency, the slip, the starting torque, the temperature rise and the total weight per kilo 

watt are calculated using the following formulas: 
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Efficiency (EFF) = kWKW+ Total Losses (30)

Slip	at	Full Load (SFL) = Total Rotor copper loss × Rotor Input × 100 (31)

Starting Torque (Tst) = IscIr × Slip at Full Load (32)

Temperature Rise (Tr) = 0.03 × Total Stator LossesTotal Cooling Area  (33)

kg/kW = Total WeightkW  (34)

where: Isc is the short circuit current and Ir is the equivalent rotor current. 

At the end of step (4) an automatic check is performed. If the design constraints are satisfied 

we move to step (5) otherwise step (4) is restarted with new values of parameters. 

Step (5): Optimization  

In this step the motor’s performances are checked and if found unsatisfactory, the process is 

restarted in step (4) with new values of parameters. The decision is made based on the PSO 

optimization method. 

4.2. Design specifications 

Design calculations are done for a given rating of an induction motor. Standard design 

specifications are:  

 Rated power: P [kW] = 30. 

 Line supply voltage: V [V] = 440. 

 Supply frequency: f [Hz] = 50. 

 Number of phases: 3. 

 Phase connections: delta. 

 Rotor type (squirrel cage or sling-ring): squirrel cage. 

 Insulation class: F;  

 Temperature rise: class B. 

 Protection degree: IP55 – IC411. 

 Environment conditions: standard (no derating). 

 Configuration (vertical or horizontal shaft etc.): horizontal shaft. 

 NEMA class: B. 

4.3. Problem formulation 

A very important problem in the induction motor design is to select the independent 

variables otherwise the problem would have been very much complicated using too many 
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variables (Thanga, 2008). Therefore variables selection is important in the motor design 

optimization. A general nonlinear programming problem can be stated in mathematical 

terms as follows. 

Find X = 	 ( , … . . ) such that ( ) is a minimum or maximum ( )		0, = 1, 2, …  

 is known as objective function which is to be minimized or maximized; ’s are constants 

and ’s are the variables. The following variables and constraints (Thanga, 2008) are 

considered to get optimal values of objective functions. 

4.3.1. Variables 

The variables considered are given in Table 5. 

Name Description 
Minimum 

Value 
Maximum Value Type 

P Number of poles 4 6 Discrete 

CDSW Stator winding current density 3 [A/mm2] 5 [A/mm2] Continuous 

cdb Current density in rotor bar 4 [A/mm2] 6 [A/mm2] Continuous 

Spp Slots/pole/phase 3 4 Discrete 

Tstrip Stator conductor thickness 1 [mm] 2 [mm] Continuous 

Zsw 
Number of conductors width-

wise 
1 2 Discrete 

Table 5. Design optimization parameters with their domains. 

4.3.2. Objective functions 

Five different objective functions are considered while designing the machine using 

optimization algorithm. The objective functions are, 

1. Maximization of efficiency; F (x) = max	(EFF). 
2. Minimization of kg/kW;	F (x) = min	(kg/kW). 
3. Minimization of temperature rise in the stator;	F (x) = min	(Tr). 
4. Minimization of I0/I ratio;	F (x) = min	(I0/I). 
5. Maximization of starting torque; F (x) = max	(Tst). 
4.4. Fractional 2 levels factorial design 

Here, the DOE is applied to analyze the objective functions. The proposed approach uses 

tools of the experimental design method: fractional designs, notably of Box generators to 

estimate the performance of the induction motor. The interest is to save calculation time and 

to find a near global optimum. The saving of time can be substantial because the number of 

simulations needed is significantly reduced.  
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Since six parameters define the shape of the motor, it is advisable to determine the effect of 

each parameter on the objective functions. Thus, it is very important to provide proper 

parameter ranges. The considered parameters are listed in Table 5. There are two types of 

parameters; continuous parameters and discrete parameters. 

4.4.1. Results 

Using two-level full factorial design needs 26=64 runs (simulations) to evaluate objective 

functions. However, using a 26-2 fractional factorial design will significantly reduce the 

number of runs from 64 to 16. The 26-2 design matrix and the simulation results obtained for 

this design are given in Table 6. This design has been generated using Box generators given 

in Table 7. The choice of a 26-2 means that we have a 2 levels design with 6 factors where 2 of 

these factors are generated using the other 4 factors as shown in Table 7. Thus: 

 The factor (5) will be generated using the product of factors (1), (2) & (3). 

 The factor (6) will be generated using the product of factors (2), (3) & (4). 

The contributions of obtained contrasts are given in Table 8. It shows in its first column 

contrasts and in the other columns their contribution or influences on objective functions. 

Keep in mind that a contribution is significant if it is higher than 5% and high order 

interactions (higher than 2) are considered negligible while only interactions of significant 

parameters are also significant.  

 

N P CDSW

[A/mm2] 

Cdb

[A/mm2] 

Spp Tstrip

[mm] 

Zsw EFF Kg/kW Tr

[] 
I0/I Tst 

[pu] 

1 4 3 4 3 1 1 86.09 16.94 69.25 0.30 0.07 

2 4 3 4 4 1 2 88.98 8.07 55.06 0.29 0.42 

3 4 3 6 3 2 2 89.40 7.02 50.15 0.27 0.37 

4 4 3 6 4 2 1 88.46 8.20 55.30 0.29 0.52 

5 4 5 4 3 2 2 89.30 5.94 54.81 0.26 0.30 

6 4 5 4 4 2 1 88.69 6.55 58.44 0.28 0.48 

7 4 5 6 3 1 1 86.34 10.95 69.06 0.28 0.15 

8 4 5 6 4 1 2 88.33 6.17 57.99 0.28 0.70 

9 6 3 4 3 2 1 87.73 9.58 60.22 0.30 0.22 

10 6 3 4 4 2 2 89.35 6.26 51.54 0.39 0.94 

11 6 3 6 3 1 2 87.29 9.04 59.93 0.30 0.32 

12 6 3 6 4 1 1 85.96 11.06 69.10 0.35 0.36 

13 6 5 4 3 1 2 87.38 7.15 64.56 0.29 0.31 

14 6 5 4 4 1 1 86.49 8.19 70.80 0.35 0.42 

15 6 5 6 3 2 1 86.78 7.18 65.09 0.29 0.38 

16 6 5 6 4 2 2 87.99 5.18 58.95 0.40 1.30 

Table 6. Design matrix generated by the 26-2 Box-Wilson fractional factorial design and the simulation 

results. 
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Resolution Design name Number of Runs Generators

4 26-2 16 = × ×  

 = × × 	
Table 7. Box generator of the fractional factorial design 26-2. 

Contrasts EFF kg/kW Tr I0/I Tst 

P 13 2 9 45 7 

CDSW 1 18 8 0 3 

Cdb 3 1 0 0 5 

Spp 4 10 2 25 41 

Tstrip 34 24 36 0 14 

Zsw 38 29 39 0 19 

P  CDSW + Cdb  Tstrip 1 0 1 0 0 

P  cdb + CDSW  Tstrip 2 2 1 0 0 

P  Spp + Tstrip  Zsw 2 5 3 18 1 

P  Tstrip + CDSW  Cdb + Spp  Zsw 1 3 0 4 5 

P  Zsw + Spp  Tstrip 1 3 0 4 5 

CDSW  Spp + Cdb  Zsw 0 1 0 0 1 

Cdb  Spp + CDSW  Zsw 1 2 1 0 0 

Table 8. Contrasts and contribution obtained. 

The application of DOE identifies the effect of each parameter on each objective function. 

We can notice that for the efficiency Zsw, Tsrip, and P are the most significant factors with 

respectively 38% 34% and 13% of contribution on the objective function. Moreover, Fig. 7 

gives more details. When P is low the efficiency is high and vice versa when P is high.  

 

Figure 7. Plot of effects for the efficiency. 
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Contrariwise, when Tstrip and Zsw are low the efficiency is low, while it is high when 

Tstrip and Zsw are high. 

For the objective function kg/kW the most important parameters are respectively Zsw (29%), 

Tstrip (24%), CDSW (18%) and Spp (10%). Fig. 8 shows that when each one of these 

parameters is low the kg/kW is high and inversely when they are high. Furthermore, for this 

objective function there is a significant interaction between some factors ‘P  Spp + Tstrip  

Zsw’ (5%). Note that we have isolated all of the main effects from every 2-factors interaction. 

The two largest effects are Zsw and Tstrip, hence it seems reasonable to attribute this to the 

Tstrip  Zsw interaction. 

 

Figure 8. Plot of effects for kg/kW. 

Concerning the temperature rise we can observe that, Zsw (39%), Tstrip (36%), P(9%) and 

CDSW (8%) are the most significant parameters. On the contrary, no significant interaction 

is discerned. Fig. 9 shows that the temperature rise is low when P and CDSW are low and it  

 

Figure 9. Plot of effects for temperature rise. 
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is high when they are high. Inversely, for Tstrip and Zsw the temperature rise is low when 

they are high. 

For the objective function I0/I the significant parameters are P (45%) and Spp (25)%. 

Furthermore, there is a significant interaction between P and Spp included in the contrast ‘P  

Spp + Tstrip  Zsw’. Fig. 10 shows that I0/I is low when each parameter is low and vise versa. 

 

Figure 10. Plot of effects for I0/I. 

Finally, for the starting torque the most significant parameters are given in this order: Spp 

(4%), Zsw (19%), Tstrip (14%), P (7%) and Cdb (5%). From Fig. 11 we can notice that when  

 

Figure 11. Plot of effects for starting torque. 
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each one of these parameters is low the starting torque is low. Likewise, when these  

parameters are high, the starting torque is high. Furthermore, for this objective function 

there is two significant interaction between some factors ‘P  Tstrip + CDSW  Cdb + Spp  

Zsw’ (5%) and ‘P  Zsw + Spp  Tstrip’ (5%). Note that we have isolated all of the main 

effects from every 2-factor interaction. For the first contrast the two largest effects are Spp 

and Zsw. Thus, it seems reasonable to attribute this to the Spp  Zsw interaction. While, for 

the second contrast the two largest effects are Spp and Tstrip. Hence, it is appropriate to 

attribute this to the Spp  Tstrip interaction. 

4.5. Optimization 

Two optimization approaches can be achieved. The first one is to treat 1 of the 5 objective 

functions (defined in the Objective Function section) at a time. Thus, every time a single 

objective function is taken into account regardless of the 4 others. The second approach is 

to consider a multi objective function where the 5 objective functions are taken into 

account at the same time. The resulted complicated multiple-objective function can be 

converted into a simple and practical single-objective function scalarization. Among 

scalarization methods we can find the weighting method. In this method, the problem is 

posed as follows: 

F = w (35) 

where: = EFF, = −kg ⁄ kW	, = −Tr, = −I0 ⁄ I, = Tst and  is a constant 

indicating the weight (and hence importance) assigned to . By giving a relatively large 

value to  it is possible to favor  over other objective functions. Note that the condition ∑ = 1	can be posed in Eq.(35). 

Nevertheless, since the 5 functions of the multi-objective function have different ranges, for 

instance  varies from 85 to 91 and  varies from 0.07 to 1.3. Thus, the values of these 

functions must be normalized between 0 and 1. The minimum of a given function is equal to 

0 and the maximum is equal to 1. The normalization operation is given by: 

Normalized = Actual − min( )max( ) − min( ) (36)

and (35) becomes: 

F = w (37)

For this chapter we have chosen the first approach i.e. the single objective one.  
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The PSO algorithm is implemented to optimize the design of induction motor whose 

specifications are given above. The results of PSO algorithm for the optimized motor are 

given in the Table 9. The algorithm has returned an acceptable solution every time, which is 

indicated by a good value for objective with no constraint violations. 

 

 

Parameters EFF Kg/KW Tr I0/I Tst 

P 4 4 4 4 6 

CDSW 3 5 3 5 5 

Cdb 4 6 4 6 6 

Spp 4 4 4 3 4 

Tstrip 2 2 2 2 2 

Zsw 2 2 2 2 2 

Existing Motor 89.7 5.36 53.8 0.27 0.5 

Optimized Motor 90.1 5.15 48.5 0.26 1.3 

 

Table 9. Optimum design results for efficiency maximization, minimization of kg/kW, minimization of 

temperature rise, minimization of the ratio I0/I and starting torque maximization. 

According to the results presented in Table 9, when the efficiency of the motor is considered 

as the objective function, we can see that it increased from 89.7 to 90.1 compared to the 

existing motor. We can notice also that the when Kg/KW is minimized, it reduced from 5.36 

to 5.15. Moreover, the optimization process allowed to the temperature rise to decrease form 

53.8 to 48.5 which is a important reduction. Likewise, the I0/I is slightly reduced from 0.27 to 

0.26 when it is the objective function. Finally, Table 9, shows that the starting torque is 

higher for the optimized motor (1.3) compared to the existing one (0.5).  

According to these results, we can say that PSO is suitable for motor design and can reach 

successful designs with better performances than the existing motor while satisfying almost 

every constraint. 

5. Conclusion 

This chapter investigated the optimal design of induction motor using DOE and PSO 

techniques with five objective functions namely, maximization of efficiency, minimization 

of kg/kW, minimization of temperature rise in the stator, minimization of I0/I ratio, 

maximization of starting torque. It has been shown that DOE and PSO based algorithms 

constitute a viable and powerful tool for the optimal design of induction motor. The main 

objective of the DEO here is to identify the effect of each parameter on the objective 

functions. This is of a paramount importance mainly because of two reasons. The first one 

and also the obvious one is the reduction of the number of parameters to be taken into 
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consideration in the optimization stage called screening. This can be achieved by 

neglecting the parameters with less effect. This will reduce the computing time burden 

and simplify the analysis of the designed motor. The second reason is that among the 

influent parameters themselves we can classify the parameters in function of their 

calculated effect. This will help the designer to have a clear picture of the importance of 

each parameter. For instance, if two parameters having respectively 45% and 5% of 

influence on a given objective function are compared; it is obvious that even if both 

parameters have an effect on the given objective function, the first one is greatly more 

important than the second one.  

The approach developed here is universal and, although demonstrated here for induction 

motor design optimization, it may be applied to the design optimization of other types of 

electromagnetic device. It can be used also to investigate new types of motors or more 

generally electromagnetic devices. MATLAB code was used for implementing the entire 

algorithm. Thus, another valuable feature is that the developed approach is implementable 

on a desktop computer. 
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