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1. Introduction 

Microwave tomography is a technique aimed at inspecting unknown bodies by using an 

incident radiation generated at microwave frequencies (Ali & Moghaddam, 2010; Bellizzi, 

Bucci, & Catapano, 2011; Catapano, Crocco, & Isernia, 2007; Chen, 2008; Ferraye, Dauvignac, 

& Pichot, 2003; Gilmore, Mojabi, & LoVetri, 2009; Habashy & Abubakar, 2004; Isernia, 

Pascazio, & Pierri, 2001; Kharkovsky & Zoughi, 2007; Lesselier & Bowler, 2002; Litman, 

Lesselier, & Santosa, 1998; Oliveri, Lizzi, Pastorino, & Massa, 2012; Pastorino, 2010; Rekanos, 

2008; Schilz & Schiek, 1981; Shea, Kosmas, Van Veen, & Hagness, 2010; Zhang & Liu, 2004; 

Zhou, Takenaka, Johnson, & Tanaka, 2009). An illuminating system (Costanzo & Di Massa, 

2011; Paulsen, Poplack, Li, Fanning, & Meaney, 2000; Zoughi, 2000) is used to produce the 

incident waves that interact with the body to produce a scattered electromagnetic field. 

Another system is used to acquire the measurements that are used as input values for the 

reconstruction procedures. These values are the field samples resulting from the sum of the 

incident and scattered waves. Since the incident field (i.e., the field produced by the 

illuminating system when the object is not present) is a known quantity, the scattered 

electric field can be obtained by a direct subtraction. Moreover, the scattering field is related 

to the properties of the unknown body by well-known key relationships. In particular, both 

position, shape and dielectric parameters of the target affect the scattered field. In this 

Chapter, we consider the inspection of (possibly inhomogeneous) dielectric targets, which 

are characterized by the distributions of the dielectric permittivity and electric conductivity, 

whereas magnetic materials (e.g., materials for which the magnetic permittivity is different 

from the vacuum one) are not considered (El-Shenawee, Dorn, & Moscoso, 2009; Franchois 

& Pichot, 1997). The relationship between the target properties and the sampled scattered 

electric field is, in integral form, a Fredholm equation of the first kind, usually indicated as 

the “data equation” (Bucci, Cardace, Crocco, & Isernia, 2001; Rocca, Benedetti, Donelli, 
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Franceschini, & Massa, 2009; van den Berg & Abubakar, 2001). The kernel of this equation is 

the Green’s function for two dimensional geometries in free space (in this Chapter we 

consider imaging configurations in free space, although other configurations - e.g., half 

space imaging - could be assumed by introducing the proper Green’s function for the 

specific configuration). The considered problem belongs to the class of inverse problems, 

which are usually ill-posed, in the sense that the solution can be not unique and unstable. To 

face the ill-posedness of the problem, the “data equation” is often solved together with the 

so-called “state equation”, relating the incident electric field inside the inspected object to 

the problem unknowns. In particular, in the developed approach, the two equations are 

combined together and a single nonlinear equation is obtained. In order to numerically 

solve the inverse problem, a discretization is usually necessary. A pixelated image of the 

scattering cross section can be obtained by using square pulse basis functions. The discrete 

nature of the measurements (we assume that each measurement antenna is able to collect 

the field at a given point inside a fixed observation domain) is equivalent to consider Dirac 

delta functions as testing function. The result of the discretization is a (nonlinear) system of 

equations to be solved, usually very ill-conditioned. In order to solve, in a regularized sense, 

the inverse scattering problem in the discrete setting, an iterative algorithm based on an 

inexact-Newton method is applied (Bozza, Estatico, Pastorino, & Randazzo, 2006; Estatico, 

Bozza, Massa, Pastorino, & Randazzo, 2005). 

The reconstruction method proposed in this Chapter can be, in principle, applied to a large 

variety of dielectric objects, having homogeneous or multilayer cross-sections with arbitrary 

shape. Only for demonstration purpose, a simple homogeneous reference target of known 

dielectric properties is assumed in the following. The scattered field is acquired, both in 

amplitude and phase, on a square investigation domain around the target, sufficiently 

extent to be within the radiating near-field region (Costanzo & Di Massa, 2011). The incident 

field, oriented along the cylindrical target axis, is produced by a standard horn antenna, and 

a probe of the same kind is used to collect the field on the acquisition domain, for different 

positions of the illuminating horn. The measured scattered field data are subsequently 

processed to solve the inverse scattering problem and successfully retrieve the dielectric 

profile of the target under test. 

The Chapter is organized as follows. In Section 2, a detailed mathematical description of the 

reconstruction method and the relative solving procedure are provided. The imaging setup 

configuration and the performed scattering measurements are discussed in Section 3. Some 

preliminary results concerning the inversion of measured data are reported in Section 4. 

Finally, conclusions are outlined in Section 5. 

2. Mathematical formulation 

The considered approach assumes tomographic imaging conditions and it aims at 

reconstructing the distributions of the dielectric properties of a slice of the target (Fig. 1). A 

transmitting (TX) antenna is successively positioned in ܵ different locations ܚ௦் ௑, ݏ = 1,… , ܵ, 

and generates a set of known ݖ-polarized incident waves, whose electric field vectors can be 

expressed as: 
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Figure 1. Schematic representation of the considered tomographic configuration 

 ۳௜௡௖௦ ሺܚ, ߱ሻ = ݁௜௡௖௦ ሺݔ, ,ݕ ߱ሻܢො (1) 

where ߱ is the angular working frequency. It should be noted that the proposed approach 

does not require plane wave illumination of the target. 

The object is assumed to have cylindrical geometry, with the cylindrical axis directed along 

a direction parallel to the electric field vectors of the incident electric field (i.e., the z axis). 

Moreover, the dielectric properties are assumed to be independent from the z coordinate, 

i.e., ߳ሺܚሻ = ߳ሺݔ, ሻܚሺߪ ሻ andݕ = ,ݔሺߪ  the dielectric permittivity and the ߪ ሻ, being ߳ andݕ

electric conductivity, respectively.  

The object interacts with the impinging electric field. From the above hypotheses it results 

that the resulting total electric field is ݖ-polarized, too, and it can be written as: 

 ۳௧௢௧௦ ሺܚ, ߱ሻ = ݁௧௢௧௦ ሺݔ, ,ݕ ߱ሻܢො = ݁௦௖௔௧௧௦ ሺݔ, ,ݕ ߱ሻܢො + ݁௜௡௖௦ ሺݔ, ,ݕ ߱ሻܢො (2) 

where ݁௦௖௔௧௧௦ ሺݔ, ,ݕ ߱ሻ is the scattered electric field (due to the ݏth illumination), which is a 

mathematical quantity taking into account for the interaction effect between the incident 

electric field and the target. The total electric field is measured, for any location of the 

transmitting antenna, by a receiving (RX) antenna successively positioned in ܯ	points ܚ௦,௠ோ௑ ݏ , = 1,… , ܵ, ݉ = 1,…  .ܯ,

From a mathematical point of view, the relationship between the measured total electric 

field and the dielectric properties of the target can be modeled by using a Lippmann-

Schwinger equation (Pastorino, 2010), i.e., 

 ݁௧௢௧௦ ሺݔ, ,ݕ ߱ሻ = ݁௜௡௖௦ ሺݔ, ,ݕ ߱ሻ + ݆ ௞బమସ ׬ ߬ሺݔᇱ, ᇱሻ஽ݕ ݁௧௢௧௦ ሺݔᇱ, ,ᇱݕ ߱ሻܪ଴ሺଶሻሺ݇଴ߩሻ݀ݔᇱ݀ݕᇱ, ݏ = 1,… , ܵ (3) 
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where ݇଴ = ߱ඥ߳଴ߤ଴ is the free-space wavenumber (being ߳଴ and ߤ଴ the dielectric 

permittivity and the magnetic permeability of the vacuum, respectively). In equation (3), ܪ଴ሺଶሻ is the Hankel function of zero-th order and second kind, ߩ = ඥሺݔ − ᇱሻଶݔ + ሺݕ −  ,ᇱሻଶݕ

and ߬ denotes the contrast function, which is defined as: 

 ߬ሺݔ, ሻݕ = ߳ሺݔ, ሻݕ − ௝ఙሺ௫,௬ሻఠఢబ − 1 (4) 

The imaging procedure, starting from the measured samples of the total electric field in the ܵ  measurement locations, is aimed at retrieving the contrast function, which contains all ܯ×

information about the unknown distributions of the dielectric properties. Consequently, 

equation (3) is discretized (by using pulse basis function to represent the unknowns 

(Richmond, 1965)) and computed at the measurement positions, leading to the following set 

of discrete equations: 

௦௖௔௧௧௦܍  = ۶௦diagሺૌሻ܍௧௢௧௦ ݏ , = 1,… , ܵ (5) 

where:  

௦௖௔௧௧௦܍  = ቎݁௦௖௔௧௧௦ ൫ݔ௦,ଵோ௑, ,௦,ଵோ௑ݕ ߱൯⋮݁௦௖௔௧௧௦ ൫ݔ௦,ெோ௑ , ௦,ெோ௑ݕ , ߱൯቏, ݏ = 1,… , ܵ (6) 

is an array containing the samples of the scattered electric field at the ܯ measurement points 

(being ൫ݔ௦,௠ோ௑ , ݉ ,௦,௠ோ௑൯ݕ = 1,…  thݏ their positions in the transverse plane) for the ,ܯ,

illumination, the vector: 

௧௢௧௦܍  = ቎݁௧௢௧௦ ሺݔଵ஽, ,ଵ஽ݕ ߱ሻ⋮݁௧௢௧௦ ሺݔே஽, ,ே஽ݕ ߱ሻ቏ (7) 

is an array containing the values of total electric field in the centers ൫ݔ௜஽, ݅ ,௜஽൯ݕ = 1,… , ܰ, of 

the ܰ subdomains used to discretize the investigation area, and: 

 ૌ = ቎߬ሺݔଵ஽, ,ே஽ݔଵ஽ሻ⋮߬ሺݕ  ே஽ሻ቏ (8)ݕ

is an array containing the coefficients of the discretized contrast function. Finally, the matrix ۶௦ is given by: 

 ۶௦ = ݆ ௞బమସ ቎ℎ௦,ଵ,ଵ … ℎ௦,ଵ,ே⋮ ⋱ ⋮ℎ௦,ெ,ଵ … ℎ௦,ெ,ே቏, ݏ = 1,… , ܵ (9) 

whose elements are provided by the following relation: 

 ℎ௦,௠,௜ = ׬ ᇱ஽೔ݕᇱ݀ݔ௦,௠൯݀ߩ଴ሺଶሻ൫݇଴ܪ  (10) 
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being ܦ௜ the ݅th subdomain and ߩ௦,௠ = ට൫ݔ௦,௠ோ௑ − ᇱ൯ଶݔ + ൫ݕ௦,௠ோ௑ −  .ᇱ൯ଶݕ

It is worth noting that the array ܍௧௢௧௦  is unknown into equation (5). Consequently, a second 

equation is needed to solve the inverse problem. Such relation is found by applying (3) to 

points inside the investigation area. By using the same discretization, we obtain the 

following matrix relation: 

௧௢௧௦܍  = ௜௡௖௦܍ − ۵diagሺૌሻ܍௧௢௧௦ ݏ , = 1,… , ܵ (11) 

where: 

௜௡௖௦܍  = ቎݁௜௡௖௦ ሺݔଵ஽, ,ଵ஽ݕ ߱ሻ⋮݁௜௡௖௦ ሺݔே஽, ,ே஽ݕ ߱ሻ቏, ݏ = 1,… , ܵ (12) 

is an array containing the values of the incident electric field in the centers of the ܰ 

subdomains ܦ௜. Moreover, the term: 

 ۵ = ݆ ௞బమସ ൥݃ଵ,ଵ … ݃ଵ,ே⋮ ⋱ ⋮݃ே,ଵ … ݃ே,ே൩ (13) 

is a matrix whose elements are given by: 

 ݃௜,௞ = ׬ ᇱ஽ೖݕᇱ݀ݔ௜ሻ݀ߩ଴ሺଶሻሺ݇଴ܪ  (14) 

with ߩ௜ = ට൫ݔ௜஽ − ᇱ൯ଶݔ + ൫ݕ௜஽ −  .ᇱ൯ଶݕ

Equations (5) and (11) are combined together in order to obtain the following set of 

nonlinear equations: 

௦௖௔௧௧௦܍  = ۶diagሺૌሻ൫۷ − ۵௦diagሺૌሻ൯ିଵ܍௜௡௖௦ = ݏ ,௦ሺૌሻۯ = 1,… , ܵ (15) 

which can be written as: 

௦௖௔௧௧܍  = ቎܍௦௖௔௧௧ଵ ௦௖௔௧௧ௌ܍⋮ ቏ = ൥ۯଵሺૌሻ⋮ۯௌሺૌሻ൩ = ۯ ሺૌሻ (16) 

Equation (16) needs to be solved in order to retrieve the contrast function ૌ. Once this term is 

obtained, the distributions of the dielectric parameters can be calculated using equation (4). 

The solution of equation (16) represents however a highly ill-posed problem. Consequently, a 

regularized inversion algorithm must be used (Autieri, Ferraiuolo, & Pascazio, 2011; Lobel, 

Blanc-Féraud, Pichot, & Barlaud, 1997). The solving procedure is based on a two-step 

iterative strategy (Bozza et al., 2006; Estatico et al., 2005), in which an outer linearization is 

performed by means of an Inexact-Newton scheme and a regularized solution to the obtained 

linear system is calculated by means of a truncated Landweber algorithm (Landweber, 1951). 
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The developed iterative procedure works as follows. 

1. Set iteration index to ݊ = 0 and initialize the unknown ૌ௡, e.g., by choosing ૌ௡ = 0; 

2. Linearize the equation ܍௦௖௔௧௧ = ܐሺૌሻ in order to obtain a linear equation ۸௡ۯ = ௦௖௔௧௧܍ ௡, where܍ −  ሺૌ௡ሻ and ۸௡ is the Jacobian matrix (i.e., the discrete counterpart of the Frechétۯ

derivative) of ۯ at point ૌ௡, which is given by (Remis & van den Berg, 2000): 

 ۸௡ = ൥۸௡ଵ⋮۸௡ௌ൩ = ቎۶௡ଵdiag൫܍௧௢௧೙ଵ ൯⋮۶௡ௌdiag൫܍௧௢௧೙ௌ ൯቏ (17) 

being ܍௧௢௧೙௦ = ൫۷ − ۵diagሺૌ௡ሻ൯ିଵ܍௜௡௖௦  the total electric field (for the ݏth illumination) 

inside the investigation area due to the current estimate of the solution ૌ௡ and ۶௡௦  a 

inhomogeneous Green matrix given by ۶௡௦ = ൫۷ − ۵diagሺૌ௡ሻ൯ିଵ۶௦ ; 

3. Find a regularized solution ܐ of the linearized equation by using a truncated 

Landweber algorithm; 

4. Update current solution with ૌ௡ାଵ = ૌ௡ +  ;ܐ

5. Check if a convergence criteria (e.g., a maximum number of iterations ݊௠௔௫ or a 

threshold on the residual) is fulfilled. Otherwise go back to step 2. 

The truncated Landweber algorithm can be summarized as follows. 

1. Set iteration index to ݈ = 0 and initialize the unknown ܐ௟ = 0; 

2. Update the current solution with  

௟ାଵܐ  = ௟ܐ − ∗۸௡ߚ ሺ۸௡ܐ௟ −  ௡ሻ (18)܍

where ߚ = 0.5/‖۸௡∗ ۸௡‖ଶ and ۸௡∗  is the adjoint of ۸௡; 

3. Check if a convergence criteria (e.g., a maximum number of iterations, ݈௠௔௫, or a 

threshold on the residual) is fulfilled. Otherwise go back to step 2. 

3. Imaging setup configuration and measurements 

In order to prove the effectiveness of the approach, experimental validations are performed 

on a reference target by adopting the setup configuration in Fig. 2. A square investigation 

domain ܦ around the scatterer is assumed, with a transmitting antenna giving an incident 

field oriented along the longitudinal axis of the target and assuming the positions indicated 

in Fig. 2 as black circles. A receiving antenna is adopted to collect the complex (amplitude 

and phase) field scattered by the test object on the void circles, at spacings Δݔ, Δݕ satisfying 

the Shannon’s sampling theorem (Bucci & Franceschetti, 1989). 

3.1. X-band measurements 

The imaging configuration described in Fig. 2 is realized into the anechoic chamber of 

Microwave Laboratory at University of Calabria. Two standard X-band horn antennas are 

adopted as transmitting and receiving antennas, as providing a sufficiently large pattern 
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impinging on the reference target. This is given by a wood cylinder of length equal about to 

60 cm ( 20 λ @ 10 GHz) and square cross section of side equal about to 4 cm. A photograph 

showing the imaging setup is reported in Fig. 3. 

Scattered field measurements are performed at a frequency equal to 10 GHz, on a square 

measurement domain of side equal to 39	ܿ݉, which has been discretized into 4ܯ points 

ܯ) = 53) with spacings ݔ߂ = ݕ߂ =  As highlighted above, both transmitting and .4/ߣ

receiving horns are oriented with the field parallel to the cylinder axis. The amplitude and 

phase behavior of the measured scattered field is reported in Figs. 4-7 for two different 

positions of the illuminating horn, along two different sides of the acquisition domain 

scanned by the receiving probe. The positions of transmitting and receiving antennas are 

visible in the picture within the same figures. Similar behaviors are obtained for the other 

positions of the transmitting and the receiving antennas. 

 

Figure 2. Imaging setup configuration 

 

Figure 3. Photograph of measurement setup into the Microwave Laboratory at University of Calabria 
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Figure 4. Amplitude (a) and phase (b) of measured scattered field: configuration in the picture 

 

 

 

Figure 5. Amplitude (a) and phase (b) of measured scattered field: configuration in the picture 

 
 

 

Figure 6. Amplitude (a) and phase (b) of measured scattered field: configuration in the picture 

(a) (b)

(a) (b)

(a) (b)
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Figure 7. Amplitude (a) and phase (b) of measured scattered field: configuration in the picture 

4. Preliminary reconstruction results 

In this section, preliminary reconstruction results are reported. Figure 8 provides the 

reconstructed image of the object described in Section 3. It is obtained by inverting the real 

measured data described in Section 3 by using the procedure described in Section 2. 

 

Figure 8. Reconstructed distribution of the relative dielectric permittivity inside the square 

investigation domain 

For every side of the measurement domain, three positions of the TX antenna are used. In 

particular, for the first side (i.e., the one characterized by coordinate ݔ = −19.5	ܿ݉), the ݕ-

positions of TX antenna are equal to −3.625, 0, and 3.625	cm. For these three source 

positions, only the ܯ measurement points located on the opposite side of the measurement 

domain (i.e., for the first side, those characterized by coordinate ݔ = 19.5	ܿ݉) are used. The 
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remaining views are constructed in a similar way. The total number of illuminations is ܵ = 12 and the total number of measured samples is ܵ ܯ× = 636. The investigation area is 

assumed of square shape and side equal to 0.06 m. It is partitioned into 20×20 square 

subdomains. The algorithm is initialized by using a rough estimate obtained by means of a 

back-propagation algorithm (Lobel, Kleinman, Pichot, Blanc-Feraud, & Barlaud, 1996). The 

inner loop (Landweber algorithm) is stopped after a fixed number of iterations ݈௠௔௫ = 5. 

The outer loop (Newton linearization) is stopped according to the L-curve criteria (Vogel, 

2002), leading to an estimated optimal number of outer iterations of ݊௟௖ = 3. Maximum, 

minimum and mean values of the retrieved dielectric permittivity distribution are reported 

in Table 1. Finally, Fig. 9 reports the profiles obtained by cutting the 2D distribution along 

two horizontal and vertical axes passing from the center of the investigation domain. As can 

be seen, the presence of the target can be suitably retrieved. 

 

 

Figure 9. Horizontal and vertical profiles of the reconstructed distribution of the relative dielectric 

permittivity along lines passing from the center of the investigation domain 

(a)

(b)

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

ε
r

x/λ

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

ε
r

y/λ



 

Non-Invasive Microwave Characterization of Dielectric Scatterers 47 

 

Min Max Mean Variance

Whole domain 1.00 2.90 1.67 0.48 

Object 1.10 2.90 2.30 0.20 

Background 1.00 1.41 1.08 0.01 

Table 1. Values of the retrieved relative dielectric permittivity 

5. Conclusion 

The non-invasive inspection of dielectric objects has been considered in this Chapter to 

provide an accurate characterization of the permittivity profile at microwave frequencies. A 

mathematical formulation in terms of a Fredholm integral equation of the first order has 

been assumed, and a suitable discretization has been performed in order to numerically 

solve the resulting inverse problem, with a regularization approach adopted to overcome 

the intrinsic ill-posedness. The proposed imaging technique has been experimentally 

assessed by performing scattered field measurements on a square investigation domain 

surrounding a cylindrical dielectric target of known properties. Measured X-band data 

acquired by a standard horn antenna have been collected for different positions of the 

illuminating horn, and a successful reconstruction of the expected dielectric profile has been 

obtained from the application of the proposed technique. 
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