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1. Introduction 

Electrophoretic methods compose a family of related techniques that use narrow-bore fused-

silica capillaries to perform high efficiency separations of both small and large molecules. 

These methods are commonly known as capillary electrophoretic methods. Capillary 

electrophoresis (CE) has, over the years, demonstrated its powerful separation ability in the 

area of chiral and achiral analysis. This is contributed to the advantages it offers when 

compared to chromatographic techniques: (1) low consumption of samples and solvents; (2) 

high separation efficiency and resolution; (3) versatility [1,2]. 

Two of the most important modes of CE, which will be discussed in this chapter, are 

capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC). 

CZE is the simplest and the most widely used mode of CE [1]. The separation mechanism of 

the analytes is based on their difference in charge-to-size ratios and their difference in 

electrophoretic mobilities, which, in turn, result in different velocities. However, due to the 

fact that neutral species do not possess an electrophoretic mobility, they cannot be separated 

by use of this mode. 

In order to circumvent this problem, new modes of CE have been suggested as alternatives. 

MEKC, which combines the best features of both electrophoresis and chromatography, is 

considered an alternative mode because it can be used for the separation of charged as well 

as neutral compounds. It involves the introduction of a surfactant at a concentration above 

the critical micellar concentration (CMC), at which micelles are formed. MEKC was first 

introduced by Terabe et al. in 1984 [3]. Although it is a form of CE, its separation principle is 

more similar to HPLC than to CE. In this mode, analytes are separated according to their 

partitioning between the mobile and stationary phase and, when charged, their 

electrophoretic mobility. The driving force for the partitioning of analytes is hydrophobicity. 
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In addition, hydrogen bonding, dipole-dipole, and dispersive interactions can contribute to 

the solute partitioning between the two phases [4-6]. 

CE was originally considered as a powerful analytical tool for the analysis of biological 

macromolecules. It has though, over the years, been extensively used for the separation of 

other compounds, such as chiral drugs, food additives, pesticides, inorganic ions, organic 

acids, and others. In this chapter, the ability of CE, and particularly CZE and MEKC, to be 

used for the qualitative and quantitative determination of compounds in pharmaceutical, 

biological and natural samples is investigated. In each approach, a number of studies are 

reported and discussed. These studies involve establishment of optimum separation 

conditions, method validation, optimization of sample-preparation procedure and 

application for the determination of the analytes under study in real samples. The first part 

of this chapter involves the determination of polyphenolic compounds using CZE with UV-

Vis detector in red and white wines, while the second part involves the determination of 

pharmaceutical compounds in biological samples, such as blood and urine, using the 

hyphenated technique CE-MS (mass spectrometry). The third and final part emphasizes the 

importance of MEKC in chiral analysis since it has been known that usually only one 

enantiomer is active, while the other may be less active, inactive or has adverse effects. 

2. Determination of polyphenolic compounds in natural samples 

Polyphenolic compounds exist in a variety of natural products, such as fruits, vegetables, 

beverages (tea, wine and juices), honey, cacao and herbs. They attract a lot of interest due to 

their beneficial implication in human health. They have been widely studied due to their 

antioxidant capacity and their association with several pathological conditions, such as 

hypertension, cardiovascular disease, dementia, and even cancer [7-9]. Therefore, due to 

their health significance, numerous analytical methods have, over the last decades, been 

developed for their separation, identification and quantitation in natural products [10-13]. 

According to literature, the simplest CE method, CZE, proved to be the best method for the 

determination of polyphenolic compounds in wine samples [14-17]. In such studies, and in 

each case, when the optimum CZE method was applied to different red and white wines, it 

was established that red wines have higher levels of polyphenolic compounds than white 

wines and that the polyphenolic composition varies among different wines. 

2.1. Method development and validation 

In this part of the chapter, a representative study performed recently in Cypriot wines is 

briefly described [17]. The influence of several experimental parameters is initially 

illustrated in order to obtain improved selectivity and resolution for the separation of seven 

flavonoids, which constitute the most important group of polyphenols, and trans-rasveratrol 

that are usually present in wine. This is accomplished by use of CZE and by examining 

different sample preparation procedures. Due to the low concentrations of flavonoids in 

wine and the high complexity of wine matrices, preconcentration methods are required, 

which can simplify the electropherograms. The optimized CZE and pre-treatment methods 

proved to be effective in characterizing flavonoids in red and white wine samples. 
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The effect of column temperature, and concentration and pH of background electrolyte 

(BGE) were investigated. These parameters, along with the applied voltage, are the most 

common parameters that are required to be examined in order to optimize a separation  

in CZE. Figure 1 illustrates the influence of the pH on the resolution and the analysis time.   
 

 
 

Figure 1. Effect of pH value on the separation of the eight polyphenols. (A) pH 9; (B) pH 9.3; (C) pH 9.6. 

Conditions: BGE 50 mM borate, 10 mM phosphate and 20 mM SDS; pressure injection, 30 mbar for 3 

sec; applied voltage, 25 kV; temperature, 25 ºC; fused-silica capillary, 64 cm (55.5 cm effective length) x 

50 μm i.d.; detection, 205 nm. Peak identification: trans-resveratrol (1), epicatechin (2), catechin (3), 

naringenin (4), kaempferol (5), apigenin (6), myricetin (7), quercetin (8) [17]. 
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The last two increased with increasing the pH, possibly due to an increase in the negative 

charge, which resulted in a greater affinity and a higher complexation between borate and 

phenols. Taking into consideration the migration times, the peak efficiency and the 

sufficient resolution, the following parameters provided a baseline separation of all 

polyphenolic compounds: BGE containing 50 mM borate and 10 mM phosphate at pH 9.6 

and column temperature of 25 ºC (Figure 1C). The use of alkaline borate-based BGEs, in 

CZE, resulted in a sufficient separation of polyphenols due to the complex-formation ability 

of borate. In addition, an increase in the borate concentration from 25 to 50 mM and an 

increase in the pH value from 9 to 10 resulted in an increase in the migration times of all 

analytes, while the resolution was significantly improved. At pH 10 though, the analysis 

time was very long (~ 50 min) and joule heating effects, such as high current generation and 

peak broadering, were observed. An increase in pH increased the negative charge of the 

analytes, which, in turn, favored a greater affinity for the buffer and a higher complexation 

between borate and phenols [18]. 

The method was then validated by the terms of linearity, precision and LOD. Linearities for 

the eight analytes were very good, and precision, which was based on the relative standard 

deviation, was below 1%, indicating an excellent reproducibility. In addition, LODs, which 

were calculated as three times the standard deviation via the slope of the calibration curve, 

were between 0.03 and 5.05 μg/mL for all eight polyphenolic compounds. 

2.2. Application 

The qualitative and quantitative analysis of analytes in real samples is often difficult due to 

interruptions caused by different interfering substances found in the sample matrix. 

Therefore, a sample-preparation procedure is a necessary step prior to the electrophoretic 

analysis, in order to isolate the analytes under study from real samples. Different 

preconcentration methods have been used over the years, including solid-phase extraction 

(SPE) with C-18, silica, or other cartridges [14,16,19] and liquid-liquid extraction (LLE) with 

different organic solvents [10,20,21]. 

In the study performed in Cypriot wines, the sample preparation procedure was optimized 

in order to determine the one that was simple, fast and reliable [17]. Therefore, three LLE-

procedures (C,D,E), a SPE-procedure (F), a procedure that involve evaporation and 

reconstitution of wine sample (B) and a direct injection of wine sample after dilution and 

filtration (A) were compared and the most effective method was applied to Cypriot wines. 

The electropherograms obtained by use of each sample preparation procedure are 

illustrated in Figure 2. When no extraction was performed, the electropherograms were 

complex, while SPE was found to be ineffective for the isolation of polyphenolic compounds 

from wine samples. LLE with diethyl ether, followed by evaporation of organic layer by 

nitrogen stream and reconstitution in ethanol proved to be the optimum sample pre-

treatment method. When the optimum method was applied to Cypriot wine samples, the 

quantification of polyphenolic compounds was successfully achieved. It was observed that 

epicatechin and catechin exist in all wine samples in comparable concentrations, whereas 

myricetin and quercetin exist only in two of the three wine samples. Polyphenolic 
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composition varies among different wines, because it depends on several factors, such as the 

type of grapes used, the vivification process used, the type of yeast that participates in the 

fermentation, weather variations and other biological effects [22]. 

 

 

Figure 2. Electropherograms of the wine samples obtained using six different sample preparation 

procedures under optimum conditions. Conditions: BGE 50 mM borate, 10 mM phosphate and 20 mM 

SDS (pH 9.6); pressure injection, 30 mbar for 3 sec; applied voltage, 25 kV; temperature, 25 ºC; fused-

silica capillary, 64 cm (55.5 cm effective length) x 50 μm i.d.; detection, 205 nm. Peak identification: 

epicatechin (2), catechin (3), myricetin (7), quercetin (8) [17]. 

Another important observation was that in white wine, the only flavonoid that was detected 

was catechin at a concentration of 7.3 μg/mL. This was not surprising since the majority of 

flavonoids in wine come from the extraction derived from grape’s solids. White wine is 

made by pressing the juice away from the grape’s solids, and then, by allowing it to ferment. 

So, red wines have higher levels of polyphenolic compounds [23]. 

3. Determination of pharmaceutical compounds in biological samples 

Quantification of drugs in biological fluids, like plasma, has an important role in drug 

discovery and development. There are two main aspects that are taken into account in order 
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to make the identification of drugs in biological fluids possible. The first aspect is the 

development of an accurate analytical method, with high sensitivity, capable to identify 

desirable compounds in concentrations comparable to that in biological fluids. The second 

one is the exploration of the optimum extraction method that can effectively extract the drug 

from the biological matrix. 

Over the years, CE coupled to electrospray ionization-mass spectrometry (ESI-MS) has been 

utilized as a bioanalytical tool for the analysis of drug compounds in biological samples [24-

29]. Even though the most common detector in CE is the UV detector due to its easy 

manageability and low cost, it has the drawback of low sensitivity due to the short optical 

path length. An alternative to this is the use of MS. The coupling of CE with MS is a well-

established technique, which combines the high efficiency and resolution that are provided 

by CE and the detection sensitivity and selectivity and the identification potential that are 

provided by MS [25,30].  

In recent years, a large number of publications have been provided on the general 

developments and biological applications of CE-ESI-MS [24-29]. Zheng et al. developed a 

CZE-ESI-MS method for monitoring the antiepileptic drug lamotrigine in human plasma 

[27]. The optimum conditions were obtained by varying a big number of BGE, sheath liquid 

and MS spray chamber parameters. In each case, both the CZE separation, as well as the MS 

detection sensitivity, were evaluated, and the parameter that provided a reasonable 

compromise between resolution and detection sensitivity was chosen as the optimum. The 

developed method was then applied to assay blank samples spiked with lamotrigine in 

order to set up the calibration curve and estimate the limit of detection (LOD). Both linearity 

of calibration curve and LOD (0.05 μg/mL) were good, and the optimum method was 

applied to 14 human plasma samples collected from a lamotrigine-treated subject over a 

period of 96 h after oral administration of 50 mg lamotrigine. 

In a 2011 study, Elhamili et al. analyzed the anticancer drug Imatinib by use of CE coupled 

to ESI time-of-flight MS in human plasma [29]. The CE separation and ESI parameters were 

initially investigated and optimized in regard to peak efficiency, peak intensity and 

electrospray stability. The LOD and limit of quantitation (LOQ) were evaluated by injections 

of standard solutions of the drug compound, and they were determined to 5 and 20 ng/mL, 

respectively. In addition, the extraction recovery of Imatinib from human plasma using a 

common liquid-liquid extraction (LLE) method and a new strong cation exchange (SCX) 

solid-phase extraction (SPE) column was investigated and compared. The highest extraction 

recoveries were obtained by using the latter method. The SCX-SPE extraction followed by 

CE-ESI-TOF-MS analysis in patient plasma samples demonstrated good repeatability, 

linearity and sensitivity for possible therapeutic monitoring of Imatinib level. The authors, 

in this manuscript, also conclude that this method could be applied for the analysis, 

quantification, and clinical assessment of other drug compounds and their metabolites. 

3.1. Method development 

The performance and usefulness of CE-MS is also demonstrated here by providing a more 

in-depth analysis of a research work that was performed in a blood sample obtained from a 
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patient with Alzheimer´s Disease (AD) [24]. In this study, a CZE-ESI-MS method was 

developed for the analysis of the acetylcholinesterase inhibitor rivastigmine, using 

neostigmine bromide as an internal standard, which is highly recommended in order to 

avoid problems that are related to sample injection [31]. Rivastigmine is a pseudo-

irreversible carbamate inhibitor of acetylcholinesterase, and it is clinically used for the 

symptomatic treatment of mild to moderate AD [32]. 

In a previous paper, MEKC coupled to a diode-array detector was used for the simultaneous 

separation of nine acetylcholinesterase inhibitors, including rivastigmine [33]. This method 

was validated and successfully applied to a real blood sample that was obtained from a patient 

who was not under any of this medication. The sample was spiked with rivastigmine in order 

to establish the ability of the method to separate the drug from other components that might 

exist in the blood sample. In this study, the blood sample was not directly injected into the 

capillary, because some components that exist in the sample can be absorbed to the capillary 

wall and deteriorate the performance of the column [34]. The blood sample was therefore 

diluted ten folds with the BGE [12.5 mM Na2HPO4 / 12.5 mM Na2B4O7 / 20 mM SDS (pH 10)], 

and it was then spiked with 25 μg/mL of rivastigmine. However, due to the low sensitivity 

obtained by CE with on-column UV detection, the identification of rivastigmine in biological 

fluids using CE remained a challenge. In order for the technique to be used for the quantitation 

of an acetylcholinesterase inhibitor in body fluids, the sensitivity, and consequently the LOD 

had to be improved. The increased interest in exploring CE-MS and its potential to serve as an 

alternative method allowed further investigation for the determination of rivastigmine and 

related drugs in complex biological matrices. 

When the CZE-UV method was compared with the CZE-MS, the first demonstrated a 

shorter analysis time of approximately 2 min due to the shorter effective length, while the 

S/N for the peak of rivastigmine at the SIM mode was estimated to be eight times bigger 

than with UV detection. This, in turn, indicated the high specificity and selectivity of the 

ESI-MS detector [24]. In the CZE-ESI-MS study, several electrophoretic and ESI-MS 

parameters were also examined, which were classified in three categories: the BGE 

parameters, such as the concentration, the pH and the use of organic modifier, sheath liquid 

parameters, such as the composition, the methanol (MeOH) content and the flow rate, and 

finally some spray chamber parameters, such as the temperature and the flow rate of the 

drying gas and the nebulizer gas pressure. The effect of each parameter on the S/N, and 

consequently the LOD, was examined and the optimum one was chosen for further 

optimization. 

In the case of BGE parameters, it was observed that ammonium acetate provided the most 

reproducible migration times, a concentration of 40 mM ammonium acetate resulted in the 

highest S/N, while a higher concentration decreased the ratio, probably due to the Joule 

heating effect that increases the level of noise (Figures 3a & 4a). When the pH was 

examined, it was concluded that at pH 9, where rivastigmine starts to have a negative 

charge (pKa=8.6), both the analysis time and resolution increased, and a higher S/N was 

obtained (Figures 3b & 4b). 
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Figure 3. Effect of (a) ionic strength and (b) pH of the BGE on the separation of rivastigmine (2) and I.S 

(1). Conditions: BGE: ammonium acetate, sheath liquid 1 % acetic acid in water:MeOH (50:50 v/v) at a 

flow rate of 10 μL/min, analyte and I.S. concentrations 0.3 mg/mL. Drying gas flow rate 6 L/min and 

temperature 200 ºC, nebulizer gas pressure 20 psi [24]. 

 

Figure 4. Effect of (a) ionic strength of the BGE and (b) pH of the BGE upon S/N ratio. Conditions: BGE: 

ammonium acetate, sheath liquid 1 % acetic acid in water:MeOH (50:50 v/v) at a flow rate of 10 μL/min, 

analyte and I.S. concentrations 0.3 mg/mL. Drying gas flow rate 6 L/min and temperature 200 ºC, 

nebulizer gas pressure 20 psi [24]. 

As far as the sheath liquid parameters are concerned, it was observed that its composition 

and its flow rate affected the ESI-MS sensitivity significantly. This was not a surprising 
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observation since the sheath liquid plays an important role in the CE-MS system. The sheath 

liquid is used as the make-up liquid that can solve the flow-rate incompatibility problems 

between CE and MS [35]. These problems are encountered because the flow rate through the 

CE column is very low (nL/min), and it cannot support a stable electrospray, whose flow 

rate is typically a few μL/min. In addition, the sheath liquid is used for establishing an 

electrical connection at the cathode end of the CE capillary, and it provides the suitable 

solvent conditions for the electrospray, which does not depend on the CE BGE [36]. 

When different sheath liquids were evaluated, the one that was able to support the 

formation of positively charged ions, and consequently provide the highest S/N, was acetic 

acid (1%) (Figure 5a). The influence of methanol as an organic modifier in the sheath liquid 

was also examined, because the use of such solvents allows an easier protonation of the 

analytes, which results in a higher signal [28]. By varying the percentage of methanol, it was 

concluded that 50% was the optimum since the noise level was the lowest (Figure 5b). 

Finally, the flow rate of the sheath liquid was set at 10 μL/min (Figure 5c). Other values 

were either too low to establish an electric contact that is required to achieve separation, or 

they affected the spray stability negatively, which, in turn, lead to higher noise levels. 

 

 

Figure 5. Effect of (a) sheath liquid composition, (b) sheath liquid organic modifier and (c) sheath liquid 

flow rate upon S/N ratio. Conditions: BGE: ammonium acetate 40 mM, at pH 9.0; analyte and I.S. 

concentrations 0.3 mg/mL. Drying gas flow rate 6 L/min and temperature 200 ºC, nebulizer gas pressure 

20 psi [24]. 
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The spray chamber parameters, which are the last parameters examined in this study, have 

an important effect on the response of the MS system. One of these parameters involves the 

drying gas, which is used for accelerating the buffer desolvation, increasing the MS 

sensitivity, and eliminating any undesirable ions from entering into the MS system. It was 

observed that the drying gas flow rate has an effect on the stability of the electrospray, and 

consequently, the levels of the noise. The flow rate was set at 6 L/min, because at this flow 

rate an increased number of ions come closer to the liquid-gas interface, and this increases 

the desolvation velocity [37] (Figure 6a). In addition, other flow rates that were examined in 

this study either caused an unstable electrospray or lowered the S/N. The drying gas 

temperature was varied from 150 °C to 350 °C, and the highest S/N was obtained at 200 °C, 

which was considered as the optimum (Figure 6b). The nebulizer gas pressure was the last 

parameter examined in this category, and based on the stability of the electrospray and the 

S/N, 20 psi was selected as the optimum. At 20 psi, the electrospray is more efficient, 

probably due to an improved ion evaporation process because smaller initial droplets are 

obtained with higher nebulizer gas pressure (Figure 6c). 

 
 

 
 

Figure 6. Effect of (a) drying gas flow rate, (b) drying gas temperature and (c) nebulizer gas pressure 

upon S/N ratio. Conditions: BGE: ammonium acetate 40 mM at pH 9.0, sheath liquid 1 % acetic acid in 

water:MeOH (50:50 v/v) at a flow rate of 10 μL/min, analyte and I.S. concentrations 0.3 mg/mL [24]. 
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3.2. Method validation 

All the parameters mentioned above are the common parameters that need to be examined 

in a method development process that involves a CE-MS system. These parameters affect 

the analysis time, resolution, response of the analyte under study, noise level, and 

sensitivity of the system. All these are important if the developed method is expected to be 

applied to biological samples for the detection and the quantification of drug and other 

compounds. 

When the optimum conditions for the analysis of rivastigmine were determined, the method 

was validated in terms of linearity, precision, stability, recovery, LOD and LOQ. Two 

calibration curves were constructed, in human plasma and in standard solutions, and 

linearity was good in both cases. The precision, which was evaluated based on migration 

times and peak areas, was excellent, and particularly in the case where the peak area of the 

internal standard was also taken into consideration. The LOD and the LOQ were 

determined based on the standard deviation of the peak area and the slope of the calibration 

curve. The LOD and the LOQ were calculated as 3 and 10 times the above correlation, 

respectively. In the plasma sample, the LOD and the LOQ were found to be 2.8 ng/mL and 

8.4 ng/mL, respectively, while in standard solutions they were 1.6 ng/mL and 5.0 ng/mL, 

respectively. These values are considered satisfactory for the accurate and precise 

quantification of rivastigmine in AD patients treated with the particular drug compound, 

and this is based on clinical studies that were performed in such patients [38,39]. 

3.3. Application 

Biological matrices are among the most difficult samples to analyze because of the big 

number of components they contain that they may be adsorbed onto the capillary wall or 

interfere in the detection and/or separation process. Therefore, before plasma analysis, it is 

important and necessary to perform a sample preparation procedure. In addition to this, the 

concentration of most of the analytes in biological samples is low; so, a preconcentration 

step before the detection and quantitation is required. In many cases, different sample pre-

treatment methods are used and compared in order to determine the most effective one, in 

regard to analyte recovery, difficulty, time and reproducibility. In this study, one LLE and 

two different SPE procedures were examined. In the case of SPE, two different SPE 

cartridges were used, a C18 cartridge and an Oasis HLB cartridge. LLE proved to be 

inefficient for rivastigmine assay, and it was time consuming because the extraction step 

was followed by additional steps that involved evaporation and reconstitution of the 

residue in an organic solvent. When the two SPE methods were compared, the C18-SPE 

cartridge proved to be the optimum, because the S/N was three times higher (S/N=154) than 

when Oasis HLB cartridge was used (S/N=52), and it provided better recoveries. 

The optimum CZE-ESI-MS parameters and the optimum sample preparation procedure 

were finally applied for the determination of rivastigmine in a plasma sample obtained from 

an AD patient following rivastigmine patch administration (dose of 9.5 mg/mL 

rivastigmine/24-h). Figure 7 demonstrates the SIM electropherograms of C18-SPE extract of 
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plasma sample collected 2.0 hours post-application, at m/z 223 and 251, for I.S. and 

rivastigmine, respectively. The mean (± S.D.) plasma concentration obtained for 

rivastigmine was 14.6 (± 1.7) ng/mL. 

 

Figure 7. Electropherograms of C18-SPE extracts of plasma from an AD patient following rivastigmine 

patch administration in a dose of 9.5 mg/mL / 24-h in the SIM-mode at (a) m/z 223 (I.S.) and (b) m/z 251 

(rivastigmine). Conditions: BGE: 40 mM ammonium acetate at pH 9, sheath liquid 1 % acetic acid in 

water:MeOH (50:50 v/v) at a flow rate of 10 μL/min, analyte and I.S. concentrations 0.3 mg/mL. Drying 

gas flow rate 6 L/min and temperature 200 ºC, nebulizer gas pressure 20 psi [24]. 

Based on the studies mentioned above, the CZE-ESI-MS method proved to be a promising 

technique in drug and pharmaceutical analysis. The development of such a method has 

several advantages over HPLC-MS and GC-MS. The most important ones are the reduction 

of the reagents cost, the low injection volume requirements, and the avoidance of disposing 
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large volumes of organic waste. In particular, when the study described here is compared to 

previous studies, where HPLC-MS and GC-MS were used for the analysis of rivastigmine, 

the required injection volume of plasma for a single analysis is reduced from microliters [40-

43] to nanoliters. 

4. Determination of enantiomers in pharmaceutical samples 

In the last three decades, there has been a growing interest in the separation, detection and 

quantification of enantiomers in pharmaceutical, clinical, environmental and food analysis. 

It has been known that usually only one enantiomer is active while the other may be less 

active, inactive or has adverse effects. Among the separation techniques, HPLC [44-48] GC 

[44,45,49] and CE [50-55] are most often applied in chiral analysis. Temperature and 

derivatization are major problems encountered in GC, and poor separation efficiency is 

observed in HPLC. CE has proven to be a powerful separation technique in the area of chiral 

analysis, since it has the major advantage of low consumption of samples and solvents. 

The most common modes of chiral CE are electrokinetic chromatography (EKC) in the 

presence of a chiral selector, MEKC, capillary electrochromatography (CEC), where the chiral 

selector can be either used as a coating (OT-CEC), a packing (P-CEC) or a monolithic material 

(M-CEC) in the capillary, and others [55-63]. The prerequisite for separation of enantiomers in 

CE, as in every chromatographic system, is the formation of either stable diastereoisomers by 

the use of a chiral derivatization agent or reversible diastereoisomeric complexes with the 

addition of a chiral substance, (chiral selector). In the first case, the two enantiomers are 

separated based on their different physicochemical properties, while in the second case, they 

are separated based on their different mobilities. In general, the “three point rule,” illustrated 

by Easson and Stedman [64], describes the interactions that are necessary for chiral 

discrimination. A minimum of three simultaneous interactions have to occur between the 

chiral selector and one of the enantiomers so that chiral separation is achieved. The other 

enantiomer, due to spatial restrictions, should have at least two types of interactions, which 

can be hydrophobic interactions between the hydrophobic core of the polymer and the analyte, 

electrostatic interactions between the polar head group of the polymer and the analyte, dipole-

dipole forces, such as hydrogen bonding between the polar group of the chiral selector and the 

analyte, and secondary interactions, such as - interactions, ion-dipole bonds, and Van der 

Waals forces. This difference in the number and type of interactions between the enantiomers 

and the chiral selector generates a mobility difference between the enantiomer-chiral selector 

complexes, which is necessary for the achievement of a chiral separation. 

A big number of chiral selectors have been widely used, over the years, in CE for improved 

chiral separations of various classes of analytes. These chiral selectors include cyclodextrins, 

polymeric surfactants, cyclofructans, macrocyclic antibiotics, crown ethers, and others. 

Cyclodextrins are molecules with large ring-like structures composed of α-(1,4)-linked D-

(+)-glucopyranose units. Native cyclodextrins are cyclic oligosaccharides consisting of six (α-

CD), seven (β-CD) and eight (γ-CD) glucopyranose units. The chiral recognition ability of 

cyclodextrins can be improved by their derivatization with different functional groups, such 
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as methyl-, sulfate-, acetyl- and prolyl-, and with the modification of the hydroxyl groups, 

which are present on the rim of the CD. The mechanism of enantiomeric discrimination is 

the inclusion of the hydrophobic group of the analyte into the cavity and interactions of the 

hydroxyl groups of the C2 and C3 at the upper rim of the CD, such as hydrogen bonds and 

dipole-dipole interactions. 

Navarro et al. [65] developed a CZE method for the analysis of lansoprazole enantiomers in 

three different pharmaceutical preparations (Davur, Alter and Cinfa). β-CD was used as a 

chiral selector and sodium sulphite was used as an additive. Recoveries of 91-102% of the 

label content were obtained, and this demonstrated the potential of the method for the 

routine quality control of lansoprazole enantiomers in pharmaceutical formulations. 

Chai et al. [66] used the chiral selector hydroxypropyl-γ-cyclodextrin in order to separate the 

antifungal drug iodiconazole and the structurally related triadimenol analogues. This chiral 

selector provided the best results in regard to resolution due to its large cavity and the 

hydrogen bonding between the analytes and the cyclodextrin. The mechanism for the chiral 

discrimination of hydroxypropyl cyclodextrins possibly involves the development of 

secondary interactions between the chiral analyte and the hydroxypropyl groups on the 

cyclodextrin rim after the inclusion of the analyte into the cavity. The degree of substitution 

and the type of the hydroxyalkyl group on the cyclodextrin rim, which influences the depth 

of the cavity, can therefore change the enantiorecognition ability of the cyclodextrin [67,68]. 

4.1. Method development and validation 

The use of CE, and particularly MEKC, in chiral analysis is demonstrated further here by 

providing a more in-depth analysis of a research work that was performed in a pharmaceutical 

formulation that contained one of the enantiomers of Huperzine A [55]. Huperzine A is 

considered to be a potent, highly specific and reversible inhibitor of acetylcholinesterase with 

high efficiency and low toxicity. The mechanism of complexation of Huperzine A with 

acetylcholinesterase is similar to that of other pharmaceutical drugs that are used for the 

treatment of AD [69]. The (-)-enantiomer of Huperzine A is three times more biologically 

active than the synthetically racemic mixture, and only this form behaves as a potential 

acetylcholinesterase inhibitor. Therefore, the development of an analytical method for the 

enantiomeric separation of the synthetic Huperzine A is of greatest importance. 

It is important here to mention that the type of the chiral selector used in this study was the 

polymeric surfactant. The use of polymeric surfactants in both chiral and achiral CE has 

attracted considerable attention. In 1994, Wang and Warner [70] were the first to report the 

use of a polymeric surfactant added to the BGE in MEKC. Polymeric surfactants offer 

several distinct advantages over conventional micelles [63,71-73]. Firstly, polymerization of 

the surfactant eliminates the dynamic equilibrium due to the formation of covalent bonds 

between the surfactant aggregates. This, in turn, enhances stability and improves resolution. 

Secondly, polymeric surfactants can be used at low concentrations because they do not 

depend on the CMC. This usually provides higher efficiencies and rapid analysis. They 

have, over the years, been extensively used in a BGE [74-80], in a polyelectrolyte multilayer 

coating [63,74,81-83], and in a CE-MS system [84-86]. 
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In this study, the optimal conditions, in regard to resolution, efficiency and analysis time, 

were initially established by varying different electrophoretic parameters. The BGE type, 

concentration and pH are usually the first parameters to be examined in a method 

development procedure. Sodium acetate at acidic and neutral pHs, where the analyte 

exhibits cationic behavior, was chosen as the optimum. BGEs with basic pHs did not exhibit 

any enantiomeric discrimination, and the analysis time was very long. The optimum pH 

was 5.0 because it provided slightly better peak shapes, and the optimum concentration was 

50 mM because it provided higher resolution (Figure 8). The very low peak efficiency, which 

needs to be improved, is clearly illustrated in this figure. 

 
 

 
 

Figure 8. Effect of BGE concentration on the separation of the enantiomers of Huperzine A: (A) 20 mM, 

(B) 35 mM and (C) 50 mM. Separation conditions: BGE: sodium acetate (pH 5.0), 0.075% (w/v) poly-LL-

SULV; pressure injection, 30 mbar for 3 s; applied voltage, 20 kV; temperature, 25 °C; fused-silica 

capillary, 64 cm (55.5 cm effective length) x 50 μm i.d.; detection, 230 nm [55]. 
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As far as the chiral selector is concerned, different polymeric surfactants were examined, 

such as poly(sodium N-undecanoyl-L-leucinate) (poly-L-SUL), poly(sodium N-undecanoyl-

LL-leucyl-leucinate) (poly-LL-SULL), poly(sodium N-undecanoyl-LL-leucyl-valinate) (poly-

LL-SULV), poly(sodium N-undecanoyl-L-valinate) (poly-L-SUV), poly(sodium N-

undecanoyl-L-valyl-glycinate) (poly-L-SUVG), poly(sodium N-undecanoyl-LL-alanyl-

valinate) (poly-LL-SUAV), poly(sodium N-undecanoyl-LL-leucyl-alanate) (poly-LL-SULA), 

and poly(sodium N-undecanoyl-LL-valyl-valinate) (poly-LL-SUVV). The polymeric 

surfacant poly-LL-SULV, which has shown the best chiral discrimination ability for a 

number of pharmaceutical compounds [80], was the first to be examined in different 

concentrations. The concentration of 0.075% w/v was chosen as the optimum, based on 

analysis time, efficiency and resolution. This concentration though did not provide baseline 

resolution. 

Another parameter examined in order to improve peak efficiency and resolution was the 

addition of modifiers. None of the organic solvents at different concentrations were able to 

improve the separation. An alternative to this was the addition of a salt, such as D- and L-

alanine tert-butyl ester hydrochloride (D- and L-AlaC4Cl). poly-LL-SULV became insoluble 

when the salt was added into the BGE. Therefore, the other polymeric surfactants 

mentioned above were examined at different concentrations. In each case, D- and L-AlaC4Cl 

were used individually as additives, the electropherograms were obtained, and resolution 

and efficiency were estimated. Based on this, the combination of poly-LL-SUAV at a 

concentration of 0.20% (w/v) with L-AlaC4Cl provided the best results. 

However, the use of L-AlaC4Cl did not provide satisfactory reproducibility of the migration 

time and efficiency. This is probably due to the hydrolysis of the salt in an aqueous BGE 

solution. An alternative involved the use of tert-butanol, one of the hydrolysis products, at 

different concentrations. Figure 9 clearly demonstrates the improved peak efficiency, in 

comparison with Figure 8. Each electropherogram was obtained at a different concentration 

of tert-butanol. A concentration of 10% (v/v) was the optimum, because it provided the 

highest resolution (1.45) and the highest peak efficiency (Figure 10). 

The validation of the method demonstrated good linearities and very low relative standard 

deviation values, indicating excellent run-to-run and day-to-day reproducibilities. In addition, 

the LOD and LOQ were determined to be 4.17 μg/mL and 13.92 μg/mL, respectively. 

4.2. Application 

As previously shown, after method development and validation, the optimum separation 

conditions are applied to a real sample. In this case, the optimum parameters were applied 

to a pharmaceutical formulation in order to detect and quantitate the acetylcholinesterase 

inhibitor (-)-Huperzine A. The extraction procedure followed for extracting Huperzine A 

from the pharmaceutical formulation proved to be effective because the enantiomer 

determined in the sample was in a relatively good agreement with the amount that was 

stated on the bottle. Therefore, the developed MEKC-UV method is able to control the 

purity of (-)-Huperzine A in pharmaceutical formulations. 
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Figure 9. Effect of the concentration of tert-butanol on the separation of the enantiomers of Huperzine 

A: (A) 5%, (B) 7.5%, (C) 10% and (D) 12% (v/v). Separation conditions: BGE: 50 mM sodium acetate (pH 

5.0), 0.2% (w/v) poly-LL-SUAV; pressure injection, 30 mbar for 3 s; applied voltage, 20 kV; temperature, 

25 °C; fused-silica capillary, 64 cm (55.5 cm effective length) x 50 μm i.d.; detection, 230 nm [55]. 
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Figure 10. Effect of the concentration of tert-butanol on the efficiency. Separation conditions: Same as 

Fig. 4. BGE: 50 mM sodium acetate (pH 5.0), 0.2% (w/v) poly-LL-SUAV; pressure injection, 30 mbar for 3 

s; applied voltage, 20 kV; temperature, 25 °C; fused-silica capillary, 64 cm (55.5 cm effective length) x 50 

μm i.d.; detection, 230 nm [55]. 

5. Concluding remarks 

Analysis of chiral and achiral analytes in natural, pharmaceutical and biological samples can 

be extremely difficult. Co-migration may occur, which can cause problems in detection, and 

the electropherograms obtained can be very complex. In addition, the analytes of interest are 

usually present in the matrices at very low concentrations. Therefore, all the analytical steps, 

including method development, detection and sample preparation, which is an essential 

stage in any analysis process, have to be optimized in order to obtain the desirable 

sensitivity, resolution, robustness and analysis time. 

Among the separation techniques that have so far been used for pharmaceutical, clinical and 

food analysis, CE has been established as a powerful analytical tool, which has rapidly been 

developed and matured since its introduction. CE and its related techniques offer a number 

of advantages, including low consumption of sample and solvents, high separation 

efficiency, rapid method development, fast migration times, versatility, and simple 

instrumentation. Another important aspect involves its ability to separate small and large 

molecules, charged and neutral species, inorganic and organic molecules, synthetic and 

natural compounds, along with proteins and peptides. 

The coupling of CE to MS provides nowadays a promising alternative to UV detection. The 

combination of high sensitivity, high selectivity, and high specificity provided by MS with 

high resolution, and high efficiency provided by CE makes it an attractive technique in 

different fields, such as clinical, forensic, pharmaceutical, and others. However, chiral 

analysis by use of CE-MS still needs some improvement, in regard to resolution and peak 
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capacity. In addition, contamination of the ionization source induced by the chiral selector 

added in the BGE is still considered a main problem, even though different procedures 

have, in recent years, been developed in order to overcome this limitation [87]. 

Author details 

Constantina P. Kapnissi-Christodoulou 

Department of Chemistry, University of Cyprus, Nicosia, Cyprus 

6. References 

[1] Terabe S, Otsuka K, Nishi H (1994) Separation of Enantiomers by Capillary 

Electrophoretic Techniques. J. Chromatogr. A 666: 295-319. 

[2] Chiari M, Nesi M, Righetti PG (1996) Capillary Electrophoresis in Analytical 

Biotechnology. Righetti, PG, Ed.; CRC Press, Inc.: Boca Raton, FL. 

[3] Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T (1984) Electrokinetic Separations 

with Micellar Solutions and Open-Tubular Capillaries. Anal. Chem. 56: 111-113. 

[4] Terabe S, Otsuka K, Ando T (1985) Electrokinetic Chromatography with Micellar 

Solution and Open-Tubular Capillary. Anal. Chem. 57: 834-841. 

[5] Terabe S, Ozaki K, Otsuka K, Ando T (1985) Electrokinetic Chromatography with 2-O-

carboxymethyl-β-Cyclodextrin as a Moving “Stationary” Phase. J. Chromatogr. 332: 

211-217. 

[6] Terabe S (2008) Micellar Electrokinetic Chromatography for High-Performance 

Analytical Separation. The Chemical Record 8: 291-301. 

[7] Ghosh D, Scheepens A (2009) Vascular Action of Polyphenols. Mol. Nutr. Food Res. 53: 

322-331. 

[8] Garcia-Lafuente Α, Guillamon E, Villares A, Rostagno MA, Martinez JA (2009) 

Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular 

Disease. Inflamm. Res. 58: 537-552. 

[9] Manach C, Mazur A, Scalbert A (2005) Polyphenols and Prevention of Cardiovascular 

Diseases. Curr. Opin. Lipidol. 16: 77-84. 

[10] Rodriguez-Delgado MA, Malovana S, Perez JP, Borges T, Garcia Montelongo FJ (2001) 

Separation of Phenolic Compounds by High-Performance Liquid Chromatography 

With Absorbance and Fluorimetric Detection. J. Chromatogr. A 912: 249-257. 

[11] Deng E, Zito SW (2003) Development and Validation of a Gas Chromatographic–Mass 

Spectrometric Method for Simultaneous Identification and Quantification of Marker 

Compounds Including Bilobalide, Ginkgolides and Flavonoids in Ginkgo Biloba L. 

Extract and Pharmaceutical Preparations. J. Chromatogr. A 986: 121-127. 

[12] Ren ZY, Zhang Y, Shi YP (2009) Simultaneous Determination of Nine Flavonoids in 

Anaphalis Margaritacea by Capillary Zone Electrophoresis. Talanta 78: 959-963. 

[13] Volpi N (2004) Separation of Flavonoids and Phenolic Acids from Propolis by Capillary 

Zone Electrophoresis. Electrophoresis 25: 1872-1878. 



 
Electrophoresis 36 

[14] Pazourek J, Gonzalez G, Revilla AL, Havel J (2000) Separation of Polyphenols in Canary 

Islands Wine by Capillary Zone Electrophoresis Without Preconcentration. J. 

Chromatogr. A 874: 111-119. 

[15] Prasongsidh BC, Skyrray GR (1998) Capillary Electrophoresis Analysis of trans- and cis-

Resveratrol, Quercetin, Catechin and Gallic Acid in Wine. Food Chem. 62: 355-358. 

[16] Arce L, Tena MT, Rios A, Valcarcel M (1998) Determination of trans-Resveratrol and 

Other Polyphenols in Wines by a Continuous Flow Sample Clean-up System Followed 

by Capillary Electrophoresis Separation. Anal. Chim. Acta 359: 27-38. 

[17] Nicolaou I, Kapnissi-Christodoulou CP (2010) Analysis of Polyphenols Using Capillary 

Zone Electrophoresis – Determination of the Most Effective Wine Sample Pre-

Treatment Method. Electrophoresis 31: 3895-3902. 

[18] Pietta P, Mauri P, Bruno A, Gardana C (1994) Influence of Structure on the Behavior of 

Flavonoids in Capillary Electrophoresis. Electrophoresis 15: 1326-1331. 

[19] Zotou A, Frangi E (2008) Development and Validation of an SPE-LC Method for the 

Simultaneous Determination of trans -Resveratrol and Selected Flavonoids in Wine. 

Chromatographia 67: 789-793. 

[20] Sun Y, Fang N, Chen DD, Donkor K.K (2008) Determination of Potentially Anti-

Carcinogenic Flavonoids in Wines by Micellar Electrokinetic Chromatography. Food 

Chem. 106: 415-420. 

[21] Rodriguez-Delgado MA, Perez JP, Corbella R, Gonzalez G, Garcia Montelongo FJ (2000) 

Optimization of the Separation of Phenolic Compounds by Micellar Electrokinetic 

Capillary Chromatography. J. Chromatogr. A 871: 427-438. 

[22] Cordova AC, Jackson LSM, Berke-Schlessel DW, Sumpio BE (2005) The Cardiovascular 

Protective Effect of Red Wine. J. Am. Coll. Surg. 200: 428-439. 

[23] Waterhouse AL (2002) Wine Phenolics. Ann. N.Y. Acad. Sci. 957: 21-36. 

[24] Nicolaou I, Kapnissi-Christodoulou CP (2012) Development of a Capillary 

Electrophoresis-Mass Spectrometry Method for the Determination of Rivastigmine in 

Human Plasma - Optimization of the Limits of Detection and Quantitation. 

Electrophoresis In press. 

[25] Shamsi SA (2002) Chiral Capillary Electrophoresis-Mass Spectrometry: Modes and 

Applications. Electrophoresis 23: 4036-4051. 

[26] Peri-Okonny U, Kenndler E, Stubbs RJ, Guzman NA (2003) Characterization of 

Pharmaceutical Drugs by a Modified Nonaqueous Capillary Electrophoresis-Mass 

Spectrometry Method. Electrophoresis 24: 139-150. 

[27] Zheng J, Jann MW, Hon YY, Shamsi SA (2004) Development of Capillary Zone 

Electrophoresis-Electrospray Ionization-Mass Spectrometry for the Determination of 

Lamotrigine in Human Plasma. Electrophoresis 25: 2033-2043. 

[28] Varesio E, Cherkaoui S, Veuthey JL (1998) Optimization of CE-ESI-MS Parameters for 

the Analysis of Ecstasy and Derivatives in Urine. J. High Resol. Chromatogr. 21: 653-

657. 

[29] Elhamili A, Bergquist J (2011) A Method for Quantitative Analysis of an Anticancer 

Drug in Human Plasma With CE-ESI-TOF-MS. Electrophoresis 32: 1778-1785. 



Method Development by Use of Capillary Electrophoresis  
and Applications in Pharmaceutical, Biological and Natural Samples 37 

[30] Kapnissi-Christodoulou CP, Zhu X, Warner IM (2003) Analytical Separations in Open-

Tubular Capillary Electrochromatography. Electrophoresis 24: 3917-3934. 

[31] Mayer BX (2001) How to Increase Precision in Capillary Electrophoresis. J. Chromatogr. 

A 907: 21-37. 

[32] Rosler M, Retz W, Retz-Junginger P, Dennle HJ (1998) Effects of Two-Year Treatment 

With the Cholinesterase Inhibitor Rivastigmine on Behavioural Symptoms in 

Alzheimer´s Disease. Behav. Neurol. 11: 211-216. 

[33] Nicolaou I, Kapnissi-Christodoulou CP (2011) Simultaneous Determination of Nine 

Acetylcholinesterase Inhibitors Using Micellar Electrokinetic Chromatography. J. 

Chromatogr. Sci. 49: 265-271. 

[34] Pokorna L, Revilla A, Havela J, Patocka J (1999) Capillary Zone Electrophoresis 

Determination of Galanthamine in Biological Fluids and Pharmaceutical Preparatives: 

Experimental Design and Artificial Neural Network Optimization. Electrophoresis 20: 

1993-1997. 

[35] Banks JF (1997) Recent Advances in Capillary Electrophoresis/Electrospray/Mass 

Sprectrometry. Electrophoresis 18: 2255-2266. 

[36] Niessen WMA, Tjaden UR, van der Greef J (1993) Capillary Electrophoresis-Mass 

Spectrometry. J. Chromatogr. 636: 3-19. 

[37] Zheng J, Shamsi SA (2003) Combination of Chiral Capillary Electrochromatography 

with Electrospray Ionization Mass Spectrometry:  Method Development and Assay of 

Warfarin Enantiomers in Human Plasma. Anal. Chem. 75: 6295-6305. 

[38] Frankfort SV, Ouwehand M, van Maanen MJ, Rosing H, Tulner LR, Beijnen JH (2006) A 

Simple and Sensitive Assay for the Quantitative Analysis of Rivastigmine and its 

Metabolite NAP 226-90 in Human EDTA Plasma Using Coupled Liquid 

Chromatography and Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 20: 

3330-3336. 

[39] Lefevre G, Allison M, Ho YY (2008) Pharmacokinetics and Bioavailability of the Novel 

Rivastigmine Transdermal Patch Versus Rivastigmine Oral Solution in Healthy Elderly 

Subjects. J. Clin. Pharmacol. 48: 246-252. 

[40] Sha Y, Deng C, Liu Z, Huang T, Yang B, Duan G (2004) Headspace Solid-Phase 

Microextraction and Capillary Gas Chromatographic-Mass Spectrometric 

Determination of Rivastigmine in Canine Plasma Samples. J. Chromatogr. B 806: 271-

276. 

[41] Bhatt J, Subbaiah G, Kambli S, Shah B, Nigam S, Patel M, Saxena A, Baliga A, Parekh H, 

Yadav G (2007) A Rapid and Sensitive Liquid Chromatography–Tandem Mass 

Spectrometry (LC–MS/MS) Method for the Estimation of Rivastigmine in Human 

Plasma. J. Chromatogr. B 852: 115-121. 

[42] Pommier F, Frigola R (2003) Quantitative Determination of Rivastigmine and its Major 

Metabolite in Human Plasma by Liquid Chromatography With Atmospheric Pressure 

Chemical Ionization Tandem Mass Spectrometry. J. Chromatogr. B 784: 301-313. 

[43] Enz A, Chappuis A, Dattler A (2004) A Simple, Rapid and Sensitive Method for 

Simultaneous Determination of Rivastigmine and its Major Metabolite NAP 226-90 in 



 
Electrophoresis 38 

Rat Brain and Plasma by Reversed-Phase Liquid Chromatography Coupled to 

Electrospray Ionization Mass Spectrometry. Biomed. Chromatogr. 18: 160-166. 

[44] Płotka JM, Biziuk M, Morrison C (2011) Common Methods for the Chiral Determination 

of Amphetamine and Related Compounds I. Gas, Liquid and Thin-Layer 

Chromatography. Trends in Analytical Chemistry 30: 1139-1158. 

[45] Li L, Zhou S, Jin L, Zhang C, Liu W (2010) Enantiomeric Separation of 

Organophosphorus Pesticides by High-Performance Liquid Chromatography, Gas 

Chromatography and Capillary Electrophoresis and their Applications to 

Environmental Fate and Toxicity Assays. J. Chromatogr. B 878: 1264-1276. 

[46] Wang Z, Ouyang J, Baeyens WRG (2008) Recent Developments of Enantioseparation 

Techniques for Adrenergic Drugs Using Liquid Chromatography and Capillary 

Electrophoresis: A Review. J. Chromatogr. B 862: 1-14. 

[47] Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F (2011) Recent Applications in 

Chiral High Performance Liquid Chromatography: A Review. Anal. Chim. Acta 706: 

205-222. 

[48] Ilisz I, Berkecz R, Péter A (2008) Application of chiral derivatizing agents in the high-

performance liquid chromatographic separation of amino acid enantiomers: A review. J. 

Pharmaceutical and Biomedical Analysis 47: 1-15. 

[49] König WA, Ernst K (1983) Application of Enantioselective Capillary Gas Chromatography 

to the Analysis of Chiral Pharmaceuticals. J. .Chromatogr. A 280: 135-141. 

[50] Giuffrida A, Tabera L, González R, Cucinotta V, Cifuentes A (2008) Chiral Analysis of 

Amino Acids from Conventional and Transgenic Yeasts. J. Chromatogr. B 875: 243-247. 

[51] Huang L, Lin JM, Yu L, Xu L, Chen G (2009) Improved Simultaneous Enantioseparation 

of β-Agonists in CE Using β-CD and Ionic Liquids. Electrophoresis 30: 1030-1036. 

[52] Suntornsuk L, Ployngam S (2010) Simultaneous Determination of R-(−)-, S-(+)-Baclofen 

and Impurity A by Electrokinetic Chromatography. J. Pharmaceutical and Biomedical 

Analysis 51: 541-548. 

[53] Dominguez-Vega E, Sanchez-Hernandez L, Garcia-Ruiz C, Crego AL, Marina ML (2009) 

Development of a CE-ESI-ITMS Method for the Enantiomeric Determination of the 

Non-Protein Amino Acid Ornithine. Electrophoresis 30: 1724-1733. 

[54] Deñola NL, Quiming NS, Catabay AP, Saito Y, Jinno K (2008) Effects of Alcohols on CE 

Enantioseparation of Basic Drugs With Native γ-CD as Chiral Selector. J. Sep. Sci. 31: 

2701-2706. 

[55] Tsioupi DA, Nicolaou I, Moore L, Kapnissi-Christodoulou CP (2011) Chiral Separation 

of Huperzine A Using CE - Method Validation and Application in Pharmaceutical 

Formulations. Electrophoresis 33: 516-522. 

[56] Mayer S, Schurig V (1992) Enantiomer Separation by Electrochromatography on 

Capillaries Coated With Chirasil-dex. J. High Res. Chromatogr. 15: 129-131. 

[57] Mayer S, Schurig V (1993) Enantiomer Separation by Electrochromatography in Open 

Tubular Columns Coated with Chirasil-Dex. J. Liq. Chromatogr. 16: 915-931. 

[58] Mayer S, Schurig V (1994) Enantiomer Separation Using mobile and Immobile 

Cyclodextrin Derivatives With Electromigration. Electrophoresis 15: 835-841. 



Method Development by Use of Capillary Electrophoresis  
and Applications in Pharmaceutical, Biological and Natural Samples 39 

[59] Yang J Hage DS (1994) Chiral Separations in Capillary Electrophoresis Using Human 

Serum Albumin as a Buffer Additive. Anal. Chem. 66: 2719-2725. 

[60] Tanaka Y, Terabe S (2000) Studies on Enantioselectivities of Avidin, Avidin-Biotin 

Complex and Streptavidin by Affinity Capillary Electrophoresis. Chromatographia 49: 

489-495. 

[61] Lin JM, Uchiyama K, Hobo T (1998) Enantiomeric Resolution of Dansyl Amino Acids 

by Capillary Electrochromatography Based on Molecular Imprinting Method. 

Chromatographia 47: 625-629. 

[62] Quaglia M, de Lorenzi E, Sulitzky C, Massolini G, Sellergren B (2001) Surface Initiated 

Molecularly Imprinted Polymer Films: A New Approach in Chiral Capillary 

Electrochromatography. Analyst 126: 1495-1498. 

[63] Kapnissi CP, Valle BC, Warner IM. (2003) Chiral Separations Using Polymeric 

Surfactants and Polyelectrolyte Multilayers in Open-Tubular Capillary 

Electrochromatography. Analytical Chemistry 75: 6097-6104. 

[64] Easson, LH, Stedman E (1933) Studies on the Relationship Between Chemical 

Constitution and Physiological Action. Biochem. J. 27: 1257-1266. 

[65] Nevado JJB, Penalvo GC, Sanchez JCJ, Mochon MC, Dorado RMR, Navarro MV (2009) 

Optimisation and Validation of a New CE Method for the Determination of 

Lansoprazole Enantiomers in Pharmaceuticals. Electrophoresis 30: 2940-2946. 

[66] Li W, Zhao L, Tan G, Sheng C, Zhang X, Zhu Z, Zhang G, Chai Y (2011) 

Enantioseparation of the New Antifungal Drug Iodiconazole and Structurally Related 

Triadimenol Analogues by CE with Neutral Cyclodextrin Additives. Chromatographia 

73: 1009-1014. 

[67] Wedig M, Laug S, Christians T, Thunhorst M, Holzgrabe U (2002) Do we Know the 

Mechanism of Chiral Recognition Between Cyclodextrins and Analytes? J. 

Pharmaceutical and Biomedical Analysis 27: 531-540. 

[68] Valkó IE, Billiet HAH, Frank J, Luyben KCAM (1994) Effect of the Degree of 

Substitution of (2-hydroxy)propyl-β-Cyclodextrin on the Enantioseparation of Organic 

Acids by Capillary Electrophoresis. J. Chromatogr. A 678: 139-144. 

[69] Zangara A (2003) The psychopharmacology of huperzine A: an alkaloid with cognitive 

enhancing and neuroprotective properties of interest in the treatment of Alzheimer´s 

disease. Pharm. Biochem. Behav. 75: 675-686. 

[70] Wang J, Warner IM (1994) Chiral Separations Using Micellar Electrokinetic Capillary 

Chromatography and a Polymerized Chiral Micelle. Anal. Chem. 66: 3773-3776. 

[71] Yarabe HH, Billiot E, Warner IM (2000) Enantiomeric Separations by Use of Polymeric 

Surfactant Electrokinetic Chromatography. J. Chromatogr. A 875: 179-206. 

[72] Palmer CP, Tanaka N (1997) Selectivity of Polymeric and Polymer-Supported Pseudo-

Stationary Phases in Micellar Electrokinetic Chromatography. J. Chromatogr. A 792: 

105-124. 

[73] Palmer CP, Terabe S (1997) Micelle Polymers as Pseudostationary Phases in MEKC:  
Chromatographic Performance and Chemical Selectivity. Anal. Chem. 69: 1852-1860. 



 
Electrophoresis 40 

[74] Luces CA, Warner IM (2010) Achiral and Chiral Separations Using MEKC, 

Polyelectrolyte Multilayer Coatings, and Mixed Mode Separation Techniques With 

Molecular Micelles. Electrophoresis 31: 1036-1043. 

[75] Palmer CP, Terabe S (1997) Micelle Polymers as Pseudostationary Phases in MEKC:  
Chromatographic Performance and Chemical Selectivity. Anal. Chem. 69: 1852-1860. 

[76] Shamsi SA, Akbay C, Warner IM (1998) Polymeric Anionic Surfactant for Electrokinetic 

Chromatography:  Separation of 16 Priority Polycyclic Aromatic Hydrocarbon 

Pollutants. Anal. Chem. 70: 3078-3083. 

[77] Dobashi A, Hamada M, Dobashi Y (1995) Enantiomeric Separation with Sodium 

Dodecanoyl-L-amino Acidate Micelles and Poly(sodium (10-undecenoyl)-L-valinate) by 

Electrokinetic Chromatography.  Anal. Chem. 67: 3011-3017. 

[78] Agnew-Heard KA, Sanchez Pena M, Shamsi SA, Warner IM (1997) Studies of 

Polymerized Sodium N-Undecylenyl-L-valinate in Chiral Micellar Electrokinetic 

Capillary Chromatography of Neutral, Acidic, and Basic Compounds. Anal. Chem. 69: 

958-964. 

[79] Billiot E, Thibodeaux S, Shamsi S, Warner IM (1999) Evaluating Chiral Separation 

Interactions by Use of Diastereomeric Polymeric Dipeptide Surfactants. Anal. Chem. 71: 

4044-4049. 

[80] Shamsi SA, Valle BC, Billiot F, Warner IM (2003) Polysodium N-Undecanoyl-L-

leucylvalinate:  A Versatile Chiral Selector for Micellar Electrokinetic Chromatography. 

Anal. Chem. 75: 379-387. 

[81] Zhu X, Kamande MW, Thiam S, Kapnissi CP, Mwongela SM, Warner IM (2004) Open-

Tubular Capillary Electrochromatography/Electrospray Ionization-Mass Spectrometry 

Using Polymeric Surfactant as a Stationary Phase Coating. Electrophoresis 25: 562-568. 

[82] Kapnissi CP, Akbay C, Schlenoff JB, Warner IM (2002) Analytical Separations Using 

Molecular Micelles in Open-Tubular Capillary Electrochromatography. Anal. Chem. 74: 

2328-2335. 

[83] Kamande MW, Kapnissi CP, Akbay C, Zhu X, Agbaria RA, Warner IM (2003) Open-

Tubular Capillary Electrochromatography Using a Polymeric Surfactant Coating. 

Electrophoresis 24: 945-951. 

[84] He J, Shamsi SA (2009) Multivariate Approach for the Enantioselective Analysis in 

MEKC-MS: II. Optimization of 1,1′-Binaphthyl-2,2′-Diamine in Positive Ion Mode. J. 

Sep. Sci. 32: 1916-1926. 

[85] He J, Shamsi SA (2009) Multivariate Approach for the Enantioselective Analysis in 

Micellar Electrokinetic Chromatography-Mass Spectrometry: I. Simultaneous 

Optimization of Binaphthyl Derivatives in Negative Ion Mode. J. Chromatogr. A 1216: 

845-856. 

[86] Hou J, Zheng H, Shamsi SA (2007) Separation and Determination of Warfarin 

Enantiomers in Human Plasma Using a Novel Polymeric Surfactant for Micellar 

Electrokinetic Chromatography–Mass Spectrometry. J. Chromatogr. A 1159: 208-216. 

[87] Simo C, Garcia-Canas V, Cifuentes A (2010) Chiral CE-MS. Electrophoresis 31: 1442-

1456. 


