
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322418872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 1

Efficient Transformation Estimation Using Lie

Operators: Theory, Algorithms, and

Computational Efficiencies

W. David Pan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53271

1. Introduction

In many pattern recognition problems such as handwritten character recognition, it would
be a challenge to design a good classification function, which can eliminate irrelevant
variabilities among objects of the same class, while at the same time, being able to identify
meaningful differences between objects of different classes. For example, in order for an
automatic technique to “recognize” a handwritten digit, the incoming digit pattern needs
to be accurately classified into one out of ten possible categories (from “0” to “9”). One
straightforward yet inefficient way of implementation would be to match the pattern with
a set of prototypes, where almost all possible instances (e.g., different sizes, angles, skews,
etc.) of the digit in each category must be stored, according to a certain distance measure.
Consequently, the pattern will be classified into the category where the closest match with
one of its prototype instances was found. This approach would lead to impractically large
prototype sets in order to achieve high recognition accuracy. An alternative method is to
use only one prototype for each category, where different “deformed” instances of the same
prototype can be generated by geometric transformations (e.g., thickened or rotated) during
the matching process so as to best fit the incoming digit pattern. To this end, the concept of
Lie operators for the transformations would be applicable.

More precisely, the pixel values of an incoming pattern (an digital image with N × N pixels)
can be viewed as the components of a N2-dimensional (N2-D) vector. One pattern, or one
prototype, is a point in this N2-D space. If we assume that the set of allowable transformations
is continuous, then the set of all the patterns that can be obtained by transforming one
prototype using one or a combination of allowable transformations is a surface in the N2-D
pixel space. For instance, when a pattern I is transformed (e.g., rotated by an angle θ)
according to a transformation s(I, θ), where θ is the only parameter, then the set of all the
transformed patterns

TI = {x|∃θ, for which x = s(I, θ)} (1)

©2012 Pan, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 1

2 Character Recognition

is a one-dimensional curve in the N2-D space. Here we assume that s is differentiable with
respect to both I and θ, and s(I, 0) = I. When the set of transformations is parameterized
by m parameters θi, where i = 1, 2, ..., m, TI becomes a manifold (topological surface) with
an intrinsic dimension being m. For instance, if the allowable transformations of character
images are rotations and scaling, the surface will be a 2-D manifold.

In practice, the search for the best matching deformation of a prototype for an incoming
pattern would be expensive computationally, if the set of all the patterns that can be obtained
by transforming one prototype using one or a combination of allowable transformations is
large. Therefore, computationally efficient transformation estimation methods for pattern
matching will be highly desired. It turns out that the surface of possible transforms of a
pattern can be approximated by its tangent plane at the pattern [18]. More specifically, a linear
approximation to the transform s(I, θ) of the pattern I can be obtained by the Taylor expansion
of s around θ = 0:

s(I, θ) = s(I, 0) + θ
∂s(I, θ)

∂θ
+ O(θ2) ≈ I + θL, (2)

where L = ∂s(I,θ)
∂θ is called the Lie Derivative of the transform s, which is also known as the

tangent vector.

To facilitate a better understanding of the key concepts of Lie derivatives, which establish
a connection between groups of transformations of the input space and their effect on a
functional of that space, as well as Lie operators, which can be used to approximate the
transformed pattern in a computationally efficient way, we first provide an explanation of the
theory in Section 2, by working through some concrete examples of Lie groups and algebras.
We then address in Section 3 the key problem of transformation estimation where both fast
and accurate estimation methods are desired. The computational efficiency of transformation
estimation algorithms based on Lie operator based approach is then investigated in Section
4, where several fast search algorithms for transformation estimation in video coding are
presented. Further investigation is conducted in Section 5, by comparing the Lie operator
based approach against transformation estimation based on a full affine transform model, in
terms of the tradeoffs between accuracies and computational efficiencies.

2. Theory

2.1. Lie groups

Being an algebraic structure, a group is a set with an operation that combines any two of
its elements to form a third element. To qualify as a group, the set and the operation must
satisfy four conditions, namely, closure, associativity, identity, and invertibility (see definition
below). For instance, the integers endowed with the addition operation form a group.

Definition: A set with elements gi, gj, gk, . . ., together with a combinatorial operation ◦ form
a group G if the following axioms are satisfied [5]:

(i) Closure: If gi ∈ G and gj ∈ G, then gi ◦ gj ∈ G.

(ii) Associativity: If gi ∈ G, gj ∈ G, and gk ∈ G, then (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk).

(iii) Identity: There exists an element e such that for every element gi ∈ G, we have

gi ◦ e = gi = e ◦ gi.

2 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 3

(iv) Inverse: Every group element gi has an inverse (called g−1
i), with the property

gi ◦ g−1
i = e = g−1

i ◦ gi.

Some groups carry additional geometric structures. For example, Lie groups are groups
that also have a smooth (differentiable) manifold structure. The circle and the sphere are
examples of smooth manifolds. Named after Sophus Lie, a nineteenth century Norwegian
mathematician who laid the foundations of the theory of continuous transformation groups,
Lie groups lie at the intersection of two fundamental fields of mathematics: algebra and
geometry. A Lie group has the property that the group operations are compatible with its
smooth structure. That is, the group operations are differentiable. More precisely, we have

Definition: A Lie group consists of a manifold Mn that parameterizes the group elements
g(x), x ∈ Mn and a combinatorial operation defined by g(x) ◦ g(y) = g(z), where the
coordinate z ∈ Mn depends on the coordinates x ∈ Mn , and y ∈ Mn through a function
z = Φ(x, y). There are two topological axioms for a Lie group [5].

(i) Smoothness of the group composition map: The group composition map z = Φ(x, y) is
differentiable.

(ii) Smoothness of the group inversion map: The group inversion map y = ψ(x), defined
by g(x)−1 = g(y), is differentiable.

Almost every Lie group is either a matrix group or equivalent to a matrix group, which greatly
simplifies the description of the algebraic, topological, and continuity properties of the Lie
groups. Let us consider the following example encountered in pattern recognition, where a
prototype pattern can be represented as a computer image P[i, j], which can be interpreted as
the discrete version of the continuous function f (X) = f (x, y). Assume that f is a differential
function that maps points X = (x, y) in the plane ℜ2 to ℜ, which is the intensity (or pixel
value) of the point X.

f : X ∈ ℜ2 �→ f (X) ∈ ℜ. (3)

Next, the image is deformed (e.g., rotate by an angle θ)) via a transformation Tθ

(parameterized by θ), which maps bijectively a point of ℜ2 back to a point of ℜ2:

Tθ : X ∈ ℜ2 �→ Tθ(X) ∈ ℜ2. (4)

For example, Tθ could represent rotating the pattern by an angle θ:

Tθ : (u, v) �→ (u cos θ − v sin θ, u sin θ + v cos θ). (5)

These transformations form a group G, which can be represented by a matrix group, with the
combinatorial operation ◦ being the matrix multiplication. In particular, each element g(θ) of
G is parameterized by one parameter θ:

g(θ) =

(

cos θ sin θ

− sin θ cos θ

)

. (6)

We show that G is indeed a group:

3Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

4 Character Recognition

(i) Closure: If g(θ1) ∈ G and g(θ2) ∈ G, then

g(θ1) ◦ g(θ2) =

(

cos θ2 sin θ2

− sin θ2 cos θ2

)(

cos θ1 sin θ1

− sin θ1 cos θ1

)

=

(

cos(θ1 + θ2) sin(θ1 + θ2)
− sin(θ1 + θ2) cos(θ1 + θ2)

)

= g(θ1 + θ2) ∈ G. (7)

(ii) Associativity: If g(θ1) ∈ G, g(θ2) ∈ G, and g(θ3) ∈ G, then

(g(θ1) ◦ g(θ2)) ◦ g(θ3) = g(θ1 + θ2) ◦ g(θ3) = g(θ1 + θ2 + θ3), (8)

and
g(θ1) ◦ (g(θ2) ◦ g(θ3)) = g(θ1) ◦ g(θ2 + θ3) = g(θ1 + θ2 + θ3). (9)

Thus
(g(θ1) ◦ g(θ2)) ◦ g(θ3) = g(θ1) ◦ (g(θ2) ◦ g(θ3)). (10)

(iii) Identity: There exists an element e = g(0) = I2 =

(

1 0
0 1

)

such that for every element

g(θ) ∈ G, we have
g(θ) ◦ e = g(θ) = e ◦ gi.

(iv) Inverse: Every group element g(θ) has an inverse g(θ)−1 = g(−θ), such that

g(θ) ◦ g(θ)−1 = I2 = e = g(θ)−1 ◦ g(θ).

We further show that G is also a Lie group with one parameter. To verify the two topological
axioms for a Lie group, consider the group elements g(θ1), g(θ2), and g(θ3), which are
parameterized by θi ∈ M, where M is one-dimensional curve (a smooth manifold). Given
the combinatorial operation g(θ1) ◦ g(θ2) = g(θ3), it follows that the group composition map

θ3(θ1, θ2) = θ1 + θ2 (11)

is differentiable. Furthermore, given the inverse g(θ1)
−1 = g(θ2) the group inversion map

θ2(θ1) = −θ1 (12)

is also differentiable.

The study of Lie groups can be greatly simplified by linearizing the group in the neighborhood
of its identity. This results in a linear vector space called a Lie algebra [4]. The Lie algebra retains
most of the properties of the original Lie group. Next, we use again the rotation of an image
as an example of transformation to illustrate how to linearize the Lie transformation group.

2.2. Lie operators and Lie algebras

Assume that the intensity of the original 2D image at location (u, v) is given by f (u, v), where
f is a differentiable function. In order to determine the intensity of the rotated image at a point
(x, y), we need to calculate the location from which the rotation operation originated. This can
be accomplished by taking the inverse transformation as

T−1
θ : (x, y) �→ (x cos θ + y sin θ,−x sin θ + y cos θ). (13)

4 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 5

Let s(f , θ)(x, y) denote the intensity of the rotated image at point (x, y), then

s(f , θ)(x, y) = f (x cos θ + y sin θ,−x sin θ + y cos θ). (14)

That is, the intensity of the rotated pattern at point (x, y) equals to the intensity of the original

pattern at the coordinate found by applying T−1
θ on (x, y). Differentiating s with respect to θ

around θ = 0 gives

∂s(f , θ)

∂θ
(x, y)

∣

∣

∣

∣

θ=0

=
∂ f

∂x
(x, y) ·

∂

∂θ
(x cos θ + y sin θ)

∣

∣

∣

∣

θ=0

+
∂ f

∂y
(x, y) ·

∂

∂θ
(−x sin θ + y cos θ)

∣

∣

∣

∣

θ=0

= y
∂ f

∂x
(x, y)− x

∂ f

∂y
(x, y) (15)

Using Taylor series expansion, we have

s(f , θ)(x, y) = f (x, y) + θ

[

y
∂ f

∂x
(x, y)− x

∂ f

∂y
(x, y)

]

+ o(‖θ‖2) f (x, y). (16)

Thus the intensity of the rotated pattern image can be approximated by

s(f , θ)(x, y) ≈ f (x, y) + θ · Lθ(f (x, y)), (17)

where Lθ is the so-called Lie operator, given by

Lθ = y
∂

∂x
− x

∂

∂y
(18)

Each rotated image with a certain angle θ corresponds to a point from a Lie group with one
parameter.

More generally, if the transformation group is a Lie group with m parameters Θ =
(θ1, θ2, . . . , θm), then after transformation, the intensity of the deformed image, s(f , Θ) is
related to the original image f by the following approximation:

s(f , Θ) = f + θ1 · Lθ1
(f) + θ2 · Lθ2

(f) + · · ·+ θm · Lθm
(f) + o(‖Θ‖2)(f), (19)

where the operators Lθ1
, Lθ2

, · · · , Lθm
are said to generate a Lie algebra, which is a linear vector

space. A vector space is a mathematical structure formed by a collection of vectors, which may
be added together and multiplied by numbers (scalars). More precisely,

Definition: A Lie algebra is a vector space V over a field F, with an product operation V ×
V → V denoted by [X, Y], which is called the Lie bracket of X ∈ V and Y ∈ V, with the
following axioms [16]:

(i) The bracket operation is bilinear.

(ii) [X, X] = 0, ∀X ∈ V.

(iii) Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0. (X, Y, Z ∈ V).

5Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

6 Character Recognition

In axiom (i), the bilinear operation refers to a function that combining two elements of
the vector space to yield a third element in the vector space, which is linear in each of its
arguments. As an example, matrix multiplication is bilinear: M1(n, n)M2(n, n) = M3(n, n).

To illustrate the concept of Lie brackets, let us consider another transformation with three
parameters (a, b, c)

T−1
(a,b,c)

: (x, y) �→ (ax + c, by), (20)

which corresponds to the matrix group

g(a, b, c) =

⎛

⎝

a 0 0
0 b 0
c 0 1

⎞

⎠ . (21)

Similar to the group g(θ) in (6), it can be shown that g(a, b, c) is also a Lie group. However,
the intensity of the pattern image after this new transformation is given by

s(f , a, b, c)(x, y) = f (ax + c, by). (22)

By following the procedure outlined in (15) through (18), we can obtain the three Lie operators
as follows:

La = x
∂

∂x
, Lb = y

∂

∂y
, and Lc =

∂

∂x
. (23)

These three Lie operators generate a Lie algebra, with the Lie bracket between any two
operators X and Y defined as

[X, Y] = X ◦ Y − Y ◦ X, (24)

where X ◦ Y denotes the operation of applying the operator Y, followed by applying the
operator X.

It can be easily checked that the Lie bracket [X, Y] is bilinear (axiom (i) of Lie algebra). Next,
for any operator X ∈ La, Lb, Lc, we have [X, X] = X ◦ X − X ◦ X = 0, thereby satisfying axiom
(ii). Verifying the Jacob identify requires additional efforts. First, we have

La ◦ Lb = x
∂

∂x

(

y
∂

∂y

)

= xy
∂2

∂x∂y
= y

∂

∂y

(

x
∂

∂x

)

= Lb ◦ La, (25)

Hence
[La, Lb] = La ◦ Lb − Lb ◦ La = 0. (26)

Similarly,

[La, Lc] = La ◦ Lc − Lc ◦ La = x
∂

∂x

(

∂

∂x

)

−
∂

∂x

(

x
∂

∂x

)

= x
∂2

∂x2
−

(

∂

∂x
+ x

∂2

∂x2

)

= −
∂

∂x
= −Lc, (27)

and

[Lb, Lc] = Lb ◦ Lc − Lc ◦ Lb = y
∂

∂y

(

∂

∂x

)

−
∂

∂x

(

y
∂

∂y

)

= y
∂2

∂y∂x
− y

∂2

∂x∂y
= 0. (28)

6 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 7

Therefore,

[La, [Lb, Lc]] = [La, 0] = 0, [Lb, [Lc, La]] = [Lb, Lc] = 0, and [Lc, [La, Lb]] = [Lc, 0] = 0. (29)

It follows that the Jacob identity holds.

The result of applying the three Lie operators to a function f , which is a 2D image in our
example, is the set of vectors known as tangent vectors (also called the Lie derivatives of the
transformation). These tangent vectors generate the so-called tangent space. Each point in
the tangent space corresponds to a transformation, and any transformation of the Lie group
g(a, b, c) corresponds to a point in the tangent space.

2.3. Lie operators on discrete images

As shown in (17), given a continuous image f , by applying the Lie operator (Lθ) for rotation,
we can approximate the rotated image as s(f , θ) = f + θ · Lθ(f). However, in many practical
applications, we need to deal with computer images. Given a discrete image I, in order to
apply a Lie operator, which involves derivatives, we first convert I into a continuous one (f)
by means of convolution: f = I ∗ gσ, where gσ is a 2D Gaussian function defined in [18] as:

gσ = exp

(

−
x2 + y2

2σ2

)

. (30)

In our study, besides rotation (R), we will consider several other types of transformations,
such as scaling (S), parallel deformation (P), and diagonal deformation (D), as defined in
Table 1. To distinguish the Lie operators for different types of transformations, we use LR to

denote the Lie operator for rotation. After applying LR = y ∂
∂x − x ∂

∂y , we have

LR(f) =

(

y
∂

∂x
− x

∂

∂y

)

(I ∗ gσ) = y

(

I ∗
∂gσ

∂x

)

− x

(

I ∗
∂gσ

∂y

)

. (31)

To avoid high computational complexity associated with the convolution operation and the
calculation of the partial derivatives of the Gaussian function in (30), we can apply the Lie
operator on the discrete image directly, by using the following approximations [14].

LR(f) ≈ LR(I) =

(

y
∂

∂x
− x

∂

∂y

)

I = y

(

∂I

∂x

)

− x

(

∂I

∂y

)

, (32)

where

∂I

∂x
≈

1

2
[I(x + 1, y)− I(x − 1, y)] , and

∂I

∂y
≈

1

2
[I(x, y + 1)− I(x, y − 1)] . (33)

After the Lie operator is applied, the rotated version of the image I can then be easily obtained
as

IR = I + θ × LR(I). (34)

For small angles (θ), the approximation tends to be reasonably good.

Similarly, we can obtain the transformed images for other types of transformations, based
on their associated Lie operators (summarized in the third column of Table 1), which can be
derived in a similar fashion to LR.

7Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

8 Character Recognition

Transformation
Transformation matrix Tθ Lie operator and

(adapted from [18]) the transformed image

Rotation (R)

(

cos θ, − sin θ
sin θ, cos θ

)

LR = y ∂
∂x − x ∂

∂y

IR = I + θ × LR(I)

Scaling (S)

(

1 + θ, 0
0, 1 + θ

)

LS = x ∂
∂x + y ∂

∂y

IS = I + θ × LS(I)

Scaling (Sx)

(

1 + θ, 0
0, 1

)

LSx
= x ∂

∂x
ISx

= I + θ × LSx
(I)

Scaling (Sy)

(

1, 0
0, 1 + θ

)

LSy
= y ∂

∂y

ISy
= I + θ × LSy

(I)

Parallel Deformation (P)

(

1 + θ, 0
0, 1 − θ

)

LP = x ∂
∂x − y ∂

∂y

IP = I + θ × LP(I)

Diagonal Deformation (D)

(

1, θ
θ, 1

)

LD = y ∂
∂x + x ∂

∂y

ID = I + θ × LD(I)

Table 1. Six types of transformation and their associated Lie operators (θ is the degree of the
transformations).

We can see from (32) that only simple subtractions and multiplications are involved in
applying the Lie operator to obtain LR(I), which needs to be calculated just once, since a
different transformed version IR corresponding to a different degree of transformation (θ) can
be obtained by using the same LR(I). Therefore, the implementation of Lie operators has
fairly low computational complexity.

2.4. Lie operators for transformation estimation

Lie operators were proposed in [18] as an effective method for handling transformation
invariance in handwritten digit pattern recognition [19]. In order for an automatic method to

“recognize” a handwritten digit, the incoming digit pattern needs to be accurately classified
into one out of ten possible categories. one method is to use an only one prototype image (I)
for each category, with different “deformed” instances, s(I, Θ), of the same prototype image
being generated by geometric transformations during the matching process so as to best fit
the incoming digit pattern. As mentioned in the section 1, when the set of transformations
is parameterized by m parameters θi ∈ Θ (rotation, scaling, etc.), the transformed image
s(I, Θ) is a surface (manifold) with intrinsic dimension of at most m. In general, such a
manifold is not linear. Matching a deformable prototype to an incoming pattern now amounts
to finding the point on the manifold that is at a minimum distance from the point in the
pixel space corresponding to the incoming pattern. Because the manifold has no analytical
expression, the matching process can be very difficult. However, if the set of transformations
happens to be linear in the pixel space, then the manifold is a linear subspace (a plane).
The matching procedure is then reduced to finding the shortest distance between a point
(vector) and a plane, or between two tangent planes corresponding to their original manifolds,
which is the idea of tangent distance in [18]. While the tangent distance is able to capture the

transformation invariance, it involves solving of a complicated least-square problem, which is
not only computationally expensive, but also prone to numerical instability issues associated
with solving linear systems. Therefore, conventional Euclidean distance between patterns,

8 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 9

due to its fast and easy calculation, was also used in conjunction with the tangent distance in
actual implementation.

On the other hand, for many pattern recognition tasks, e.g., character recognition, a set of
allowable deformations of the prototype might have been known a priori. Therefore, one can
generate on-the-fly a set of varying transformed versions of the same prototype I, by using the
Lie operators associated with the transforms, in a computationally efficient way. For example,
a set of rotated images IR(θi), where i = 1, 2, . . . , n, can be readily obtained by

IR(θi) = I + θi × LR(I), (35)

where LR(I) can be pre-computed and shared by calculations of different IR(θi).

Thus, transformation estimation refers to matching an incoming pattern image P to the “closest”
IR(θi), which has the shortest distance with P. For simplicity, the Euclidean distance could be
used.

In transformation estimation, we search for a value for θ that best matches the degree of
transformation the prototype has undergone in relation to the incoming pattern. If the best θ
value is found to be zero in the case of rotation, then the resultant rotated version will be the
same as the original prototype. If θ has a larger search range, then the probability of finding a
better match may be increased; however, the complexity of searching will be increased as we
have to examine more candidates. On the other hand, the step size of θ is also an important

parameter that controls the “granularity” of the searching. By decreasing the step size, we
may be able to enlarge the searching range of θ without increasing the search complexity. We
can further lower the searching complexity by using variable step sizes. For example, we can
employ finer-granular searching by taking smaller step sizes for small θ values, whereas the
step size increases as the search drifts away from the centers of the range of allowable θ values
[11].

Transformation estimation can be viewed as a generalized operation of the translation
motion estimation. In the following, we present a case study to illustrate the design of
computationally efficient transformation estimation algorithms based on Lie operators, by
selecting the subject of local motion estimation in video coding, where both accurate and
fast motion estimation is critical [12]. We then discuss several methods in which multiple
Lie operators can be combined to detect smaller degrees of object motions in video frames
such as scaling, rotations and deformations, with varying computational complexities. We
then provide both analytical and empirically obtained results regarding the tradeoffs between
estimation accuracies and computational complexities for these methods [13].

3. Transformation estimation in video coding

Motion estimation is a critical component of almost every video coding system [10][17][23].
Most compression techniques exploit the temporal redundancy that exists between the
succeeding frames. In motion estimation, we search for any object in the previous frame that
provides a good match of an object in the current frame within a sequence of images (frames).
Motion compensation refers to representing objects in the current frame by their match objects
in the previous frame. Conventional motion estimation algorithms in video coding consider

9Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

10 Character Recognition

only translations as an approximation to a combination of potential motions of objects in a
video scene, including scaling, rotation, deformations and so on.

3.1. Block-based translation motion estimation

Block-based motion estimation [10][23] has been adopted in international standards for video
coding such as MPEGs and H.264, where each frame is partitioned evenly into square blocks.

Motion estimation is applied on a block-by-block basis so that each block is associated with
a motion vector. Motion vectors are used to produce a motion-compensated prediction of
a frame to be transmitted from a previously transmitted reference frame [1][7]. Motion
estimation enables us to transmit the frame difference as an update between the current frame
and the motion-compensated prediction of the current frame from the previous frame, rather
than the entire current frame, thereby achieving compression by user fewer bits to code the
current frame.

In block-based motion estimation, each frame is divided into evenly partitioned square blocks
(4 × 4, 8 × 8, . . ., etc.). We attempt to predict the current frame (F2) from the previous frame
(F1). The prediction is obtained by taking the best match of each block of F2 within the
searching window of F1. The match criterion is typically based on mean square error (MSE).

The block with the minimum MSE is considered to be the best match, and its associated
motion vector (dx, dy) is given by

(dx, dy) = arg min
(du,dv)∈[−R,R]

{MSEm,n =
B−1

∑
i,j=0

[(F2(x, y)− F1(x + du, y + dv)]2}, (36)

where B is the block size, [−R, R] is the searching window, and x = m × B + i, and y =
n × B + j for the block (m, n). Note that the motion vector for a still block is (0, 0).

After finding in F1 the best match block of each block in F2, the prediction frame (P1) of F2 can
then be constructed. To determine the accuracy of the prediction, the PSNR between F2 and
P1 is calculated as

PSNR = 10 log10

2552

MSEavg
, (37)

where MSEavg is the average mean square error between F2 and P1 as given by

MSEavg =
M

∑
m=0

N

∑
n=0

MSEm,n

M × N
. (38)

Note that MSEm,n is defined in (36), and M × N is the total number of blocks in a frame.

Conventional motion estimation algorithms in video coding consider only translations as an
approximation to a variety of object motions; therefore, they have limitations in capturing
potential motions such as scaling, rotations and deformations in a video scene other than
the translation. The reason for the widespread use of the translation model lies partly in its
simplicity - translation model can be readily characterized by displacement motion vectors
and can thus be implemented with much lower complexity than other non-linear motion
models used to describe non-translation motions. Nonetheless, the accuracy of the motion
estimation would be sacrificed by considering the translation model alone.

10 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 11

3.2. Block-based transformation estimation

Non-translational transformation estimation can be introduced into video coding to further
increase the overall motion estimation accuracy. More specifically, the conventional
(translation) motion estimation is applied on the previous frame (F1) based on the current
frame (F2). We can construct a predicted frame P (of the current frame) from the previous
frame by using the resulting motion vectors associated with each block in the current frame
(see Fig. 4). The accuracy of the predicted frame P (relative to the current frame F2) can be
represented by PSNR1. Next, transformation estimation based on the Lie operators is applied
on the match blocks (BP) in the predicted frame P to further improve the motion estimation
accuracy. For each block BP in P, we search for the best parameter θ from the set of candidate
parameters that yields the smallest mean square error between the transformed version BT

and the corresponding block (BC) in the current frame F2. Consequently, a new predicted
frame PT can be formed by the resulting blocks of BT. The accuracy of the newly predicted
frame PT can be represented as PSNR2. As expected, PT will become a better prediction of
the current frame than P, thereby achieving an increased accuracy in motion estimation and
prediction. The accuracy of the motion estimation can be measured by the PSNR between the

Figure 1. The transformation estimation system using a Lie operator: We search for the best θ in the set
of candidates [θ1, θ2, . . ., θM] such that the transformed block BT of the block BP in the prediction frame
P will have the smallest MSE compared to the corresponding block BC in F2.

current frame and the predicted frame. The improved accuracy due to the motion models is
calculated as (PSNR2 − PSNR1). The accuracy of the motion estimation can be improved by
considering other types of transformations as well.

4. Computational efficiencies of transformation estimation using multiple

Lie operators

We first examine the full search method that exhaustively searches for the best combination
of four types of Lie operators (R, S, P and D). In order to reduce the high computational
complexity associated with the full search method, we then consider the following three

11Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

12 Character Recognition

parameter-search methods: dynamic programming (DP)-like search, iterative search, and serial
search. They combine the Lie operators in different ways, with varying accuracy-complexity
tradeoffs [13].

4.1. Full search

Fig. 2 illustrates all possible combinations of the Lie operators for rotation, scaling, parallel
deformation, and diagonal deformation. The highlighted path shows one combination (D →
P → S → R), which means that block BP will be first diagonally deformed, and then the
deformed block will go through the parallel deformation. The resultant block will be scaled
and then rotated to obtain BT . The degree of motions (θ) associated with each participating
operator is optimized by the searching procedure illustrated in Fig. 1. The full search is the

D

P

D

P

D

P

D

P

B
P

B
T

R

S S S S

R R R

Figure 2. The trellis structure of the combined Lie operators. The output block BT is expected to provide
more accurate prediction than the input block BP.

most straightforward and yet the most computationally expensive method. In this method,
we search through all possible (44 = 256) paths that start from block BP (of the predicted
frame P) and end on the transformed block BT (of a more accurately predicted frame than P),
and select the path (i.e., the combination of the four Lie operators) whose output block BT is
the most accurately predicted version of block BC in the current frame.

Assume that x is the computational complexity of motion estimation for a single Lie operator.
Thus the complexity associated with any path of four operators from BP to BT in Fig. 2 is 4x.
Since we need to search all 256 possible paths, the overall complexity of the full search method
will be 1024x.

We can reduce the complexity of this brute-force search approach by dividing the estimation
process into four stages, with each stage corresponding to one column of operators in Fig. 2.
In the first stage, there will be four estimation operations for R, S, P, and D, respectively, with
complexity being 4x. In the second stage, we will apply the same four operators on one of
the four candidate transformed blocks generated by one of the four operators in stage one.
For example, starting with R in the first stage, we will examine R → R (R in the first stage,
followed by R in the second stage), R → S, R → P, and R → D. Note that applying the
R operator again on a block already rotated by the best θ value as found in the first stage
of estimation would not be beneficial in general. However, further gains in the estimation
accuracy might be achievable by considering other combinations such as R → S, R → P, and
R → D. Therefore, the total complexity of the second stage will be 4 × 4x = 16x. Likewise,
the complexity of the third stage will be 4 × 16x = 64x. In the last stage, the complexity will
amount to 4 × 64x = 256x. Therefore, the overall complexity of the reduced-complexity full

12 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 13

search method is 340x (= 4x + 16x + 64x + 256x), merely 1/3 of that of the brute-force full
search method. Even so, the complexity of the full search is still unacceptably high in practical
applications. In order to further reduce the complexity, let us consider the following search
methods.

4.2. Dynamic-programming-like search

Compared to the full search, the DP search method is a sub-optimal search method, which
has a flavor of the dynamic-programming (DP) solution in finding the shortest path through
a weighted graph [2]. Similar to the Viterbi algorithm used in the decoding of convolutional
codes [9], the DP search method keeps only those “survivors” (i.e., the best result obtained
by each operator) in each stage (of the four stages in Fig. 2) for further searching operations.
In the first stage, there are four transformed blocks (“survivors”), corresponding to the four
Lie operators considered, as a result of the estimation operations (with complexity being 4x).
In the second stage, four operators will be again applied to the survivors of stage 1. Take
operator R as an example. Out of the four possible partial paths (R → R, S → R, P → R,
and D → R) entering into R in the second stage, we choose the one that gives a transformed
version with the smallest MSE value (as compared against the block in the current frame to
be predicted). The transformed block so obtained will be stored as the survivor for operator
R in the second stage, so will its originating operator in the first stage. Information about all
other inferior partial paths will be discarded. In order to obtain other survivor blocks for stage
two, the same procedure will be repeated for the other three operators. Therefore, the total
complexity for stage two will be 4 × 4x = 16x. The four surviving blocks obtained in stage
two will then be used for obtaining another four survivors in stage three in the same fashion,
with the partial paths leading to the survivors getting longer. The same procedure will be
repeated for stage four in order to obtain yet another four survivors, one of which with the
least MSE will be the final winner. Hence the overall complexity for the DP-like method is 52x
(= 4x + 3 × 16x), which is less than 1/6 of that of the reduced-complexity full search method.
Although there is no guarantee of optimality in theory for this DP-like method, we expect its
search results to be reasonably close to those yielded by the full search method.

4.3. Iterative search

To further reduce computational complexity, we introduce the iterative search method that
performs the motion-parameter estimation through multiple iterations. In each iteration, we
choose the best Lie operator (Fig. 3). For example, in the first iteration, the S operator may
turn out to be the best operator. The scaled block will go through the same estimation process
in the next iteration, which will output a transformed block with lower MSE values. Here we
consider only four iterations to ensure fair comparison between this method and the other
two methods previously discussed. Therefore, the overall complexity of this method will be
4 × 4x = 16x, which is slightly less than 1/3 of the complexity of the DP-like method.

4.4. Serial search

In the foregoing two search methods, the best quadruplet of Lie operators will not be known
until the search is completed. Their complexities are higher than a simplified search method,
where Lie operators are applied sequentially in a pre-determined order (e.g., the order of R →
S → P → D in Fig. 4). Although this serial search method has the lowest complexity (4x), it

13Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

14 Character Recognition

R

S

D

P

Operator

Selection
B
P B

T

Figure 3. Iterative search. In each iteration, the best operator is selected as the one with the largest MSE
reduction on the input block BP. The transformed block BT generated by the best operator found will be
further transformed optimally in the next iteration.

is unlikely to provide very accurate transformation estimation due to the non-communicative
nature of the transformations.

R S DPB
P

B
T

Figure 4. Serial search: we apply R, S, P and D operators sequentially to obtain the transformed block
BT .

4.5. Comparison of computational complexity

As summarized in Table 2, the complexity of the DP-like search is 13 times that of the serial
search and the complexity of the iterative search is 4 times that of the serial search.

Search Method Complexity

DP-like 52x
Iterative 16x

Serial 4x

Table 2. Complexities required by the three search methods (x is the complexity associated with
estimation using an individual operator). θ was chosen from [−0.14, 0.14], with a step size of 0.02.

4.6. Simulation results

We tested the above mentioned methods on three standard video sequences “Table Tennis”,
“Mobile Calendar”, and “Tempete”, all in the CIF format (288 × 352). Some samples frames
of these sequences are shown in Figure 6.

In the simulations, a block size of (4 × 4) was used. The size of the search window is chosen
to be ±15 pixels in translation motion estimation that precedes the transformation estimation
using Lie operators. The search range of ±0.14 (with step size being 0.02) is chosen for θR, θS,
θP, and θD for the DP-like, iterative, and serial search methods.

Simulation results are illustrated in Fig. 6, Fig. 7, and Fig. 8 for the three test sequences. Some
statistics (maximum, minimum and the average values) of the PSNR improvements effected
by the three search methods are listed in Table 3. We can see in Table 3 that the DP-like method
significantly increases the accuracy of the predicted frames of all three sequences by as high

14 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 15

(a) (b)

(c) (d)

(e) (f)

Figure 5. Sample frames of the video sequences. (a) The 1st frame of the “Table Tennis” sequence. (b)
The 20th frame of the “Table Tennis” sequence. (c) The 1st frame of the “Mobile Calendar” sequence. (d)
The 200th frame of the “Mobile Calendar” sequence. (e) The 1st frame of the “Tempete” sequence. (f)
The 50th frame of the “Tempete” sequence.

15Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

16 Character Recognition

as 2.6 dB and above 2.1 dB on average. The largest improvement (2.47 dB on average) is
observed in “Mobile Calendar”. This may be attributed to the existence of a great deal of
non-translational motions in “Mobile Calendar” (e.g., the ball keeps rotating, and the camera
is zooming out). On the other two sequences, about 2.1 dB increase can be achieved by the
DP-like method.

Search Method
Table Tennis Mobile Calendar Tempete

Max Min Avg Max Min Avg Max Min Avg

DP-like 2.67 0.68 2.19 2.65 2.15 2.47 2.30 1.46 2.12

Iterative 2.12 0.45 1.75 2.31 1.73 2.04 1.81 1.19 1.66

Serial 1.70 0.30 1.35 1.84 1.36 1.60 1.39 0.91 1.27

Table 3. Increased estimation accuracy (in dB) for the three video sequences.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Frame Index

DP−like

Iterative

Serial

Figure 6. PSNR improvements (in dB) for “Tennis”.

With less than 1/3 of the complexity required by the DP-like method, the iterative search can
deliver an impressive estimation accuracy, especially on the “Mobile Calendar" (up to 2.31
dB and about 2dB on average). Similar to the case with the DP-like method, slightly lower
PSNR improvements are observed on the other two sequences: on average, 1.75 dB and 1.66
dB for the sequences “Table Tennis" and “Tempete”, respectively. As can be observed in Fig. 6,
numerous deep plunges of the PSNR improvement (occurring in a range of frames around,
e.g., 90 and 149) affect adversely the average PSNR improvement for “Table Tennis”. These
plunges occur whenever there is a scene change. For “Tempete”, although there is no major
scene change, a continuous influx of large number of new objects (e.g., small leaves blown by
wind) tends to make transformation estimation less effective.

With only one quarter of the complexity required by the iterative search, the serial search
achieves average PSNR improvements of 1.60dB, 1.35dB and 1.27 dB on “Mobile Calendar”,
“Table Tennis”, and “Tempete”, respectively. The accuracy of this method is the lowest, which

16 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 17

0 50 100 150 200 250 300

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Frame Index

DP−like

Iterative

Serial

Figure 7. PSNR improvements (in dB) for “Mobile Calendar”.

0 50 100 150 200 250
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Frame Index

DP−like

Iterative

Serial

Figure 8. PSNR improvements (in dB) for “Tempete”.

17Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

18 Character Recognition

indicates that changing the order of the Lie operators in a sequence does affects the motion
estimation accuracy.

We also measured the actual computation times of the three search methods on a PC running
Windows XP (with 3.40 GHz Pentium 4 CPU and 2GB RAM). The total running time of the
subroutine for each method was first measured over all the frames in a test sequence. Then the
average running time per block for each search method was calculated and listed in Table 4.
On average, Time (DP like search) / Time (Serial Search) = 13.12, and Time (Iterative) / Time
(Serial Search) = 4.03, which is in agreement with the analytical results listed in Table 2.
As a reference, the average time was also measured for executing the subroutine for the
conventional translation-only motion estimation that precedes the transformation estimation.
As shown in Table 4, the complexity of the DP-like search, iterative search and the serial search
methods is 69%, 21% and 5%, respectively, relative to that of the translation-only motion
estimation method.

Search Method
Table Mobile

Tempete Average
Normalized

Tennis Calendar Complexity

DP-like 2.469 2.500 2.470 2.480 0.69
Iterative 0.763 0.766 0.756 0.762 0.21

Serial 0.181 0.195 0.192 0.189 0.05

Table 4. Computation times (in ms / block) of the three methods for three video sequences. The
normalized complexity is calculated as the ratio between the average computation time for each search
method and the reference time (3.60 ms/block) for translation-only motion estimation method.

Fig. 9 shows the empirical tradeoffs between the accuracies of these three search methods
and their complexities. The best performance achievable is again observed in “Mobile
Calendar” - an increase of 2.47 dB, 2.04 dB and 1.60 dB can be achieved with additional
computational complexity of approximately 69%, 21% and 5% of that of the translation-only
motion estimation.

5. Comparison with full affine transformation model

We want to compare the computational complexity of transformation estimation using
Lie-operators to the complexity of transformation estimation using a full transformation
model. We consider the affine model [8, 20, 21, 24], which was widely used in the literature
to detect non-translation motions due to its ability to offer good compromise between
complexity and performance. In its generic form, the 6-parameter affine model can be
expressed as

(

x
y

)

�→

(

u
v

)

=

(

a1x + a2y + a3

b1x + b2y + b3

)

(39)

Since a3 and b3 in (39) are translational displacements, the 6-parameter affine model can
be simplified to a 4-parameter model by estimating the translation motions using the
conventional block matching method. In fact, even if the more complex gradient descent
method is used for motion parameter estimation, to assure convergence, translation motion
estimation is often employed as an initial stage that computes a coarse estimate of the
translation component of the set of the motion parameters, so that the starting point of the
gradient descent should be within the “basin” of the global minimum [3, 8].

18 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.4

1.6

1.8

2

2.2

2.4

Normalized Complexity

P
S

N
R

 I
m

p
ro

v
e
m

e
n
t
(i
n
 d

B
)

Table Tennis

Mobile Calendar

Tempete

Figure 9. Increased accuracy vs. complexity. For each of the three sequences, from the right to the left,
the three operating points correspond to the DP-like search, iterative search and the serial search
methods, respectively. The normalized complexity is calculated as the ratio between the computation
time for each search method and that for the translation-only motion estimation method as shown in
Table 4.

5.1. A five-parameter affine transform model

Based on the above discussions, we choose the following affine motion model, which was used
in [6] to improve the local translation motion compensation by taking into account rotation
and scaling of small objects.

(

u
v

)

=

(

cos θ sin θ
− sin θ cos θ

)(

Kx 0
0 Ky

)(

x
y

)

+

(

tx

ty

)

(40)

The five parameters in (40) are estimated by using a two-step search method [6, 22]. First,
parameters (tx, ty) corresponding to the translational motion between blocks in the current
frame and the reference frame are searched for. This is a common step also shared by the
Lie-operator approach (see Fig. 1), which operates on top of the match block yielded by the
conventional translation block matching process. In the second step, the remaining three
parameters for rotation and scaling (θ, Kx, Ky) are searched for. For ease of coding, θ, Kx

and Ky are chosen from small sets of discrete values. For example, θ ∈ [−0.02π, 0, 0.02π],
and Kx, Ky ∈ [0.9, 1.0, 1.1] were chosen in [6]. On the other hand, the Lie-operator method
is also suitable for the estimation of these small degrees of transformation. For example, the
iterative approach discussed in Section 4.3 with three operators (R, Sx and Sy in Table 1) can
be employed. Since (u,v) calculated by (40) can be real numbers, the pixel values at (u,v) have
to be interpolated from the pixel values of the surrounding pixels. Bilinear interpolations are
often employed [6][24, pp. 59]. More specifically, we assume that the four surrounding pixels
in the reference frame have values I⌊u⌋,⌊v⌋, I⌊u+1⌋,⌊v⌋, I⌊u⌋,⌊v+1⌋, and I⌊u+1⌋,⌊v+1⌋, where ⌊s⌋ is
the floor function, which returns the nearest integer less than or equal to s. Thus the signal

19Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

20 Character Recognition

value at (u,v) can be interpolated as

Iu,v = I1 + r1 · (I2 − I1), (41)

where
I1 = I⌊u⌋,⌊v⌋+ r2 ·

(

I⌊u+1⌋,⌊v⌋ − I⌊u⌋,⌊v⌋

)

, (42)

I2 = I⌊u⌋,⌊v+1⌋ + r2 ·
(

I⌊u+1⌋,⌊v+1⌋ − I⌊u⌋,⌊v+1⌋

)

, (43)

and
r1 = v − ⌊v⌋, r2 = u − ⌊u⌋. (44)

Clearly, there will be extra computation cost incurred by these interpolation operations, which
is not required by the Lie-operator approach.

5.2. Comparison of computational complexity

We now analyze the complexity required by motion estimation using the affine model
described in Section 5.1, and the iterative Lie-operator approach described in Section
4.3, which can offer variable tradeoffs between the increased estimation accuracy and
computational complexity by varying the number of iterations. The computational
complexity is estimated by counting the number of additions/subtractions (Cadd), and the
number of multiplications (Cmult).

As shown in Table 5, the complexity of applying the affine model is

CA f f ine = (Cadd, Cmult) = (12MW3, 12MW3), (45)

since one has to search for the best combination of the three types of motion parameters
from W3 possible choices, where W is the dimensionality of the candidate set for each motion
parameter, which is assumed to be the same for each type of parameter, for ease of analysis
and without much loss of generality. In the case of the above affine model given in Section
5.1, W = 3 was chosen [6].

Operation Cadd Cmult

u = xKx cos θ + yKy sin θ, v = −xKx sin θ + yKy cos θ
2M 8M

(by Eq.(40))

Bilinear interpolation for I(u, v) (by Eqs. (41)-(44)) 8M 3M
MSE calculation (by Eq.(36)) 2M M

Total complexity / one combination of (θ,Kx, Ky) 12M 12M

Table 5. Number of arithmetic operations (per block) required by the transformation estimation using
the affine model in (40), based on a displaced block with motion vector (tx,ty). Assume that values of
sin θ and cos θ can be obtained by looking up from a pre-calculated table, and that M is the number of
pixels in a block.

On the other hand, the complexity of the iterative Lie-operator approach is given in Table 6
for each iteration involving three operators (R, Sx and Sy). Therefore, if Q iterations are used,
the total complexity is

CLie = (Cadd, Cmult) = (M(5 + 9W)Q, M(8 + 6W)Q). (46)

20 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 21

Type Operation Cadd Cmult

R

∂B
∂x and ∂B

∂y (by Eq.(33)) 2M 2M

LR(B) = y
(

∂B
∂x

)

− x
(

∂B
∂y

)

(by Eq.(32))
M 2M

calculated once for W distinct θR values

BθR

R = B + θR × LR(B) (by Eq.(34))
MW MW

repeated for W distinct θR values
MSE calculation (by Eq.(36))

2MW MW
repeated for W distinct θR values

Sub-total for R 3M(1 + W) 2M(2 + W)

Sx

∂B
∂x (by Eq.(33)) M M

LSx
(B) = x

(

∂B
∂x

)

(see Table 1)
0 M

calculated once for W distinct θSx
values

B
θSx

Sx
= B + θSx

× LSx
(B) (see Table 1)

MW MW
repeated for W distinct θSx

values
MSE calculation (by Eq.(36))

2MW MW
repeated for W distinct θSx

values
Sub-total for Sx M(1 + 3W) 2M(1 + W)

Sy Sub-total for Sy (same as that for Sx) M(1 + 3W) 2M(1 + W)

Total complexity of (R, Sx and Sy) / iteration M(5 + 9W) M(8 + 6W)

Table 6. Number of arithmetic operations required for finding the best transformed block (per iteration)
using the iterative Lie-operator approach, based on a displaced block with motion vector (tx ,ty). In each
iteration, three types of operators (R, Sx , and Sy) are considered. Assume that M is the number of pixels
in a block, and that the dimensionality of the set of candidate θR values for operator R is W, which is the
same for the parameters θSx and θSy (for operators Sx and Sy, respectively).

From (45) and (46), it can be shown that as long as the number of candidate parameters for
each type of motion W ≥ 3, we have CLie < 0.3 CA f f ine if the number of iterations Q = 3;
and CLie < 0.4 CA f f ine if Q = 4. The larger the W value is, the smaller the complexity of the
iterative Lie operator becomes, relative to that of the estimation using the affine model.

Table 7 summarizes the increased accuracies obtained empirically for the iterative
Lie-operator approach (using operators R, Sx and Sy in each iteration) and the affine model
approach discussed in Section 5.1, which searches for the best combination of the parameters
for rotation and scaling (θ, Kx, Ky), where θ ∈ [−0.02π, 0, 0.02π], and Kx, Ky ∈ [0.9, 1.0, 1.1].
The corresponding set of parameters for the Lie operators are thus chosen to be θR ∈
[−0.02π, 0, 0.02π], and θSx

, θSy
∈ [−0.1, 0, 0.1].

Search Method
Table Tennis Mobile Calendar Tempete

Max Min Avg Max Min Avg Max Min Avg

Affine Model 1.58 0.24 1.14 1.63 0.99 1.41 1.29 0.85 1.14

RSxSy (Q = 4) 1.36 0.28 1.08 1.49 1.06 1.27 1.08 0.69 0.98

RSxSy (Q = 3) 1.23 0.22 0.95 1.35 0.94 1.11 0.93 0.60 0.84

Table 7. Increased estimation accuracy (in dB) of the iterative Lie-operator method versus that of the
affine model approach. Q denotes the number of iterations.

21Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

22 Character Recognition

It can be seen from Table 7 that with only 3 iterations, the Lie operator method performs
closely to the affine model approach in terms of PSNR improvement; with one additional
round of iteration, the Lie operator approach comes very close (within less than 0.1 dB) to
the affine model approach. On a PC running Windows XP (with 3.40 GHz Pentium 4 CPU
and 2GB RAM), the average running times of these two approaches were measured to be 0.46
ms/block (Lie operator, 4 iterations) and 1.46 ms/block (affine model). That is, Time (Lie
operator, Q = 4) ≈ 1/3 Time (affine model), which agrees with our analysis in Section 5.2.
On the other hand, by comparing the data for iterative Lie operator approach in Table 3 and
Table 7, it is obvious that the accuracy of the motion estimation can be increased significantly
by using larger sets of candidate parameters (i.e., by increasing W in (46)) and considering
more operators. Nevertheless, for the affine model, using a large W can lead to unacceptably
large complexity, which increases linearly with W3 in (45), as opposed to the almost linearly
increased complexity of the Lie operator approach with W in (46). Therefore, the Lie operators
have a clear advantage in terms of computational complexity, as long as they can provide good
approximations to small degrees of transformation. Nevertheless, in the case of large degrees

of transformations, the search method based on the full affine transformation model would
be more accurate than the fast method based on Lie operator.

6. Conclusion

Lie operators are useful for efficient handwritten character recognition. Multiple operators
can be combined to approximate small degrees of object transformations, such as scaling,
rotations and deformations. In this chapter, we first explained in a tutorial fashion
the underlying theory of Lie groups and Lie algebras. We then addressed the key
problem of transformation estimation based on Lie operators, where exhaustive full search
method is often impractical due to its prohibitively huge computational complexity. To
illustrate the design of computationally efficient transformation estimation algorithms based
on Lie operators, we selected the subject of motion and transformation estimation in

video coding as an example. We presented several fast search algorithms (including
the dynamic programming like, serial, and iterative search methods), which integrated
multiple Lie operators to detect smaller degrees of transformation in video scenes. We
provided a detailed analysis of the varying tradeoffs between estimation accuracies and
computational complexities for these transformation estimation algorithms. We demonstrated
that non-translational transformation estimation based on Lie operators could be used to
improve the overall accuracy of motion estimation in video coding, with only a modest
increase of its overall computational complexity. In particular, we showed that the iterative
search method based on Lie operators has much lower complexity than the transformation
estimation method based on the full affine transformation model, with only negligibly small
degradation in the estimation accuracy.

Author details

W. David Pan
Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville,
Alabama 35899, USA.

22 Advances in Character Recognition

Efficient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Efficiencies 23

7. References

[1] B. Carpentieri, Block matching displacement estimation: a sliding window approach,
Information Sciences 135 (1-2), (2001) 71–86.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Second
Edition, MIT Press, 2001.

[3] F. Dufaux, J. Konrad, Efficient, robust, and fast global motion estimation for videocoding,
IEEE Trans. Image Processing 9 (3) (2000) 497–501.

[4] R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications, John Wiley &
Sons, 1974.

[5] R. Gilmore, Lie Groups, Physics, and Geometry: An Introduction for Physicists,
Engineers and Chemists, Cambridge University Press, 2008.

[6] H. Jozawa, K. Kamikura, A. Sagata, H. Kotera, H. Watanabe, Two-stage motion
compensation using adaptive global MC and local affine MC, IEEE Trans. Circuits and
Systems for Video Technology 7 (1) (1997) 75–85.

[7] T. C. T. Kuo, A. L. P. Chen, A mask matching approach for video segmentation on
compressed data, Information Sciences 141 (1-2) (2002) 169–191.

[8] W. Li, J.-R. Ohm, M. van der Schaar, H. Jiang, S. Li, MPEG-4 video verification model
version 18.0, in: ISO/IEC JTC1/SC29/WG11 N3908, Pisa, Italy, 2001.

[9] S. Lin, D. J. Costello, Error Control Coding, Second Edition, Pearson Prentice Hall, 2004.
[10] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, D. J. LeGall, MPEG Video Compression

Standard, Chapman & Hall, 1996.
[11] M. Nalasani, W. D. Pan, On the complexity and accuracy of the lie operator based motion

estimation, in: Proc. IEEE Southeastern Symposium on System Theory (SSST), Atlanta,
Georgia, 2004, pp. 16–20.

[12] W. D. Pan, S.-M. Yoo, M. Nalasani, P. G. Cox, Efficient local transformation estimation
using Lie operators, Information Sciences, 177 (2007) 815-831.

[13] W. D. Pan, S.-M. Yoo, C.-H. Park, Complexity accuracy tradeoffs of Lie operators in
motion estimation, Pattern Recognition Letters 28 (2007) 778–787.

[14] C. A. Papadopoulos, T. G. Clarkson, Motion estimation using second-order geometric
transformations, IEEE Trans. Circuits and Systems on Video Technology 5 (4) (1995)
319–331.

[15] H. Richter, A. Smolic, B. Stabernack, E. Muller, Real time global motion estimation for an
MPEG-4 video encoder, in: Proc. Picture Coding Symposium (PCS), Seoul, Korea, 2001.

[16] H. Samelson, Notes on Lie Algebras, Springer, 1990.
[17] K. Sayood, Introduction to Data Compression, Morgan Kaufmann, 2000.
[18] P. Y. Simard, Y. A. LeCun, J. S. Denker, B. Victorri, Transformation invariance in pattern

recognition - tangent distance and tangent propagation, International Journal of Imaging
Systems & Technology 11 (3) (1998) 239–274.

[19] K. Sookhanaphibarn, C. Lursinsap, A new feature extractor invariant to intensity,
rotation, and scaling of color images, Information Sciences 176 (14) (2006) 2097–2119.

[20] C. Stiller, J. Konrad, Estimating motion in image sequences, IEEE Signal Processing
Magazine (1999) 70–91.

[21] Y. Su, M.-T. Sun, V. Hsu, Global motion estimation from coarsely sampled motion vector
field and the applications, IEEE Trans. Circuits and Systems on Video Technology 15 (2)
(2005) 232–242.

23Effi cient Transformation Estimation Using Lie Operators: Theory, Algorithms, and Computational Effi ciencies

24 Character Recognition

[22] Y. T. Tse, R. L. Baker, Global zoom/pan estimation and compensation for video
compression, in: Proc. International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Toronto, Canada, 1991, pp. 2725–2728.

[23] Y. Wang, J. Ostermann, Y.-Q. Zhang, Video Processing and Communications, Prentice
Hall, 2002.

[24] G. Wolberg, Digital Image Warping, IEEE Computer Society Press, 1990.

24 Advances in Character Recognition

