
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322418852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 8

© 2012 Chang and Liu, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Decision Tree as an Accelerator

for Support Vector Machines

Fu Chang and Chan-Cheng Liu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52227

1. Introduction

Support vector machine (SVM) is known to be a very powerful learning machine for pattern

classification, of which optical character recognition (OCR) naturally falls as a branch. There

are, however, a few hindrances in making an immediate application of SVM for the OCR

purpose. First, to construct a well-performing SVM character recognizer has to deal with a

large set of training samples (hundreds of thousands in the Chinese OCR, for example).

There are two types of SVMs: linear and non-linear SVMs. Training a linear SVM is

relatively inexpensive, while training a non-linear SVM is of the order np, where n is the

number of training samples and p ≥ 2. Thus, the sheer size of samples has the potential of

incurring a high training cost on an OCR application. Second, a normal OCR task also deals

with a large number of class types. There are, for example, thousands of character class

types being handled in the Chinese OCR. There are also hundreds of them being handled in

the English OCR, if touched English letters are considered as separate class types from

untouched letters. Since SVM training deals with one pair of class types at a time, we need

to train l(l-1)/2 one-against-one (1A1) classifiers (Kerr et al. [1]) or l one-against-others (1AO)

classifiers (Bottou et al. [2]), where l is the number of class types. Such a gigantic collection

of classifiers not only poses a problem to the training but also to the testing of SVMs. Third,

SVM training also involves a number of parameters whose values affect the generalization

power of classifiers. This means that searching for optimal parameter values is necessary

and it constitutes another heavy load to the SVM training. The above three factors, when put

together, will demand months of computing time to complete a whole round of

conventional SVM trainings, including linear and non-linear SVM trainings, and also

demands an unusual amount of time in conducting a conventional online OCR task.

To cope with the above problems, we propose two methods, both of which involve the use

of decision tree (Breiman et al. [3]) to speed up the computation. The first method, called

Advances in Character Recognition 140

decision tree support vector machine (DTSVM) (Chang et al. [4]) is developed by us to expedite

SVM training. The second method, called random forest decomposition (RFD), generalizes a

technique of ours (Liu et al. [5]) to speed up a testing process.

DTSVM decomposes a given data space with a decision tree. It then trains SVMs on each of

the decomposed regions. In so doing, DTSVM can enjoy the following advantages. First,

training non-linear SVMs on decomposed regions of size σ reduces the complexity from np

to (n/σ)×σp = nσp-1. Second, the decision tree may decompose the data space so that certain

decomposed regions become homogeneous (i.e., they contain samples of the same class

type), thereby reducing the cost of SVM training that is applied only to the remaining

samples. Since DTSVM trains SVMs on regions of size σ, it leaves σ an additional parameter

to the parameters θ associated with SVMs. The third advantage of DTSVM then lies in the

fact that DTSVM handles all values of θ only on the regions of lowest σ-size, and focus on

very few selected values of θ on the regions of higher σ-sizes, thereby making further

savings in the training cost.

While DTSVM speeds up SVM training, it may not help reduce the time consumed in SVM

testing. To achieve the latter goal, we propose to use multiple trees to decompose the data

space. In this method, each tree employs a subset of randomly drawn features, instead of the

set of all features. The collection of these trees is called a random forest. The RFD method

proposed by us differs from the traditional random forest method (Ho [6], Breiman [7]) in

the following way. The traditional method determines the class type for each test sample x,

while RFD determines a number of class types for x. RFD is thus a learning algorithm whose

objective is to reduce the number of class types for each test sample. There are a few

parameters whose values need to be determined in the RFD’s learning process, including

the number of trees, the common size of each tree’s decomposed regions, and one more

parameter to be described in Section 3. The values of these parameters will be determined

under the constraint that they lead to a restricted classifier whose generalization power is

not inferior to the un-restricted classifier. The generalization power of a classifier can be

estimated as the accuracy rate obtained in a validation process. The RFD thus assumes that a

classifier is constructed in advance. In our case, it is the DTSVM classifier.

DTSVM is very handy for constructing classifiers and for conducting other tasks, including

the selection of linear or non-linear SVMs, the selection of critical features, etc. RFD, on the

other hand, is handy for putting a classifier to use in an online process. The results reported

in this chapter showed that DTSVM and RFD could substantially speed up SVM training and

testing, respectively, and still achieved comparable test accuracy. The reason for the no loss of

test accuracy is the following. DTSVM and RFD trainings, similar to SVM training, involve a

search for optimal parameters, thus bringing about the best possible classifiers as an outcome.

In this chapter, we apply DTSVM and RFD methods to three data sets of very large scale:

ETL8B (comprised of 152,960 samples and 956 class types), ETL9B (comprised of 607,200

samples and 3,036 class types), and ACP (comprised of 548,508 samples and 919 class types).

The features to be extracted from ETL8B and ETL9B are those described in Chou et al. [8]

and Chang et al. [9]; those extracted from ACP are described in Lin et al. [10].

Decision Tree as an Accelerator for Support Vector Machines 141

On the three data sets, we conducted our experiments in the following manner. We first

trained linear and non-linear DTSVMs on the experimental data sets with some reasonable

parameter values. We then computed DTSVMs’ performance scores, including training

time, test speed, and test accuracy rates. Although a strict comparison between DTSVMs

and global SVMs (gSVMs, i.e., SVMs that are trained on the full training data set) may not

be possible, due to the extremely slow training process of gSVMs, it is possible to estimate

the speedup factors achieved by DTSVMs. To show the effectiveness of DTSVM, we further

compare DTSVM classifiers with the classifiers obtained by k-nearest neighbor (kNN) and

decision tree (without the addition of SVMs) methods.

The rest of this chapter is organized as follows. Section 2 reviews the DTSVM method. In

Section 3, we describe the RFD learning algorithm. In Section 4, we describe our

experimental results. Section 5 contains some concluding remarks.

2. Decision Tree Support Vector Machine (DTSVM)

In this section, we describe DTSVM as a method to speed up the training of SVMs over

large-scale data sets. We divide the section into two sub-sections. In the first sub-section, we

describe the decision tree that is used in DTSVM, and in RFD as well, for decomposing the

data space. In the second sub-section, we describe the learning algorithm of DTSVM.

An implementation of DTSVM is available at

http://ocrwks11.iis.sinica.edu.tw/~dar/Download/WebPages/DTSVM.htm,

which contains source codes, experimental data sets, and an instruction file to use the codes.

2.1 The Decision Tree as a Decomposition Scheme

The decomposition scheme adopted in the DTSVM and RFD methods is basically a CART

(Breiman et al., 1984) or a binary C4.5 (Quinlan, 1986) that allows two child nodes to grow

from each node that is not a leaf. To grow a binary tree, we follow a recursive process,

whereby each training sample flowing to a node is sent to its left-hand or right-hand child

node. At a given node E, a certain feature f of the training samples flowing to E is compared

with a certain value v so that all samples with f < v are sent to the left-hand child node, and

the remaining samples are sent to the right-hand child node. The optimal values of (f, v) are

determined as follows:

(,)

(*, *) arg max (,),
f v

f v IR f v

where

| | | |
(,) () () (),

| | | |

f v f v

f v f v

S S
IR f v I S I S I S

S S

 
   

Advances in Character Recognition 142

S is the set of all samples flowing to E; Sf < v consists of the elements of S with f < v; Sf ≧v = S\Sf

< v; | X | is the size of any data set X; and I(X) is the impurity of X. The impurity function

used in our experiments is the entropy measure, defined as

(S) ()log (),y yy
I p S p S 

where p(Sy) is the proportion of S’s samples whose class type is y.

For both DTSVM and RFD, we do not grow a decision tree to its full scale. Instead, we stop

splitting a node E when one of the following conditions is satisfied: (i) the number of

samples that flow to E is smaller than a ceiling size σ; or (ii) when IR(f, v) = 0 for all f and v at

E. The value of σ in the first condition is determined in a data-driven fashion, which we

describe in Section 2.2. The second condition occurs mainly in the following cases. (a) All the

samples that flow to E are homogeneous; or (b) a subset of them is homogeneous and the

remaining samples, although differ in class type, are identical to some members of the

homogeneous subset.

2.2. The DTSVM learning algorithm

After growing a tree, we train an SVM on each of its leaves, using samples that flow to each

leaf as training data. A tree and all SVMs associated with its leaves constitute a DTSVM

classifier. In the training phase, all the SVMs in a DTSVM classifier are trained with the

same parameter values. In the validation or the testing phase, we input a given data point x

to the tree. If x reaches a homogeneous leaf, we classify x as the common class type of those

samples; otherwise, we classify it with the SVM associated with that leaf.

When a learning data set is given, we divide a given learning data set into a training and

validation constituent. We then build a DTSVM classifier on the training constituent and

determine its optimal parameter values with the help of the validation constituent. The

parameters associated with a DTSVM classifier are: (i) σ, the ceiling size of the decision

tree; and (ii) the SVM parameters. Their optimal values are determined in the following

manner.

We begin by training a binary tree with an initial ceiling size σ0, and then train SVMs on the

leaves with SVM-parameters θ, where Θ is the set of all possible SVM-parameter values

whose effects we want to evaluate. Note that we express θ in boldface to indicate that it may

consist of more than one parameter. Let var(σ0, θ) be the validation accuracy rate achieved

by the resultant DTSVM classifier.

Next, we construct DTSVM classifiers with larger ceiling sizes σ1, σ2, …, with σ0 < σ1 < σ2 < …

On the leaves of these trees, we only train their associated SVMs with k top-ranked θ. To do

this, we rank θ in descending order of var(σ0, θ). Let Θk be the set that consists of k top-

ranked θ. We then implement the following sub-process, denoted as SubProcess(θ), for each

θΘk.

1. Set t = 0 and get the binary tree with the ceiling size σ0.

Decision Tree as an Accelerator for Support Vector Machines 143

2. Increase t by 1. Modify the tree with ceiling size σt-1 to obtain a tree with ceiling size σt.

This is done by moving from the root towards the leaves and retaining each node

whose size or whose parent’s size is greater than σt. Then, train SVMs on the leaves

with SVM-parameters θ. Let var(σt, θ) be the validation accuracy of the resultant

DTSVM classifier.

3. If var(σt, θ) - var(σt-1, θ) ≥ 0.5% and σt is less than the size of the training constituent,

proceed to step 2.

4. If var(σt, θ) - var(σt-1, θ) < 0.5%, then σ(θ) = σt-1; otherwise, σ(θ) = σt.

When we have completed SubProcess(θ) for all θΘ[k], we define

arg max ((),) and ().
k

opt opt optvar   


 
θ

θ θ θ θ

We then output the DTSVM classifier with the SVM-parameter θopt and the ceiling size σopt.

In our experiments, training linear SVMs involved only one parameter C, the cost penalty

factor, whose values were taken from Φ = {10a: a = -1, 0, …, 5}. Training non-linear SVMs

involved two parameters, C and , where  appears in an RBF kernel function. The values of

C were also from Φ, while the values of  were taken from Ψ = {10b: b = -1, -2, …, -9}.

Furthermore, we fixed the number of top-ranked parameters at k = 3 for linear SVMs and at

k = 5 for non-linear SVMs. For the sequence of ceiling sizes, we had only two such numbers:

the initial ceiling size 0 = 1,500 and the next ceiling size 1 = n+1, where n is the number of

training samples. The reason for these two numbers is as follows. On a tree with the initial

ceiling size 0, we needed to train SVMs with all combinations of parameter values. So, we

set 0 at a sufficiently low level to save a tremendous amount of training time. At the next

stage, we immediately jumped to the root level of a tree, because in the three experimental

data sets, the number of training samples per class type was not high, even though the total

number of training samples was very large, so we did not want to waste time on any

intermediate level between 0 and 1.

3. Random Forest Decomposition (RFD)

In this section, we address the acceleration of SVM testing, using RFD as the method to

construct a multiple decomposition scheme. The implementation of the RFD method is

available at the following website.

http://ocrwks11.iis.sinica.edu.tw/~dar/Download/WebPages/RFD.htm

To speed up SVM testing, we assume that all the required SVM classifiers have been

constructed. Suppose that there are l class types and we want to conduct 1A1 classification,

then there are l(l-1)/2 SVMs in total. To classify a data point x, we first apply our multiple

decomposition scheme to pull out m candidate class types for x, where m depends on x and

m < l. We then apply m(m-1)/2 SVMs to x, each of which involves a pair of candidate class

types. If, on the other hand, we want to conduct 1AO classification, then there are l SVMs

and we apply m of them to x.

Advances in Character Recognition 144

In the above process, we use random forest (RF) as the multiple decomposition scheme. An

RF is a collection of trees, each of which is trained on a separate subset of features that is

drawn randomly from the set of all features. When the total number of features is F, we train

all such trees on a subset of [F/2] features, where [F/2] is the integral part of F/2. Moreover,

we train all these trees with a common ceiling size. At each leaf of an RF, we store the class

types of the training samples that flow to this leaf, instead of the training samples

themselves.

When an RF is given, let τ = the number of trees in the RF and σ = the common ceiling size of

these trees. For a given data point x, we first send x to all the τ trees and examine the leaves

to which x flows. Next, we pull out the class types that are stored in at least μ leaves. We

then classify x under the restriction that only these class types are considered as the

candidate class types of x.

The RFE training process thus involves the construction of an RF of τ trees with a common

ceiling size σ, which we denote as RF(τ, σ). For each data point x, let M(x, τ, σ, μ) be the

collection of class types such that

(, , ,) { : is stored in at least leaves of RF(,) to which flows}.M l l     x x

To find the optimal values of τ, σ, and μ, we divide a given learning data set into a training

constituent and a validation constituent. For each possible value of τ and σ, we train a

random forest RF(τ, σ) on the training constituent. Then, for each possible value of μ, we

compute the validation accuracy rate var(τ, σ, μ) on the validation constituent, where

|{ V : the SVMs restricted to (, , ,) correctly classifies }|
(, ,) ,

|V|

M
var

  
  




x x x

V is the set of all validation samples, and |X| is the size of any data set X.

To make an exhaustive search for the highest possible value of var(τ, σ, μ) proves to be very

time consuming. So we propose the following two-stage search strategy. At the first stage,

we fix μ = 1 and search for sufficiently low τ* and σ* such that var(τ*, σ*, 1) ≥ varbaseline, where

varbaseline is the validation accuracy rate achieved by the unrestricted SVMs. At the second

stage, we look for the largest μ* such that var(τ*, σ*, μ*) ≥ varbaseline.

We fix μ = 1 at the first stage based on the following observation. For any value of values of

x, τ, and σ, we have M(x, τ, σ, 1)  M(x, τ, σ, 2)  …, and var(τ, σ, 1) ≥ var(τ, σ, 2) ≥ … So, if

var(τ, σ, μ) ≥ varbaseline for some μ, we must have var(τ, σ, 1) ≥ varbaseline.

The first stage of our search strategy is detailed as follows.

1. Set τ = 15 and σ = 500, namely, grow 15 trees with a common ceiling size 500.

2. If var(τ, σ, 1) ≥ varbaseline, stop the process. Otherwise, change the common ceiling size of

the τ trees from σ to 4×σ.

3. If var(τ, σ, 1) ≥ varbaseline, stop the process. Otherwise, increase τ by 5; namely, grow 5

more trees with a common ceiling size σ.

Decision Tree as an Accelerator for Support Vector Machines 145

4. Go to step 2.

The procedure must stop at a finite number of iteration. In the worst case, it stops when σ

reaches the root level and all class types are candidate class types. The resultant τ and σ in

this procedure are denoted as τ* and σ*. At the next stage, we look for

1 *

* arg max{ : (*, *,) }baselinevar var
 

    
 

 

under the constraint that τ = τ*, σ = σ*, and var(τ*, σ*, μ*) ≥ varbaseline.

4. Experimental results

In this section, we describe the data sets in the experiments and the features extracted out

the character images. We then present and discuss the experimental results.

4.1. The data sets and features

To demonstrate the effects of the proposed methods, we applied DTSVM and RFD to the

data sets: ACP, ETL8B, and ETL9B. The ACP data set derived from a task of classifying

textual components on machine-printed documents written in Chinese and English. In the

original work described in [10], all textual components were classified into 3 types:

alphanumeric (A), Chinese (C), and punctuation (P). Once classified, those components

would be sent to a separate recognizer for further classification. In the current task, we

expanded the 3 class types into 863 alphanumeric types and 55 punctuation types. So, there

would be no separate recognizers for alphanumeric or punctuation types. Moreover, there

were a lot more class types in the alphanumeric category than one might expect, because we

considered touched characters as separate types from all other types. On the other hand, all

Chinese components were considered as one type, since we had to first merge them into

characters and send the characters into a Chinese recognizer.

When textual component was segmented from a document image, we extract the following

features out of it.

Density. A 6464 bitmap image is divided into 88 regions, each comprising 64 pixels. For

each region, the counts of black pixels are used as a density feature. The total number of

features in the density category is 64.

Cross Count. A cross count is the average number of black intervals that lie within eight

consecutive scan lines that run through a bitmap in either a horizontal or vertical direction.

The total number of features in the cross-count category is 16.

Aspect Ratio. For a textual component TC that appears in a horizontal textline H, we obtain

the following features: 1) bit ‘1’ for the slot indicating that H is a horizontal textline; 2) ‘0’ for

the slot indicating that H is a vertical textline; 3) the ratio between TC’s height and H’s

height; 4) the ratio between TC’s height and TC’s width; 5) the ratio between TC’s top gap

Advances in Character Recognition 146

and H’s height; and 6) the ratio between TC’s bottom gap and H’s height. We follow the

same procedure for a textual component that appears in a vertical textline. The total number

of features in the aspect-ratio category is 6.

ETL8B and ETL9B are well known data sets comprising 955 and 3,035 Chinese/Hiragana

handwritten characters respectively. For all the characters contained in the two data sets, we

used a feature extraction method consisting of the following basic techniques: non-linear

normalization (Lee and Park [11], Yamada et al. [12]), directional feature extraction (Chou et

al. [8]), and feature blurring (Liu et al. [13]). These three techniques were considered as

major breakthroughs in handwritten Chinese/Hiragana character recognition (Umeda [14]).

The total number of features extracted out of each character is 256.

The feature vectors extracted out of the three data sets can be found at the following

website.

http://ocrwks11.iis.sinica.edu.tw/~dar/Download/WebPages/RFD.htm

When conducting both training and testing, we decompose each data set into training,

validation, and test constituents at the ratio of 4:1:1. We use samples in the training

constituent to train classifiers. We then use samples in the validation constituent for finding

optimal parameters. Finally, we apply the classifiers trained with optimal parameters to the

test constituent for computing the test accuracy rate. Table 1 contains detailed information

for all the data sets and the constituents derived from them.

 ACP ETL8B ETL9B

Number of Class Types 919 955 3,035

Number of Features 86 256 256

Number of Samples 545,698 152,960 607,200

Training Constituent 363,789 102,292 406,824

Validation Constituent 90,944 25,812 100,188

Test Constituent 90,965 24,856 100,188

Table 1. The three data sets used in our experiments.

4.2. Results of DTSVM

Two types of DTSVM were studied in our experiments. They were linear DTSVM (L-

DTSVM) and non-linear DTSVM (N-DTSVM). We compared them with linear gSVM (L-

gSVM) and non-linear gSVM (N-gSVM). In addition to these four SVM methods, we also

included decision tree and kNN for comparison. To train SVMs for L-DTSVM and L-gSVM,

we employed LIBLINEAR (Fan et al. [15]). On the other hand, we used LIBSVM (Fan et al.

[16]) to train SVMs for N-DTSVM and N-gSVM.

For all the SVM methods, we only conducted 1A1 classification. While 1AO is another

option to take, it is too costly compared to 1A1. A 1AO-training involves samples of all class

types, while a 1A1-training involves samples of only two class types. In the 1A1 training, we

Decision Tree as an Accelerator for Support Vector Machines 147

needed to train l(l-1)/2 SVMs. In the testing, however, we performed a DAG testing process

(Platt et al. [17]) that involved only l SVMs for classifying a test sample. More about DAG

will be given in Section 4.3.

We display in Figure 1 the training times of the six compared methods, expressed in

seconds. The results demonstrated that DTSVM conducted training substantially faster

than gSVM. The speedup factor of L-DTSVM relative to L-gSVM was between 1.6 and

2.0, while the speedup factor of N-DTSVM relative to N-gSVM was between 6.7 and 14.4.

The results also showed that the non-linear SVM methods were a lot more time-

consuming than linear SVM methods. On the other hand, decision tree and kNN are fast

in training.

Figure 1. Training times of the six compared methods, expressed in seconds. DTSVMs outperformed

gSVMs and decision tree outperformed all the six methods.

Figure 2 shows the test accuracy rates achieved by all the compared methods. All the SVM

methods achieved about the same rates. Moreover, they outperformed decision tree and

kNN on all the data sets. Decision tree, in particular, performed poorly on data sets ETL8B

and ETL9B; kNN fell behind the SVM methods by a visible amount on ETL9B.

Figure 3 shows the test speeds of all the compared methods, expressed in characters per

second. L-DTSVM achieved a staggering high speed on the data set ACP. The two linear

SVM methods conducted testing much faster than the two non-linear SVM methods.

Advances in Character Recognition 148

Decision tree, again, was faster in testing; kNN was slow, unsurprisingly, because it had to

compare a test sample against all training samples.

All the times or speeds reported in this chapter were measured on Quad-Core Intel Xeon

E5335 CPU 2.0GHz with a 32GB RAM. In our experiments, we took advantage of

parallelism to shorten the wall-clock time. However, all the times reported here are CPU

times. Furthermore, we were able to train all gSVMs on ACP and ETL8B, but we did not

complete the training of gSVMs on ETL9B. Instead, we estimated the total training time

based on the SVM training that we had performed for DTSVMs on the root level.

Figure 2. Test accuracy rates of the six compared methods. SVMs achieved comparable accuracy rates

to each other; they outperformed decision tree and kNN.

We also show in Table 2 the optimal parameter values for all compared methods, except the

decision tree that involves no parameters. On the data set ACP, σ* = 1,500, explaining why

L-DTSVM and N-DTSVM conducted training and testing at such a high speed. On ETL8B

and ETL9B, σ* = root, implying that DTSVM classifiers were trained on the root, the same

site where gSVM classifiers were trained. This explains why DTSVM and gSVM conducted

testing at the same speed. However, DTSVMs consumed less time in training than gSVMs

because not all local SVMs of the DTSVM classifiers were trained on the root level.

Decision Tree as an Accelerator for Support Vector Machines 149

Figure 3. Test speeds of the six compared methods, expressed in characters per second. L-DTSVM

outperformed all other SVM methods; decision tree outperformed all other methods, except L-DTSVM

on the data set ACP.

Finally, we remark that, on the ACP data set, DTSVM training not only settled at a low

ceiling size (1,500) but also resulted in a tree with some homogeneous leaves. In fact, 63.2%

of the ACP training samples flowed to leaves with a single class type, the Chinese type. So

in the testing phase, a large proportion of ACP test samples also flowed to homogeneous

leaves, leaving no further effort for classifying them. The ETL8B and ETL9B data sets, on the

other hand, comprised a large number of small-sized class types and no large-sized class

type. So the DTSVM training settled at the root level on the two data sets.

4.3. Results of RFD

The RFD method is associated with an SVM training method. When applying RFD, we must

have all the associated SVM classifiers constructed.

If, for example, gSVM is the training method, RFD will work with all the 1A1 classifiers (l,

l'), where l and l' are any two class types. We first describe how we use these classifiers in

Advances in Character Recognition 150

the DAG testing process. When a test sample x is given, we first tag all class types as likely

types. We next apply a classifier (l1, l2) to x. If x is classified as l1, we re-tag l2 as unlikely and

replace it by a likely type l3. We then apply the classifier (l1, l3) to x. This process goes on

until only one likely type is left, which we take as x’s class type.

Data Set Method σ* C* γ* k*

ACP

L-DTSVM 1,500 1

L-gSVM 1

N-DTSVM 1,500 102 10-1

N-gSVM 10 10-1

kNN 3

ETL8B

L-DTSVM root 105

L-gSVM 105

N-DTSVM root 104 10-8

N-gSVM 105 10-9

kNN 10

ETL9B

L-DTSVM root 10

L-gSVM 10

N-DTSVM root 103 10-7

N-gSVM 103 10-7

kNN 12

Table 2. Optimal parameter values for all the methods except decision tree. Empty cells imply that the

corresponding categories are not applicable.

When the RFD method is employed, we first send x to the corresponding RF and find the m

candidate class types for x. We tag these class types as likely types and the remaining class

types as unlikely types. We then proceed as in the DAG process until only one likely type is

left.

If, on the other hand, RFD works with a DTSVM classifier, x’s candidate class types must fall

into two subsets: one is associated with the decision tree of the DTSVM classifier and the

other is with the RF derived by the RFD method. So we extract the class types from the

intersection of these two subsets and tag them as the likely types. We then proceed as in the

DAG process.

We show in Tables 3 and 4 the results of applying the RFD method to L-DTSVM, L-gSVM,

N-DTSVM and N-gSVM classifiers. Table 3 displays the times to train the corresponding

RFs and the optimal parameters associated with them. It is shown that all the RFs comprise

Decision Tree as an Accelerator for Support Vector Machines 151

15 decision trees and almost all of them settled at the ceiling size 500, except the RFs for

accelerating DTSVMs on the ACP data set settling at the ceiling size 2,000.

Data Set Method Training Time τ* σ* μ*

ACP

L-DTSVM 381,645 15 2,000 3

L-gSVM 380,617 15 500 4

N-DTSVM 381,676 15 2,000 4

N-gSVM 381,450 15 500 9

ETL8B

L-DTSVM 190,232 15 500 3

L-gSVM 190,232 15 500 3

N-DTSVM 202,241 15 500 2

N-gSVM 202,241 15 500 2

ETL9B

L-DTSVM 3,263,999 15 500 1

L-gSVM 3,263,999 15 500 1

N-DTSVM 3,490,394 15 500 1

N-gSVM 3,490,394 15 500 1

Table 3. Training times and optimal parameters for the RFs associated with all the SVM methods.

Table 4 displays the testing times achieved by all the SVM methods with or without the RFD

to speed up. The effects of RFD were manifest on all SVM classifiers and all data sets, except

for the DTSVM classifier on the ACP data set. The reason for the exceptional case is easy to

understand. DTSVM classifiers ran very fast on the ACP data set; to speed it up by another

device (i.e., an RF) would not be economical, due to the fact that this device would incur its

own computing cost to the process.

4.4. Summary

We summarize the results in Sections 4.2 and 4.3 as follows.

1. Among all the competing methods, we judge L-DTSVM to be the champion, since it

achieved comparable test accuracy rates to all other SVM methods, required the least

times to train and to test among all SVM methods, and outperformed decision tree the

kNN by large. This is a rather welcomed result, since L-DTSVM conducted much faster

training and testing than other SVM methods.

2. The decision tree and kNN, although were fast in training, achieved worse test accuracy

rates than the SVM methods. Moreover, the kNN method was slow for testing. We thus

found these two methods unsuitable for our purpose.

3. The DTSVM method proved to be very effective for speeding up SVM training and

achieved comparable test accuracy rates to gSVM. This was even true when linear SVM

was adopted as the learning machine.

Advances in Character Recognition 152

Data Set Classifier With RFD Without RFD

ACP

L-DTSVM 29249.2 126516.0

L-gSVM 21565.9 3317.5

N-DTSVM 16354.7 22477.1

N-gSVM 819.5 21.5

ETL8B

L-DTSVM 2766.7 622.2

L-gSVM 2766.7 622.4

N-DTSVM 30.7 7.9

N-gSVM 30.7 8.0

ETL9B

L-DTSVM 519.1 91.6

L-gSVM 519.1 91.6

N-DTSVM 6.6 2.0

N-gSVM 6.6 2.0

Table 4. Testing times achieved by all the SVM methods with or without RFD to speed up.

4. The RFD method proved to be very effective to speed up SVM testing. This claim was

found to be true for all but one case, in which the DTSVM method was already very fast

to require any further acceleration.

5. Conclusion

Having applied the DTSVM and RFD methods to three data sets comprising machine-

printed and handwritten characters, we showed that we were able to substantially reduce

the time in training and testing SVMs, and still achieved comparable test accuracy. One

pleasant result obtained in the experiments was that linear DTSVM classifiers performed the

best among all SVM methods, in the sense that they attained better or comparable test

accuracy rates and consumed the least amount of time in training and testing.

Author details

Fu Chang* and Chan-Cheng Liu

Institute of Information Science, Academia Sinica, Taipei, Taiwan

6. References

[1] Knerr S, Personnaz L, Dreyfus G (1990) Single-layer Learning Revisited: A Stepwise

Procedure for Building and Training A Neural Network. In J. Fogelman,

* Corresponding Author

Decision Tree as an Accelerator for Support Vector Machines 153

editor, Neurocomputing: Algorithms, Architectures and Applications. Springer-

Verlag.

[2] Bottou L, Cortes C, Denker J, Drucker H, Guyon I, Jackel L, LeCun Y, Müller U,

Sackinger E, Simard P, Vapnik V (1994) Comparison of Classifier Methods: A Case

Study in Handwriting Digit Recognition. Int. Conf. on Pattern Recognition; pp. 77–

87.

[3] Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression

Trees. Chapman and Hall.

[4] Chang F, Guo CY, Lin XR, Lu CJ (2010) Tree Decomposition for Large-Scale SVM

Problems. Journal of Machine Learning Research; 11: 2935−2972.

[5] Liu YH, Lin CC, Lin WH, Chang F (2007) Accelerating Feature-Vector Matching

Using Multiple-Tree and Sub-Vector Methods. Pattern Recognition; 40(9): 2392-

2399.

[6] Ho TK (1998) The Random Subspace Method for Constructing Decision Forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence; 20(8): 832–844.

[7] Breiman L (2006) Random Forests. Machine Learning. 45(1): 5-32.

[8] Chou CH, Lin CC, Liu YH, Chang F (2006) A Prototype Classification Method and Its

Use in A Hybrid Solution for Multiclass Pattern Recognition. Pattern Recognition; 39(4):

624-634.

[9] Chang F (2008) Techniques for Solving The Large-Scale Classification Problem in

Chinese Handwriting Recognition. Arabic and Chinese Handwriting Recognition,

Lecture Notes in Computer Science; 4768: 161-169.

[10] Lin XR, Guo CY, Chang F (2011) Classifying Textual Components of Bilingual

Documents with Decision-Tree Support Vector Machines. Int. Conf. on Document

Analysis and Recognition; PP. 498-502.

[11] Lee SW, Park JS (1994) Nonlinear Shape Normalization Methods for The Recognition of

Large-Set Handwritten Characters. Pattern Recognition; 27(7): 895-902.

[12] Yamada H, Yamamoto K, Saito T (1990) A Nonlinear Normalization Method for

Handprinted Kanji Character Recognition – Line Density Equalization. Pattern

Recognition 23(9): 1023-1029.

[13] Liu CL, Kim IJ, Kim JH (1997) High Accuracy Handwritten Chinese Character

Recognition by Improved Feature Matching Method. Int. Conf. Document Analysis and

Recognition; pp. 1033-1037.

[14] Umeda M (1996) Advances in Recognition Methods for Handwritten Kanji Characters.

IEICE Trans. Information and Systems; E79-D(5): 401-410.

[15] Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLINEAR: A Library for Large

Linear Classification. Journal of Machine Learning Research; 9: 1871-1874.

[16] Fan RE, Chen PH, Lin CJ (2005) Working Set Selection Using Second Order Information

for Training SVM. Journal of Machine Learning Research; 6: 1889-1918.

Advances in Character Recognition 154

[17] Platt JC, Cristianini N, Shawe-Taylor J. (2000) Large Margin DAGs for Multiclass

Classification. In S. A. Solla, T. K. Leen and K.-R. Müller, editors, Advances in Neural

Information Processing Systems. MIT Press.

