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1. Introduction 

Support Vector Machines – SVMs, represent the cutting edge of ranking algorithms and 

have been receiving special attention from the international scientific community. Many 

successful applications, based on SVMs, can be found in different domains of knowledge, 

such as in text categorization, digital image analysis, character recognition and 

bioinformatics. 

SVMs are relatively new approach compared to other supervised classification techniques, 

they are based on statistical learning theory developed by the Russian scientist Vladimir 

Naumovich Vapnik back in 1962 and since then, his original ideas have been perfected by a 

series of new techniques and algorithms.  

Since the introduction of the concepts by Vladimir, a large and increasing number of 

researchers have worked on the algorithmic and the theoretical analysis of SVM, merging 

concepts from disciplines as distant as statistics, functional analysis, optimization, and 

machine learning. The soft margin classifier was introduced few years later by Cortes and 

Vapnik [1], and in 1995 the algorithm was extended to the regression case. 

There are several published studies that compare the paradigm of neural networks against 

to the support vector machines. The main difference between the two paradigms lies in how 

the decision boundaries between classes are defined. While the neural network algorithms 

seek to minimize the error between the desired output and the generated by the network, 

the training of an SVM seeks to maximize the margins between the borders of both classes. 

SVM approach has some advantages compared to others classifiers. They are robust, 

accurate and very effective even in cases where the number of training samples is small. 

SVM technique also shows greater ability to generalize and greater likelihood of generating 

good classifiers. 
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By nature SVMs are essentially binary classifiers, however, based on several researchers’ 

contributions they were adapted to handle multiple classes cases. The two most common 

approaches used are the One-Against-All and One-Against-One techniques, but this 

scenario is still an ongoing research topic. 

In this chapter we briefly discuss some basic concepts on SVM, describe novel approaches 

proposed in the literature and discuss some experimental tests applied to character 

recognition. The chapter is divided into 4 sections. Section 2 presents the theoretical aspects 

of the Support Vector Machines. Section 3 reviews some strategies to deal with multiple 

classes. Section 4 details some experiments on the usage of One-Against-All and One-

Against-One approach applied to character recognition.  

2. Theoretical foundations of the SVM 

Support vector machines are computational algorithms that construct a hyperplane or a set 

of hyperplanes in a high or infinite dimensional space. SVMs can be used for classification, 

regression, or other tasks. Intuitively, a separation between two linearly separable classes is 

achieved by any hyperplane that provides no misclassification on all data points of any of 

the considered classes, that is, all points belonging to class A are labeled as +1, for example, 

and all points belonging to class B are labeled as -1.  

This approach is called linear classification however there are many hyperplanes that might 

classify the same set of data as can be seen in the figure 1 below. SVM is an approach where 

the objective is to find the best separation hyperplane, that is, the hyperplane that provides 

the highest margin distance between the nearest points of the two classes (called functional 

margin). This approach, in general, guarantees that the larger the margin is the lower is the 

generalization error of the classifier. 

 

Figure 1. Separation hyperplanes. H1 does not separate the two classes; H2 separates but with a very 

tinny margin between the classes and H3 separates the two classes with much better margin than H2 

If such hyperplane exists, it is clear that it provides the best separation border between the 

two classes and it is known as the maximum-margin hyperplane and such a linear classifier 

is known as the maximum margin classifier. 
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2.1. Brief history 

Research on pattern recognition started in 1936 through the work done by R. A. Fisher who 

suggested the first algorithm for pattern recognition [2]. After him we have the work done 

by Frank Rosemblat in 1957 that invented the nowadays well known linear classifier named 

PERCEPTRON that is the simplest kind of feed forward neural network [3]. In 1963 Vapnik 

and Lerner introduced the Generalized Portrait algorithm (the algorithm implemented by 

support vector machines is a nonlinear generalization of the Generalized Portrait algorithm) 

[4]. Aizerman, Braverman and Rozonoer in 1964, introduced the geometrical interpretation 

of the kernels as inner products in a feature space [5] and Cover in 1965 discussed large 

margin hyperplanes in the input space and also sparseness [6]. 

The field of statistical learning theory was first developed and proposed by Vapnik and 

Chervonenkis in 1974 [7] and, based on this theory, appears in the year of 1979, the first 

concepts about SVMs [8]. SVMs close to their current form were first introduced by Boser at 

al. with a paper presented at the COLT 1992 conference in 1992 [9]. 

2.2. Formal definition of the SVM classifier – The linear model 

The surface model used by SVM to perform the separation is the hyperplane. Let then W and 

b be, respectively, the vector normal to the hyperplane and its displacement relative to the 

origin [10]. Thus, we have that the decision function for an input x is given by equation (1). 

 ( )D x W x b    (1) 

where, 

 
( ) 0

( ) 0

A if D x
x

B if D x

  
 (2) 

As can be seen in figure 2 below, the distance from x (with signal) to the hyperplane is given 

by 3. 

 
( )D x

W
 (3) 

Thus, D(x1) and D(x2) will have opposite signs (belong to different sets) if and only if x1 and 

x2 are on opposite sides of the separation hyperplane. 

Figure 2 shoes that the Vector W is perpendicular to the hyperplane and the parameter 
b

W

determines the offset of the hyperplane from the origin along the normal vector. It is desired 

to choose W and b to maximize the margin M that represents the distance between the 

parallel hyperplanes that are as far apart as possible while still separating the both set of 

data. These two hyperplanes can be described respectively by the following equations (4). 
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Figure 2. Example of the separating hyperplane (in two dimensions), distances and margins (from 

Boser et al, 1992 [9]). 

 

1

1

W x b

and

W x b

   

   
 (4) 

Let the set of sample points be represented by x1, …, xp and their respective group 

classification be represented by y1, …, yp where 

 
1

1
i

i
i

if x A
y

if x B

    
 (5) 

If the two groups of samples in the training data are linearly separable it is then possible to 

select the two hyperplanes in a way that there are no points between them and then try to 

maximize the distance between the two hyperplanes [11].  

The distance between these two hyperplanes is given by 
2

W
 and to maximize it implies to 

minimize W and, in order to prevent data points falling into the margin M, we add the 

following constraint to each equation (6): 

 

1 , 1

1 , 1

i i

i i

W x b i y

and

W x b i y

      

      
 (6) 

Multiplying each equation by its corresponding yi they are transformed into just one 

equation as following (7): 
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 ( ) 1 , 1 ...i iy W x b i i p       (7) 

Dividing now both sides of the equation by w  it turns into (8) 

 
( ) 1

, 1 ...i iy W x b
M i i p

w w

  
     (8) 

To maximize M we need to minimize w subject to the following constraint (9). 

 

 

min ( , )

, 1...

1 0i i

in w b

w

subject to i i p

y w x b

 

    

 (9) 

The optimization problem above is difficult to solve because it depends on w , the norm of 

w, which involves a square root. Fortunately it is possible to alter the equation substituting

w by 
21

2
w without changing the solution (the minimum of the original and the modified 

equations have the same w* and b*). The problem now belongs to the quadratic 

programming (QP) optimization that is easier to be computed and is stated as in (10). 

 

 

2

min ( , )

1

2
, 1...

1 0i i

in w b

w

subject to i i p

y w x b

 

    

 (10) 

The factor of 1/2 is used for mathematical convenience and the problem can now be solved by 

standard quadratic programming techniques. Applying non negative Lagrange multipliers i 

(i = 1 … p) to the objective function turns the problem into its dual form as in (11). 

 

  2

1

1
( , , ) 1

2

0 , 1...

p

i i i
i

i

L w b w y w x b

subject to

i i p

 




    

  


 (11) 

Considering now that in the solution point the gradient of L() is null, the equation can be 

handled in order to obtain a new quadratic programming problem as in (12): 

 

*

*

* *

1 1

1 1

0

0 0

p p

i i i i i iw w
i i

p p

i i i ib b
i i

L
w y x w y x

w

L
y y

w

 

 


 


 


    




    



 

 
 (12) 
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In this case, the minimum point with respect to w and b is the same to the maximum with 

respect to α, and the problem can be stated as in (13). 

 

max ( )

1
1

2
, 1...

0,

0

i

T T

i

T

in

H

subject to i i p

y



  





   

 


 

 (13) 

Where α = (α1, . . . , αp)T, y = (y1, . . . , yp)T, 0 and 1 have size p, and Hp×p is such that  

 ,
T

i j i j i jH y y x x   (14) 

A condition imposed by the Kühn-Tucker Theorem is that  

   * * * 1 0 , 1...i i iy w x b i i p        (15) 

so that, if * 0i   then  

  * * 1 0 , 1...i iy w x b i i p       (16) 

that is, 

  * * 1i iy w x b    (17) 

 

Any xi that satisfies equation (17) is called support vector and the SVM trainings are 

reduced to the set of such vectors. 

In the cases where the samples are not linearly separable the approach described above 

would diverge and grow arbitrarily. In order to deal with the problem it is then introduced 

a set of slack variables (δ) in equation (6) as showed in (18). 

 

( ) 1 , 1

( ) 1 , 1

0, , 1...

i i i i

i i i i

i

D x W x b i y

and

D x W x b i y

where

i i p







        

        

  

 (18) 

These equations can be rewritten as 

 ( ) 1 , 1...i i iy D x i i p      (19) 
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The slack variables provide some freedom to the system allowing some samples do not 

respect the original equations. It is necessary however to minimize the number of such 

samples and also the absolute value of the slack variables. The way to do this is introducing 

a penalization term into the objective function as follows (19):  

 

 

2

1

max ( , )

1

2

, 1...

1 0,

0

p

i
i

i i i

i

in w b

w C

subject to i i p

y w x b











 

    




 (20) 

Variable C indicates the strength of the penalization to be applied. Introducing Lagrange 

multipliers on the penalization variables the dual form of the problem becomes as in (21). 

 

  2

1 1 1

1
( , , , , ) 1

2

, 1...

0

0

p p p

i i i i i i
i i i

i

i

L w b w C y w x b

subject to i i p

      




  
      

 



  
 (21) 

Where    ... ...
T T

i p i pand        

From here, as before, the problem can be represented into its quadratic form in terms of 

(22). 

 

max ( )

1
1

2
, 1...

0,

0

i

T T

T

in

H

subject to i i p

y

c



  




   

 

 
 

 (22) 

Where c = (C … C) is a p dimension vector with all values equal C.  

2.3. The non-linear model 

Whereas the original problem as proposed by Vladimir Vapnik in 1979 [8], was stated for a 

finite dimensional space, it often happens that the sets to be discriminated are not linearly 

separable in their original space. For this reason, it was proposed by Isabelle Guyon, 

Bernhard Boser and Vapnik in 1992 [9], that the original finite-dimensional space was 

mapped into a higher-dimensional space, presumably making the separation easier in the 

new space.  
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In order to achieve non-linear separation, instead of generating a new quadratic 

programming problem as in previous section, it is possible to modify the vectors of the 

input space into vectors of a feature space through a chosen transform function � with N ≥ 
n and then compute the separation hyperplane on the feature space. Figure 3 shows an 

example of such scheme.  

: n N    

 

Figure 3. The transform function maintains the same dimension of the input space but makes the 

representation in feature space be linearly separable 

The computation of the separation hyperplane is not done explicit on the feature space but 

using a scheme where every occurrence of (u).(v) is replaced by a function K(u,v) called 

kernel function and the H() function as seen before becomes (23): 

 , ( , )i j i j i jH y y K x x  (23) 

The optimum W vector is given by 

 *

1

( )
p

i i i
i

w y x


   (24) 

And the support vector machine decision function becomes 

 
1

( ) ( , )
p

i i i
i

D x y K x x b


   (25) 

To keep the computational load reasonable, the mapping used by SVM schemes are 

designed to ensure that dot products may be computed easily in terms of the variables in the 

original space, by defining them in terms of a kernel function K(x,y) selected to suit the 

problem. The hyperplanes in the higher dimensional space are defined as the set of points 

whose inner product with a vector in that space is constant. The vectors defining the 

hyperplanes can be chosen to be linear combinations of feature vectors that occur in the data 

base. With this choice of a hyperplane, the points x in the feature space that are mapped into 

the hyperplane are defined by the relation: 

 ( , ) tani i
i

K x x cons t   (26) 

(x1,x2)=(x1,x2.x2) 
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This approach allows the algorithm to find the maximum-margin hyperplane into the 

transformed feature space. The transformation may be non-linear and / or the transformed 

space may be of high dimension. The classifier, in the feature space, draws a hyperplane that 

represents a non-linear separation curve in the original input space. 

If the kernel used is a Gaussian radial basis function, the corresponding feature space is a 

Hilbert space of infinite dimension. Maximum margin classifiers are well regularized, so the 

infinite dimension does not spoil the results. Some common kernels include: 

Polynomial (homogeneous): ( , ) ( )d
i iK x x x x   

Radial Basis Function: 
2

( , ) exp( ); 0i iK x x x x      

Gaussian Radial basis function: 

2

2
( , ) exp( )

2

i
i

x x
K x x




   

Sigmoid: ( , ) tanh( ); ( ) 0 0i iK x x kx x c for some but not every k andc      

3. The multiclass classification strategies 

Multiclass SVM approach aims to assign labels to a finite set of several elements based on a 

set of linear or non-linear basic SVMs. The dominant approach for doing so in the literature 

is to reduce the single multiclass problem into multiple binary problems [12 – 15].  

Doing so, each of the problems can be seen then as a binary classification, which is assumed 

to produce an output function that gives relatively large values for those examples that 

belong to the positive class and relatively small values for the examples that belong to the 

negative class.  

Two common methods to build such binary classifiers are those where each classifier is 

trained to distinguish: (i) one of the labels against to all the rest of labels (known as one-

versus-all) [16] or (ii) every pair of classes (known as one-versus-one). Classification of new 

instances for one-versus-all case is done by a winner-takes-all strategy, in which the 

classifier with the highest output function assigns the class. The classification of one-versus-

one case is done by a max-wins voting strategy, in which every classifier assigns the 

instance to one of the two classes, then the vote for the assigned class is increased by one 

vote, and finally, the class with more votes determines the instance classification. 

3.1. The one-versus-all strategy 

One-Against-All multiclassifier is compound by a number of binary classifiers, one for each 

class. Using a Winner-Takes-All strategy, each binary classifier is trained taking the 

examples from one of the classes as positive and the examples from all other classes as 

negative. The multiclassifier output is activated for the class whose binary classifier gives 

the greatest output amongst all. Formally, given a vector y with the outputs of the binary 

classifiers, the multiclassifier generates a vector L = (l1, . . . , ls),  in the following way (27): 
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*

1...

*

arg max{ },

1 , 1...

1

i
i s

i

i y

if i i i s
L

otherwise




   


 (27) 

Where ‘s’ represents the total number of classes. 

As seen, a one-against-all multiclassifier for 's' different classes requires the construction of 

's' distinct binary classifiers, each one responsible for distinguishing one class from all the 

others. However, doing so does not guarantee that the resulting multi-class classifier is 

good. The problem is that all binary classifiers are assumed to show equal competence 

distinguishing their respective class, in other words, there is an underlying assumption that 

all binary classifiers are totally trustable and equally reliable, which does not always hold in 

multi-class cases as Yi Liu [17] shows through a simple example as in figure 4. 

 

 

Figure 4. (a) Three classes problem and respective boundaries; (b) binary classifier that distinguishes 

well class 3 from all others (dashed line); (c) binary classifier that does not distinguish well class 1 from 

all others (dashed line). The example was taken from [15]. 

The same error occurs with the binary classifier for class 2 and so, the multi-class classifier 

based on these three binary classifiers would not provide good accuracy. In order to 

mitigate such problem, Liu [15] suggests two reliability measures: SRM – static reliability 

measure and DRM – dynamic reliability measure. 

3.1.1. Static reliability measure 

As pointed out by Vapnik [17] and Cortes [1], a small training set error does not guarantee a 

small generalization error when the number of training samples is relative small with 

respect to the feature vector x dimension. SVM training is done minimizing the objective 

function and as the objective function becomes smaller, smaller also becomes the 

generalization error. Based on this fact, Liu rewrites the objective function as seen in (28) 

and proposes the SRM as in (29). 

(a) (b) (c)
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2

1

1
(1 ( ))

2

N

i i
i

Obj w C y D x 


    (28) 

Where (u)+ = u if u >0 and 0 if u ≤0. 

 

2

1

1 / 2 (1 ( ))

exp

N

i i
i

SRM

w C y D x







 
  

   
  
 


 (29) 

Where D(xi) = wTxi + b, and the parameter  = CN is a normalization factor to offset the effect 

of the different regularization parameter C and training size N. This SRM metric is reduced 

to (30) for those linearly separable cases where (1 – yiD(xi))+ = 0 for all training samples. 

 

2

exp
2SRM

w

CN


 
  
 
 

 (30) 

From (28) we notice that 
2

2 / w is the classification margin. Small w  corresponds to large 

margin and more accurate classifier. Small w  also corresponds to larger reliability 

measure SRM . 

3.1.2. Dynamic reliability measure 

The basic idea, differently of the static measure that is global over the whole training 

samples, is to estimate the classifier’s reliability in a local region of feature space 

surrounding the test sample x. The ‘k’ surrounding samples of x are denoted by Nk(x). 

Suppose A(x)  {1, -1} is the class label assigned to x by a SVM classifier and let    A x

kN x  

denote the set of the training samples that belong to the set of ‘k’ nearest neighbors of x and 

are classified to the same class of x. Now, rewriting equation (28) as in (31) 

 
2

1 1 1

1
(1 ( )) ( )

2

N N N

i i i
i i i

Obj w C y D x Obj x
N 

  
       (31) 

Liu formulate the local version of OBJ as in (32) 

   2

1 1

1
ˆ (1 ( ))

2

xk N

local i i i
i i

Obj Obj x w C y D x
N 

 

 
     

 
    (32) 

Where      ˆ ˆ ˆ, ,
A x

i k i ix N x x y  is the training pair, and kx is the number of training samples in 

the set    A x

kN x . And the dynamic reliability measure becomes as in (33). 

   exp local
DRM

x

Obj
x

C k


 
    

 (33) 
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3.1.3. SRM and DRM decision rule 

For a test sample x, assuming ‘M’ trained support vector machines each with its decision 

function, we evaluate D(x) for each classifier and after, generate the corresponding soft 

decision output  [ 1, 1]iy    assuming that all classifiers are completely trustable (34) 

     ( ) (1 expi i iy sign D x D x   (34) 

Now, assuming that i  denotes either the SRM or DRM reliability measure we have (35) 

 
*

1...

arg max

i i i

i
i M

y y

and

i y





 






 (35) 

Mota in [18] sees the same problem from a different point of view. According to them in the 

One-Against-All method, SVM binary classifiers are obtained by solving different 

optimization problems and the outputs from these binary classifiers may have different 

distributions, even when they are trained with the same set of parameters and so, 

comparing these outputs using equation (27) may not work very well.  

The output mapping, as suggested in [18], tries to mitigate such problem normalizing the 

outputs of the binary classifiers in such way to make them comparable by the equation (27). 

Four strategies are suggested: MND, BND, DNCD and MLP, based, respectively, on 

distance normalization (the first three) and base on a neural network model (the last one). 

3.1.4. MND output mapping strategy 

Analyzing the histogram of the raw outputs (original outputs) from a typical SVM binary 

classifier (figure 5) we observe a bimodal distribution consisting of two normal functions 

each with different mean and standard deviation. Different binary classifiers show different 

values of mean and standard deviation which makes unfair to compare their outputs. Then, 

before applying equation (10), the outputs from each binary classifier are normalized in a 

way that they all provide a normal distribution with mean at −1 or +1 and a standard 

deviation equal to 1. 

Using a validation data set the samples are grouped into two groups A1 (the current class) 

and A2 (all the other classes) and the respective output distribution mean and standard 

deviation are computed and then the normalized output is obtained by equation (36). 
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Where 
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Figure 5. Output histogram of a binary one-against-all classifier 

3.1.5. BND output mapping strategy 

BND Strategy takes into account both normalized distances using the equation (38). When 

both distances '
( , ) , { 1, 1}

iy kd k    are positive (i.e., yi is on the right side of the centers of both 

normal functions) then ui is +1. When both distances are negative yi is on the left side of both 

centers and ui is −1, but when the distance signals are different, ui is between −1 and +1, 

closer to +1 if '
( , 1)iyd  is greater than '

( , 1)iyd  , 0 when the distances are equal and closer to −1 

otherwise. 
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3.1.6. DNCD output mapping strategy 

Instead of using normalized distances (like in MND Strategy), DNCD Strategy builds a 

normalized output by joining the non-normalized distances and normalizing it by the 

distance between the centers of the normal functions as in equation (39). 
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3.1.7. MLP output mapping strategy 

In this case, instead of having a function which maps each raw output yi to a normalized 

output ui, we have a function which maps the entire vector y into the vector u. The idea of 

this strategy is to implement the mapping function by using an MLP neural network, 

trained using a validation data set. The training samples are the outputs given by the 

multiclassifier for the validation data set. The expected outputs for those samples are the 

multiclassifier expected outputs, that is, a vector for which all positions have value −1, 

except for the one which corresponds to the class of that sample, whose value is +1. 

Homogeneous M class multiclassifier is the one where its M binary classifiers are all trained 

with the same set of parameters. This approach, however, may not be the best option once 

the training of each classifier is independent and so, the chance is high to find a better set of 

classifiers if the search for different parameters is allowed in each case. But, in these cases, if 

a number ‘g’ of such parameters is used then the number of possible combinations of them 

is sg  and, obviously, even for reasonable values of ‘g’ the test for all possible combinations 

is impracticable. 

One approach is to choose a subset of alternative parameters composition and train a set of 

L distinct homogeneous multiclass SVMs. The output mapping is then applied to each of the 

‘L*s’ binary classifiers and the heterogeneous multiclassifier is formed by selecting the best 

binary classifier from the ‘L’ homogeneous multiclassifiers. The selection is done through 

the classification quality metric ‘q’ as in (40) computed from the confusion matrix of each 

binary classifier.  

 

1 1

2 ii
i s i

ij ji
j j

M
q

M M
 


 

 (40) 

Where Mij is the value of the i-th row and j-th column of the confusion matrix, which 

corresponds to the number of samples of class Ai that were missclassified as being of class Aj 

by the homogeneous multiclassifier. The more qi approaches to 1 the better is the interaction 

of the i-th binary SVM among the other ones of the same homogeneous multiclassifier. Thus, 

not only we take into account the number of hits of an SVM, but also we penalize it for 

possible confusions in that multiclassifier. Finally, the heterogeneous multiclassifier is 

produced by the binary SVMs of greatest quality for each class. 

3.2. The one-versus-one strategy 

This method constructs one binary classifier for every pair of distinct classes and so, for M 

classes, a number of M*(M-1)/2 binary classifiers are constructed. The binary classifier Aij is 

trained taking the examples from class ‘i’ as positive and the examples from class ‘j’ as 

negative. For a new example x, if classifier Aij classifies it as class ‘i’, then the vote for class ‘i’ 

is added by one. Otherwise, the vote for class ‘j’ is increased by one. After each of the M*(M-
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1)/2 binary classifiers makes its vote, the strategy assigns the current example to the class 

with the largest number of votes. 

Two interesting variations for the One-Against-One strategy, not using maximum vote, 

were proposed, one by Hastie and Tibshirani [19] known as pairwise coupling and other by 

Platt [20] that is a sigmoid version of the same pairwise coupling approach suggested by 

Hastie. Another interesting variation of this pairwise is proposed by Moreira and Mayoraz 

[21]. 

3.2.1. Pairwise coupling 

Considering that each binary classifier Cij on a One-Against-One strategy provides a 

probabilistic output as ( / ),ij i i jr prob A A A i j  , Hastie and Tibshirani propose to combine 

them in order to obtain an estimation of the posterior probabilities for all classifiers together 

( / ), 1... .i ip prob A x i M   To estimate the pi’s, M*(M-1)/2 auxiliary variables ij’s related to 

the pi’s are introduced such as: ij = pi/(pi + pj) and then, pi’s are determined so that ij’s are 

close to rij’s. Kullback-Leibler distance [22, 23] between rij and uij was chosen as the measure 

of closeness (41). 
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where nij is the number of examples that belongs to the union of both classes (Ai U Aj) in the 

training set. The associated score equations are (42).  
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The pi’s are computed using the following iterative procedure: 

1. Start from an initial guess of pi’s  

2. Compute the corresponding ij’s: i
ij

i j

p

p p
 


 

3. Repeat (i = 1 … M and so on) until the convergence is reached: 

a. 
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b. Renormalize pi’s: 
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c. Recomputed ij’s 
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3.2.2. Sigmoid pairwise coupling 

Platt criticized Hastie and Tibshirani’s method of generating posterior class probabilities for 

each binary SVM, and suggested the use of a properly designed sigmoid applied to the SVM 

output to form these probabilities such as in (43).  

 1

1
Pr( | )

1 Af B
w x

e 



 (43) 

Where ‘f’ is the output of the SVM associated with the example x and the parameters ‘A’ and 

‘B’ are determined by the minimization of the negative log-likelihood function over the 

validation data. In [20] Platt suggests a pseudo-code for the determination of the parameters 

‘A’ and ‘B’. 

4. Character recognition experiments 

The ability to identify machine printed characters in an automated manner has obvious 

applications in numerous fields (figure 6). Optical character recognition (OCR), as this field is 

commonly known, has been a topic of interest for a long time since the late 1940’s, when Jacob 

Rabinow started his work. Jacob was an engineer and inventor, he lived from 1910 to 1999 

and during his life he earned 230 U.S. patents on a variety of mechanical, optical and 

electrical devices.  

 

Figure 6. a) Example of a LPR – License Plate Recognition application; b) Example of a text reading 

from scanned paper 

The earliest OCR machines were primitive mechanical devices with fairly high failure rates. 

As the amount of new written material increased, so did the need to process it all in a fast 

and reliable manner, and these machines were clearly not up to the task. They quickly gave 

way to computer-based OCR devices that could outperform them both in terms of speed 

and reliability. 

(a) (b)
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Today there are many OCR devices in use based on a variety of algorithms. Despite the fact 

that these OCR devices can offer good accuracy and high speed, they are still far away 

compared to the performance reached by the human being. Many challenges are still 

opened not only with respect to the variety of scenarios, as well as, types of printed 

characters and handwritings, but also with respect to the accuracy by itself. There is no 

device able to recognize 100%, they always make mistake and, sometimes, bad mistakes like 

find a character that does not exist or recognize a complete different character than it really 

is (example: recognize as an ‘M’ what in fact is an ‘S’). 

4.1. Remarks 

The research field on automatic algorithms for character recognition is very large including 

different forms of characters like Chinese, Arabic and others; different origin like printed 

and handwritten and different approaches to obtain the character image like on line and off 

line. 

The experiments on character recognition reported in the literature vary in many factors 

such as the sample data, pre-processing techniques, feature representation, classifier 

structure and learning algorithm. Only a reduced number of these works have compared 

their proposed methods based on the same set of characters. Obviously that this fact makes 

tough to get a fair comparison among the reported results. 

Some databases were created and divulgated to the researcher’s community with the 

objective to offer a generic and common set of characters to be used as patterns for the 

researches. Some of the most popular databases are CENPARMI, NIST, MNIST and 

DEVNAGARI.  

License Plate and handwritten numeral recognition are on the most addressed research 

topics in nowadays and the experiments on handwritten numeral have been done basically 

using CENPARMI and NIST Special Database 19.  

CENPARMI database, for example, contains 4,000 training samples and 2,000 test samples 

segmented from USPS envelope images. This set is considered difficult but it is easy to 

achieve in the literature recognition rates reported over 98%. Suen et al. reported accuracy of 

98.85% by training neural networks on 450,000 samples [24] training it with 4,000 samples. 

Liu et al. report rates over 99% using polynomial classifier (PC) and SVMs [25], [26]. They 

report an accuracy of 99.58% using RBF SVM and 99.45% using Polynomial SVM. In [27] 

Ahmad et al. report the usage of a hybrid RBF kernel SVM and a HMM – Hidden Markov 

Model system over an online handwriting problem taken from the IRONOFF-UNIPEN 

database. The same authors in [28] report a work done on the recognition of words. Pal et al. 

also report in [29] the usage of a hybrid system based on SVM and MQDF – Modified 

Quadratic Discriminant Function for the problem of Devnagari Character Recognition. 

Arora et al., all from India, report in [30] a performance comparison between SVM and 

ANN – Artificial Neural Network on the problem of Devnagari Character Recognition. 



 

Advances in Character Recognition 42 

License Plate recognition as well as off line handwritten recognition represents a very tough 

challenge for the researchers. There are a number of possible difficulties that the recognition 

algorithm must be able to cope with, which includes, for example: a) poor image resolution, 

usually because the camera is too far away from the plate; b) poor lighting and low contrast 

due to overexposure, reflection or shadows; c) object obscuring (part of) the plate, quite 

often a tow bar, or dirt on the plate; d) bad conservation state of the plate; e) Blurry images, 

particularly motion blur; and f) lack of global pattern, sometimes even inside a same country 

or state (figure 7).  

 

Figure 7. Example of License plate samples from 50 states of USA [31] 

There is plenty of research work on this subject reported in the literature but the accuracy 

comparison among them is even more complex and difficult than the work done on 

handwritten. The accuracy not only depends on the type of the plates itself but also on the 

conditions on which the images were taken and on the level of the problems cited on 

previous paragraph. Waghmare et al. [32] report the use of 36 One-Against-All multiclass 

SVM classifier trained to recognize the 10 numeral and 26 letters from Indian plates (figure 

8a). Parasuraman and Subin in [33] also report the usage of a Multiclass SVM classifier to 

recognize plates from Indian motorcycles (figure 8b). Other works on LPR can be found in 

[34 – 37]. 

In summary, character recognition is intrinsically a non linear and high dimensional 

problem. Among to the variety of OCR algorithms found in the literature, the SVM classifier 

is one of the most popular based on its good accuracy, high response speed and robustness. 

In the following subsections we describe some experiments in character recognition using 

both One-Against-All and One-Against-One multiclass SVMs. 
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Figure 8. Indian plates for car (a) and motorcycle (b) 

4.2. Using one-against-all strategy 

The strategies proposed in [18] are here evaluated when applied to a problem of classifying 

characters extracted from vehicle plates. Two multiclass SVMs are trained: one to recognize 

the 10 digits (10 classes) and other to distinguish the 26 letters (26 classes). 

For each group of characters, three data sets were formed based on the feature extraction 

used. In data set 1 (DS1) the feature vector has dimensionality of 288 formed by the 16 × 16 

character bit matrix and 32 additional values from the character horizontal and vertical 

projections. Principal Component Analysis [38] reduced the original dimension to 124 (for 

digits) and 103 (for letters). Data sets 2 (DS2) and 3 (DS3) were generated respectively by 56 

and 42 statistical moments extracted from the 16 x 16 character bit matrix. 

Each data set was divided in three subsets: one for training, one for validation, and one for 

test. Table 1 shows how the samples were divided in these three subsets. 

 

Subset Digits Letters 

Training 2794 2088 

Validation 2500 1875 

Test 7500 5625 

Total 12,794 9,588 

Table 1. Number of samples for each data subset 

4.2.1. Digit recognition 

Based on two kernel functions and a set of different values for two variables as shown in 

table 2 (standard deviation for the Gaussian kernel and exponent order for the polynomial 

kernel), a set of 55 Homogeneous multiclassifiers were trained.  

(a) (b)
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Kernel Function Kernel Parameter C value 

Polynomial [1, 4] [0.1, 10] 

Gaussian [1.0, 3.0] [5, 80] 

Table 2. Number of samples for each data subset 

The heterogeneous multiclassifier was formed with 10 binary classifiers selected each one of 

the 55 homogeneous multiclassifiers using the output mapping and confusion matrices as 

explained in previous section. The best results achieved for the test subsets of each data set 

are seen in Table 3. WTA-SVM is the common Winner-Takes-All strategy for One-Against-

All approach. 

 

Strategy DS1 DS2 DS3 

WTA-SVM 4.16% 2.95% 2.77% 

MND 4.07% 2.84% 2.73% 

BND 4.23% 2.91% 2.83% 

DNCD 4.33% 3.05% 2.87% 

MLP 3.48% 2.85% 2.57% 

Table 3. Error results on the test sets 

4.2.2. Letter recognition 

The multiclassifier construction was also based on the same two kernel functions and the same 

two variables as shown in table 4 (standard deviation for the Gaussian kernel and exponent 

order for the polynomial kernel), a set of 30 Homogeneous multiclassifiers were trained.  

 

Kernel Function Kernel Parameter C value 

Polynomial [2, 4] [0.05, 5] 

Gaussian [1.0, 3.5] [1, 20] 

Table 4. Number of samples for each data subset 

The heterogeneous multiclassifier was formed with 26 binary classifiers selected each one of 

the 30 homogeneous multiclassifiers using the output mapping and confusion matrices as 

explained in previous section. The best results achieved for the test subsets of each data set 

are seen in Table 5. WTA-SVM is the common Winner-Takes-All strategy for One-Against-

All approach. 

 

Strategy DS1 DS2 DS3 

WTA-SVM 5.24% 4.36% 3.29% 

MND 5.74% 4.37% 3.57% 

BND 6.24% 4.52% 3.72% 

DNCD 5.64% 4.46% 3.45% 

MLP 4.46% 4.12% 2.88% 

Table 5. Error results on the test sets 
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4.3. Using one-against-one strategy 

Experiments using One-Against-One RBF Kernel SVM are described in [39] for Brazilian 

plates, a total of 22464 numerals and 16848 letters were used for training and testing the 

system (Table 6). Brazilian plates show two different patterns (figure 9 – black characters 

over gray background and white characters over red background). 

 

Subset Digits Letters 

Training 3942 3024 

Test 18522 13824 

Total 22,464 16,848 

Table 6. Number of samples for each data subset 

 

Figure 9. Brazilian patterns of plate 

4.3.1. Digit recognition 

As reported, an average accuracy of 99.61% was achieved (Table 7) and the worst 

performance occurred on the recognition of the number 8, which was misclassified 17 times 

from a total of 1725 samples (Table 8 – 7 times misclassified as 6 and 7 as 9). 

 

Correct Classification Error

Label Number % Number % 

0 2222 99.64% 8 0.36% 

1 2095 99.90% 2 0.10% 

2 1840 99.67% 6 0.33% 

3 1799 99.89% 2 0.11% 

4 1716 99.42% 10 0.58% 

5 1700 99.77% 4 0.23% 

6 1751 99.38% 11 0.62% 

7 1825 99.67% 6 0.33% 

8 1708 99.01% 17 0.99% 

9 1793 99.61% 7 0.39% 

Total 18449 73

Average 99.61% 0.39% 

Table 7. Percentage of classification for Digits 
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SVM \ Target 0 1 2 3 4 5 6 7 8 9 

0 2222 0 0 0 2 0 0 0 0 0 

1 0 2095 0 0 0 0 0 0 0 0 

2 1 0 1840 0 1 2 0 0 0 2 

3 0 0 0 1799 0 1 0 0 1 0 

4 1 0 0 0 1716 1 6 1 0 1 

5 0 1 0 0 0 1700 2 0 0 1 

6 1 0 0 0 1 2 1751 0 4 3 

7 0 0 2 1 0 0 0 1825 0 3 

8 2 0 0 0 0 1 7 0 1708 7 

9 1 0 0 2 0 3 0 0 1 1793 

Table 8. Digits confusion matrix 

4.3.2. Letter recognition 

As reported, an average accuracy of 98.60% was achieved (Table 9) and the worst 

performances showed by letters D (89.76%), O (93.31%) and Q (94.51%).  

 

 

Correct 

Classification 
Error 

 
Correct Classification Error 

Label Number % Number % Label Number % Number % 

A 408 100.00% 0 0.00% N 719 98.76% 9 1.24% 

B 450 98.90% 5 1.10% O 669 93.31% 48 6.69% 

C 576 99.31% 4 0.69% P 440 99.32% 3 0.68% 

D 298 89.76% 34 10.24% Q 379 94.51% 22 5.49% 

E 221 98.66% 3 1.34% R 401 99.01% 4 0.99% 

F 177 98.88% 2 1.12% S 327 99.09% 3 0.91% 

G 250 98.43% 4 1.57% T 340 99.71% 1 0.29% 

H 309 98.10% 6 1.90% U 531 98.88% 6 1.12% 

I 168 97.67% 4 2.33% V 374 99.73% 1 0.27% 

J 337 99.70% 1 0.30% W 284 98.95% 3 1.05% 

K 1590 99.69% 5 0.31% X 287 98.97% 3 1.03% 

L 2925 99.59% 12 0.41% Y 283 99.30% 2 0.70% 

M 349 97.76% 8 2.24% Z 538 99.81% 1 0.19% 

Total 13630 194 

Average 98.60% 1.40% 

Table 9. Percentage of classification for Digits 

Table 10 shows and explains the reasons for such reduced performance in comparison to the 

other 23 letters. The fact is that these three letters show very similar visual aspect and the 

SVM misclassified 23 letters ‘O’ as ‘D’, 26 ‘D’ as ‘O’, 17 ‘Q’ as ‘O’ and 18 ‘O’ as ‘Q’. 
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Figure 10. Similarity among letters D, O and Q 

 

B C D E F G H I J K L M N O P Q R S T U V W Z 

B 2 1 1 1 

C 1 1 1 1 

D 3 3 23 3

E 2 1 

F 2 

G 3 1

H 1 1 1 1 2 

I 3 1 

J 1 

K 1 1 1 2 

L 1 2 6 1 2 

M 1 1 3 2 1 

N 1 1 3 1 3 

O 1 3 26 1 17

P 1 2 

Q 1 1 2 18

R 2 2 

S 1 1 1 

T 1 

U 1 1 2 2

V 1 

W 2 1 

X 3 

Y 1 1

Z 1 

Table 10. Letters confusion matrix 
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