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1. Introduction

Over a hundred years ago L. G. Gouy described an anomalous behavior of the phase of a
converging diffracted spherical wave as it passes through a focus [1, 2]. He also performed
the experiment which confirmed his theoretical analysis. He considered a point source and
let it impinge onto two mirrors with different curvature radius, one concave of other plane,
parallel to each other. The observational plane was transverse to the so generated beams.
Their interference yielded circular interference fringes. Since then many observations of
such phase anomaly have been reported, some of them in [3–12].

It turns out that the Gouy phase has found several important applications. As one
example we quote the influence of this anomalous phase as being of critical importance
for any application as ultrashort laser pulses, including high-harmonics and attosecond
pulse generation [13]. It also has important consequences in the optical range of the
electromagnetic spectrum such as phase matching in high order harmonic generation
governed by atomic response and the Gouy phase of the fundamental radiation [14–16].
On the theoretical side numerous authors have treated the problem an explanation for such
phase. One of the first authors to consider the question was P. Debye in 1909, who found an
exact solution to the wave equation for all space treating the boundary condition in an elegant
way, avoiding its mathematical complication [17]. The anomalous propagation through the
focus has been treated by several authors since then. In refs [18, 19] one also finds early
rather involved theories explaining the phase anomaly.

Interesting enough even nowadays several authors still consider the Gouy phase as "the most
poorly understood subjects in physical optics" [20], although several simple explanation have
been offered in terms of Berry geometrical phase [4], the uncertainty principle [10] and so
one [5, 6, 21–25].

A successful description of optical waves crossing an aperture is the so called paraxial
approximation to the Helmholtz equation (explained below). A physically appealing aspect
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of this equation is its complete correspondence to Schrödinger equation for matter waves.
However in the latter case the corresponding phase is a time dependent overall phase and
therefore omitted in quantum mechanics text books. In spite of that it is manifest and in
fact the agent responsible for the growth of the width gaussian wave packet under a free
evolution. One of the objectives of the present contribution is to unveil the similarities
between these to apparently independent subjects, which, however bear a strong conceptual
basis, which has been recently show [9, 10]. Also an experimental proposal was put forth
for the observation of the Gouy phase of matter waves in the optical regime using Ramsey
interferometry with Rydberg atoms [12].

In fact the basis for the interpretation of the anomalous phase of matter waves is the
Schrödinger Robertson uncertainty relation which can be immediately carried over for
laser light. As will be shown here the Gouy phase in both cases is related to the x − p

cross correlations, i.e., the expectation value of the position-symmetrized-momentum. It
becomes thus clear that the phase is intimately connected to the correlations generated by
the uncertainty relation.

Our second purpose, which is a rather novel investigation relates to the role of the Gouy
phase in interference phenomena. Here in particular we restrict ourselves to two slit
experiments which, again, are equally both for light or matter.

The first theoretical to be faced is the bridge between the complementarity principle as
usually constructed using q-bits and their equivalent for continuous systems. We define
and explore the constructed definition for visibility and predictability, showing, in particular
that the Gouy phase will be manifest in the number of fringes of a given arrangement. Thus
by changing the slit aperture of the grating and measuring the corresponding change in the
number of fringes on the screen gives an indirect evidence of this phase. Again the idea that
the Gouy phase is at the root of this phenomena is not exclusive of matter or light waves,
since it has only to do with wave nature.

In section 2 we make the analogy between the paraxial wave equation for light and
the Schrödinger’s equation for a free particle. In section 3 we discuss the generalized
complementarity principle within a double slit experiment. We quantify the wave-particle
duality through the definition of quantities called visibility and predictability which
characterize the wave and particle behavior respectively [26, 32]. Section 4 is reserved to
a wave quantitative analogies of interferometry of matter waves in double slit experiment
showing that the Gouy phase is related to number of fringes. Moreover we show that
the Gouy phase can be indirectly extracted by analyzing the change in the interference
fringes with the variation of the slit width or the distance of the detector. The results
that we will obtain here for matter waves can be equally applied for classical and quantum
electromagnetic waves in the paraxial regime. In section 5 we make our conclusions.

2. From Maxwell to matter: Waves the Gouy phase

We proceed to exploring the analogies between properties of electromagnetic waves in the
paraxial approximation and matter waves. In Fig. 1 we compare plane, spherical and
Gaussian wavefronts. The latter is obtained when a converging spherical wave is obstructed
by a circular aperture. Notice that a Gaussian wavefront acquires an anomalous phase shift
as it passes through the focal region, i.e., their wavefront are slighted advanced in relation to
the others. This phase shift is the Gouy phase.
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Figure 1. Wavefronts: a) plane wave, b) spherical wave, c) Gaussian beam. Extracted from [ref. B. E. A. Saleh and M. Teich,

Fundamentals of Photonics (John Wiley Sons, New York, 1991).]

Consider a stationary electric field in vacuum

E(~r) = A(~r) exp(ikz), (1)

where k is the wave number. In the paraxial approximation we assume that the modulus

of the wave vector |~k| ≈ kz, i.e., kz ≫ kx, ky. This amounts to saying that the function A(~r)
which modulates the field varies slowly compared with the wavelength λ = 2π/k. Under
this condition the Helmholtz equation for the electric field is [25]

(

∂2

∂x2
+

∂2

∂y2
+ i4π

1

λL

∂

∂z

)

A (x, y, z) = 0, (2)

where λL is the light wavelength.

On the other hand the two-dimensional Schrödinger equation for a free particle of mass m
reads

(

∂2

∂x2
+

∂2

∂y2
+ 2i

m

h̄

∂

∂t

)

ψ(x, y, t) = 0. (3)

Notice that snapshots of ψ(x, y, ti) is identical to slices for fixed zi of A(x, y, zi). Therefore
we can interpret the time evolution of ψ(x, y, t) in terms of parameter z related to time as
t = z/vz, where vz can be interpreted in terms of the de Broglie wavelength λP = h/mvz as
we assume p ∼ pz.
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Based on this discussion Equation (3) can formally written as [7–9]

(

∂2

∂x2
+

∂2

∂y2
+ i4π

1

λP

∂

∂z

)

ψ (x, y, t = z/vz) = 0. (4)

Next we show that the Gouy phase is intimately connected to the generalized
Schrödinger-Robertson uncertainty relation [7–10] which provides for a physically appealing
interpretation of this phase which can be carried over to light waves in paraxial
approximation.

The solution of Equation (2) for a transverse Gaussian beam collimated in the z direction is

AG(x, z) = A0
w0

w(z)
exp

[

−
x2

w(z)2
+ i

kx2

2R(z)
+ iξ(z)

]

(5)

where we dropped the y component for brevity. In the equation above, w(z) is the beam
width, R(z) is the curvature radius, ξ(z) is the Gouy phase and z0 is the Rayleigh range
given by

w(z) = w0

[

1 +

(

z

z0

)2
]

1
2

, R(z) = z

[

1 +
( z0

z

)2
]

, (6)

ξ(z) = −
1

2
arctan

(

z

z0

)

, z0 =
kw2

0

2
. (7)

The total variation of the Gouy phase as we go from z = −∞ to z = +∞ is π/2 as we can
immediately verify from (7). This change is abrupt and effectively takes place in the so called
Rayleigh range z0. On the other hand, solution of Equation (4) for an initial condition given
by a Gaussian wave packet is given by [7–9]

ψ (x, t) =
1

√√
πB (t)

exp

[

−
x2

2B(t)2
+ i

mx2

2h̄R(t)
+ iµ(t)

]

. (8)

From the solutions (5) and (8) we can make the following identifications

w (z) −→ B (t) = b0

[

1 +

(

t

τ0

)2
]

1
2

, (9)

R (z) −→ R (t) = t

[

1 +
( τ0

t

)2
]

, (10)
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ξ (z) −→ µ (t) = −
1

2
arctan

(

t

τ0

)

, (11)

and

z0 −→ τ0 =
mb2

0

h̄
. (12)

To get a better insight inter the role played by τ0 (or equivalently the Rayleigh range z0) is
convenient to rewrite (8) as

ψ(x, t) = ϕ̃(x, t) exp[iS(x, t)], (13)

where

ϕ̃(x, t) =
1

√√
πB(t)

exp

[

−
x2

2B(t)2

]

, (14)

and

S(x, t) =
x2

2B(t)2

t

τ0
+ µ(t). (15)

Notice that the position dependence phase S contains the time scale τ0. the ratio t/τ0 will
determine the importance of this x-dependent phase to the interference pattern. In the
experimental setups using fullerene molecules [36] t/τ0 ≈ 104 which is also the condition
for Frauhoffer diffraction (see ref. [27]). The time scale τ0 is fundamentally determined by

Heisenberg’s uncertainty relation, given the initial position dispersion ∆x(0) = σ0/
√

2. In

fact, the corresponding momentum dispersion is ∆p = h̄/(σ0

√
2). Because the momentum

is a constant of motion this momentum spread will be preserved in time. Both ∆x and ∆p
constitute intrinsic properties of the initial wave packet, in terms of which the time scale τ0 is
expressed as

τ0 =
∆x(0)

(∆p)/m
. (16)

The numerator in the above relation represents the spatial dimensions of the initial wave
packet, whilst the denominator stands for the scale of velocity difference enforced by the
uncertainty principle. Therefore the time scale τ0 corresponds essentially to the time during
which a distance of the order of the wave packet extension is traversed with a speed
corresponding to the dispersion in velocity. It can therefore be viewed as a characteristic
time for the "aging“ of the initial state, which consists in components with larger velocities
(relatively to the group velocity of the wave packet) concentrating at the frontal region of the
packet. This can be seen explicitly by deriving the velocity field associated with the phase S
in Equation (15), which reads
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v(x, t) =
h̄

m

∂S

∂x
=

tx

τ2
0 + t2

. (17)

This expression shows that for t > 0 the initial velocity field v(x, 0) = 0 varies linearly with
respect to the distance from center of the wave packet (x = 0).

Next we relate quantitatively this "aging" effect to position-momentum correlations. This
is readily achieved using the generalized uncertainty relation devised by Schrödinger [28],
which is expressed in this case in terms of the determinant of the covariance matrix

det ∑ ≡ det

(

σxx σxp

σxp σpp

)

≥
h̄2

4
. (18)

For the minimum uncertainty wave packet of Equation (8) we obtain, at all times,

det

(

σxx σxp

σxp σpp

)

=
h̄2

4
. (19)

Therefore we establish a direct relation between the Gouy phase and the position-momentum
correlation for matter waves,

σxp =
h̄t

2τ0
= −

h̄

2
tan 2µ(t). (20)

For light waves a similar interpretation applies,

σxkx
=

z

2z0
= −

1

2
tan 2ζ(z). (21)

The formulation of the generalized uncertainty relation for light waves in terms of operators
can be found in [29]

3. The complementarity principle in double slit experiment

Wave-particle duality as first conceived by [30] stated that in a given experimental set up
one observes either wave or particle properties. Using his words: "we are presented with a
choice of either tracing the path of a particle or observing interference effects". In double slit
experiments the wave nature of the object is reflected by the interference pattern exhibited
on a screen. We know however that once the knowledge of the object’s path (i.e., through
which slit it crossed) is obtained, the interference pattern is completely destroyed. A natural
question that can arise is how partial knowledge of path affects such pattern. This discussion
was first addressed by [31] and later by [32]. The quantification of which-way information
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(predictability) and visibility was established by [33] and the relation between both given by
[34].

We proceed to define visibility and predictability in two slit experiments. Consider a double
slit experiment as depicted in the Fig. 2. B and C denote the slits, A the position from which
the particles are emitted and D the detector which covers the whole extension of the screen
and counts the numbers of particles. Notice that A need not be placed on the symmetry axis
Ox.

Figure 2. Illustration of the double slit with a displaced source of particles.

Suppose N particles are sent to the grating. Consider that (NB) NC particles cross slit (B) C
leaving slit (C) B closed with relative probability (PB) PC.

The probability amplitude at the screen is

ψ(x0, y) =
√

PBψB(x0, y) +
√

PCψC(x0, y). (22)

The probability density of finding a particle at the point (x0, y) on the screen knowing that it
crossed slit B is obviously

PB(y) = PB|ψB(x0, y)|2. (23)

Analogously

PC(y) = PC|ψC(x0, y)|2, (24)
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for slit C.

Now the quantification of which way information, also known as predictability is

P(y) =

∣

∣

∣

∣

PB(y)− PC(y)

PB(y) + PC(y)

∣

∣

∣

∣

. (25)

The visibility V is defined through the expression for the intensity |ψ(x0, y)|2 on the screen

I(y) = PB|ψB(x0, y)|2 + PC|ψC(x0, y)|2 + 2|
√

PBPCψB(x0, y)ψC(x0, y)| cos φ, (26)

with φ = arg ψB(x0, y)− arg ψC(x0, y).

We can rewrite I(y) as

I(y) = [PB(y) + PC(y)]

[

1 + 2

∣

∣

∣

∣

√
PBPCψB(x0, y)ψC(x0, y)

PB(y) + PC(y)

∣

∣

∣

∣

cos φ

]

, (27)

from which the visibility [37]

V =
Imax − Imin

Imax + Imin
, (28)

can be read off as

V =
2|√PBPCψB(x0, y)ψC(x0, y)|

PB(y) + PC(y)
. (29)

We can immediately verify that [32, 34]

P2 + V2 = 1, (30)

for all y. The relation above is known as the complementarity relation.

4. Double slit interference: Complementarity principle and the Gouy

phase

In this section we discuss double-slit interference of matter waves, for instance neutrons
or fullerene molecules [35], to illustrate the ideas that we discussed so far. Consider the
experimental set up illustrated in the Fig. 3. b0 is the characteristic width of a wavepacket,
assumed to be coherent, i.e., not affected by indeterminacies inherent to the production
process, σ0 is the slit widths, x0 the distance between the slit grating and screen and d is the
distance between the slits. The particles travel in the x direction with speed v, assuming that
the center of mass moves classically, that is ∆px ≪ px.

The intensity on the screen reads
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Figure 3. Experimental set up.

I(y, T = x0/v) =
∣

∣

√

PBψB(y, T = x0/v) +
√

PCψC(y, T = x0/v)
∣

∣

2
(31)

where

ψB(y, T) =
1

√

B(T)
√

π
exp

[

−

(y + d
2 )

2(1 − i T
τ0
)

2B(T)2
+ iµ(T)

]

, (32)

ψC(y, T) =
1

√

B(T)
√

π
exp

[

−

(y −
d
2 )

2(1 − i T
τ0
)

2B(T)2
+ iµ(T)

]

, (33)

and τ0 =
mσ2

0
h̄ . An analytical expression for PB and PC can in principle be derived in terms

of the parameters as illustrated in Fig. 3 as performed in [35] but it is not essential to the
purposes of our discussion.

It is easy to show that I(y, T) can be written as

I(y) = F(y)

[

1 +
2
√

PBPC

PBeαy + PCe−αy cos(βy)

]

, (34)

where
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F(y) = I0e−γ(y) PBeαy + PCe−αy

2
√

PBPC
, (35)

γ(y) =
y2 + ( d

2 )
2

B(T)2
, (36)

α =
d

B(T)2
=

1

σxx

d

2
, (37)

and

β =
T

τ0

d

B(T)2
=

σxp

σxx

d

h̄
, (38)

where hereafter we write I(y, T) = I(y) for sake of brevity.

Recalling the expression for predictability and visibility (25), (29) we get

V(y) = 2
√

PBPC

PBeαx + PCe−αy , (39)

P(y) =

∣

∣

∣

∣

PBeαy − PCe−αy

PBeαy + PCe−αy

∣

∣

∣

∣

, (40)

and

P2(y) + V2(y) = 1. (41)

Let p = PC
PB

. From expression (39) we can find the point on the screen where the visibility
reaches its maximal value,

ymax =
ln

√
p

α
. (42)

At this point the which way information is minimum, that is to say P(ymax) = 0 and
V(ymax) = 1. Notice that it. In Fig. 4 we illustrate this with p = 1, 0.15 and 0.015.

For p = 1, illustrated in Fig. 4, we have
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Figure 4. Intensity, visibility and predictability for p = 1, p = 0.15 and p = 0.015, respectively.

I(y) = F(y)

[

1 +
cos(βy)

cosh(αy)

]

, (43)

V(y) =
1

cosh(αy)
, (44)

and

P(y) =

∣

∣

∣

∣

tanh(αy)

∣

∣

∣

∣

. (45)

The peaks of intensity and visibility occurs at y = 0 where predictability is minimum. In
terms of the complementarity principle we have the minimum of knowledge about from
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which slit the particle cames from. Note also that we have intermediate situations where
we have interference fringes with 0 < P < 1 and 0 < V < 1, signalizing the existence of
situations where the wave like property does not preclude the particle like property.

An important quantity is the ratio R between α and β,

R =
α

β
=

h̄

2σxp
. (46)

It can be used to estimate the effective number of fringes (contrast) ν before the visibility
decreases by a factor of 1/e [26]

ν =
0.264

R
, (47)

for instance, R = 1 for ν = 0.264.

It is also related to the Gouy phase. From Equations (20) and (46) we get

µ(T) = −
1

2
arctan

(

1

R

)

. (48)

In Fig. 5 we plot µ against the slit width σ0. We immediately verify that for σ0 between 0
and 0.02µm the phase varies abruptly from −0.05 to π

4 rad. For values of the Gouy phase
within this range we associated a noticeable contrast in the intensity curves as shown in Fig.
5. When the Gouy phase tends to zero the interference fringes tends to disappear because
the geometrical optical regime is attained.

Figure 5. Gouy phase and intensity contrast according Gouy phase.
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5. Conclusion

Our results show how partial knowledge of path affects the interference pattern. The position
of the peaks of intensity and visibility are affected by the probabilities of the particles cross
the slit B (PB) or C (PC). When PB = PC these peaks are centered in the position ymax = 0
and when PB 6= PC they are displaced from this position. In positions y 6= ymax we have
the situations where V and P are both different of zero, i.e., the wave like property not
exclude the particle like property. The crucial point here is the connection between the
complementarity principle and the Gouy phase of matter waves. We see that this phase
appears in the number of interference fringes exhibiting the wave behavior of the matter. We
see that the number of fringes tends to disappear when the Gouy phase tends to zero.
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