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1. Introduction 

Since it is impossible to measure the thermodynamics properties of all systems in nature, we 

must rely upon mathematical models to extrapolate the available experimental data. In 

order to develop such models, very accurate experimental data are necessary for selected 

complex mixtures, such as those that exist in natural gas. For this reason researchers must 

collect the most important and fundamental thermodynamics properties for such systems. 

Two of the most important thermodynamics properties are the pressure volume (density) 

and temperature (PT) surface and the phase equilibrium properties of mixtures. Accurate 

volumetric property data are used in custody transfer operations for natural gas. Also 

accurate PT data are necessary for calculating energy functions. On the other hand, phase 

equilibria data are needed mostly for design calculations involving separation processes. 

Additionally, very accurate phase equilibrium knowledge is necessary for natural gas 

transfer through pipelines to avoid condensation in the pipelines. Atilhan et. al. [1] have 

shown that even widely used equations of state (EOS) such as Peng-Robinson or Redlich-

Kwong (RK) cannot predict the retrograde condensation region for simple natural gas-like 

mixtures that do not contain heavy fractions.  

When natural gas rises from the reservoir to the ocean floor at offshore platforms, the stream 

temperature can drop quickly (perhaps 5 to 10 °C) until it reaches the surrounding ocean 

temperature. This rapid temperature drop at high pressure along with moisture in the 

natural gas stream make conditions favorable for gas hydrate formation in the pipeline. 

Hydrates can cause several serious problems such as: plugging the pipeline and blowouts 

[2]. Similar problems are as well common in natural gas compression facilities at offshore 

and onshore processing plants. Such problems can be avoided by increasing the 

temperature and insulating the stream that comes from the ocean bed, or by lowering the 

pressure of the pipeline. Another possible solution is lowering the dew point of water in the 
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stream by adding polar solvents to the line such as methanol or glycols. In order to apply all 

these methods, accurate knowledge on PT behavior of the natural gas stream is necessary.  

Because of their importance, density measurements essential for both industrial applications 

and scientific research. Very accurate PT data is required not only to calculate custody 

transfer of natural gas in pipelines but also to develop new EOS for industrial and scientific 

use. Experimental PT data is employed to calculate thermal properties of fluids required 

for industrial process design calculations. Loss of accuracy from density predictions directly 

impacts processes; therefore only exceptionally good density values ensure good thermal 

properties [3]. 

Knowledge of temperature, pressure and composition enables determination of the density 

from an EOS. The equation most widely used in custody transfer of natural gas is the 

Detailed Characterization Method or AGA8-DC92 EOS developed by American Gas 

Association (AGA) in 1992 [4]. This EOS was derived using an extensive and reliable 

experimental PT database that included real natural gas mixtures as well as high order 

hydrocarbon mixtures (mostly binary mixtures of natural gas components). AGA8-DC92 

EOS has different accuracy regions as shown in Figure 1.  

 

Figure 1. AGA8-DC92 EOS uncertainty regions [5]. 

As seen in Figure 1, the maximum uncertainty claimed for the EOS is 0.1% in region 1, 0.3% 

in region 2, 0.5% in region 3 and 1.0% in region 4. However, the equation is valid only for 
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lean natural gas mixtures over this wide range of conditions, and its ability to describe rich 

natural gases is untested. The equation cannot perform equilibrium calculations, as it is only 

valid for gas phase calculations. Also, use of the equation is not recommended near the 

critical point. The deviations from density measurements are 2 to 2.5% for North Sea natural 

gas samples at 8 to 17 MPa and 40 to 80 °C [6]. Following this, the Gas Research Institute 

(GRI) and National Engineering Laboratory (NEL) started a collaborative, joint industry 

project to extend the range of applicability of AGA8-DC92 EOS for natural gas mixtures to 

include the gas compositions observed in the North Sea. GERG-2008 EOS is the latest 

benchmark EOS that addresses the drawbacks of AGA8-DC92 EOS and it has proven to 

have better uncertainty in PT predictions [7]. 

2. Density measurement techniques 

2.1. Introduction 

This section contains reviews of several experimental methods for density measurements, 

and discusses the relative strengths and weakness of each method. An EOS can describe the 

thermodynamic state or vapor liquid equilibrium (VLE) of pure fluids and mixtures with 

accuracy that depends upon the application. The accuracy of an EOS depends upon the 

experimental data used during development of the equation. Historically, the quality of 

predictions obtained from EOS has improved dramatically as advanced technologies and 

new instrumentation have become more common for experimental methods. Among the 

thermodynamic properties, density is the most directly predicted property using EOS. The 

measured densities should be approximated by suitable EOS and the measurements should 

be traceable to the International System of Units [8]. According to Kleinrahm et. al. [9], the 

following considerations are important when deciding upon a density measurement 

technique: 

i. Large pressure and temperature range for wide operations. 

ii. Low total uncertainty and high accuracy of the method for the overall range. 

iii. Simplicity in design and ease of maintenance and operation. 

iv. Little time required for each data point measurement. 

2.2. Density measuring devices 

Several different density-measurement techniques are described in this section, including: 

speed of sound methods, vibrating body techniques, continuous weighing method and 

buoyancy-based densimeters. 

2.2.1. Speed of sound methods 

Speed of sound measurements can be used to determine the performance of an equation of 

state for thermodynamics property predictions. By correlating the speed of sound to 

thermodynamics properties, one can build experimental devices and investigate solid, 
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liquid and gas thermodynamics properties for pure components and mixtures. Densities 

and isothermal and isentropic compressibility factors result from speed of sound 

measurements experiments [10]. Based upon a pulse technique described by Daridon et. al. 

[11], a cylindrical-shaped cell is used to measure ultrasonic waves. In the pulse technique, 

effects of pressure upon piezo-electric materials are isolated by separating piezo-electric 

elements from the fluid studied. The speed results from the measurements of the transit 

time through the sample and the length of passage, which is a function of temperature and 

pressure. Density comes from: 

            
0 0

2 2
0 0 0, ,

P P

pP P
P T P T u dP C dP   (1)  

In above equation u is the sound speed, α is the isobaric coefficient of thermal expansion, Cp 

is the isobaric heat capacity and Po is the atmospheric pressure. The sum of these terms gives 

the density with as a function of pressure at different temperatures. The first integral, where 

can be expressed as a polynomial in pressure with coefficients expressed as polynomials in 

temperature, can be evaluated along the isotherms considered. By using thermodynamics 

relations for and Cp, the second integral can be calculated iteratively. The second integral 

is a few percent of the first integral. More detailed discussion on numerical evaluations for 

such measurements appears in [10] and [11]. 

2.2.2. Vibrating devices 

Vibrating tubes and vibrating forks are common density measuring techniques. These 

devices measure the fluid density of interest by determining the oscillation frequency of the 

vibrating element in the fluid. These instruments provide accurate results quickly. However, 

frequent calibration is necessary for this apparatus to maintain its accuracy [12]. Moreover, 

when the density of the fluid is vastly different from air or pure water (frequently used as 

reference fluids because of their well-known thermophysical properties) the uncertainty of 

the measurements increases as reported by Kuramoto et al. [8].  

2.2.2.1. Vibrating wires 

In vibrating wire densimeters, a wire carrying a diamagnetic weight is suspended in the 

fluid to be monitored. The wire is placed in a robust position in a uniform magnetic field 

provided by permanent magnet in both vertical and horizontal directions. When an 

alternating current passes through the power source to the wire, interaction starts with the 

current and the magnetic field. This leads to induced harmonic motion that is orthogonal to 

the magnetic field and the wire. If the mass, density and the dimension of all the solid 

components of the system are known, the resonant frequency of the wire can be determined 

experimentally under vacuum conditions. If the viscosity of the fluid of interest is known, 

experimental measurement of resonant frequency of wire velocity provides the fluid density 

[13; 14]. Although the vibrating wire technique is suitable for a wide range of pure fluid and 

mixture gas density applications, it suffers from problems such as surface tension on the 

wire, adsorption on the weight, detailed knowledge need of exact dimensions of the wire 
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and the assembly. However, the device is used widely as a primary densimeter device 

because it has a simple operating principle and allows development of an exact physical 

model. Density, in principle, can be calculated directly from the theory. 

2.2.2.2. Vibrating tubes 

Vibrating tube densimeters consist of an assembly that includes two thin walled metallic or 

glass tubes bent in Y or V shapes as shown in figure 2. A permanent magnet and drive coil 

reside between these two tubes. Generally, a drive coil and a permanent magnet are placed 

in the middle of the two tubes. The drive coils and magnet are mounted on the opposite legs 

of the tubes. Each coil and magnet on the side leg forms a pick-off circuit. Alternatively, 

attractive and repulsive magnetic fields between the coils and magnets are provided by 

sending alternating current to the drive coil. 

 

Figure 2. Vibrating tube densimeter scheme. 

Because the drive coils and the magnets are installed on the opposing side of the tubes, a 

sine wave generated by the two pick-up circuits represents the motion of one tube relative 

to the other. The sine waves are in phase if there is no flow in the tube. The density of the 

fluid is: 

    2K L   (2) 

where, tube parameters K and L are both pressure and temperature dependent and τ is the 

period of vibration. Because it is not possible to determine the temperature and pressure 

dependence of K and L, measurements are performed at the same temperature and pressure 

conditions with the sample. A reference fluid of well-known properties is used for this 

reason. Finally, the corresponding density difference equation is: 

        2 2
r rK    (3) 

where subscript r stands for the reference fluid.  and  are not exactly linear, and this must 

be taken into consideration. The vibrating tube densimeters are designed for rapid operation 
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and they perform very precise measurements of density differences. If one assumes linearity 

between  and , the highest levels of accuracy expectations are not achieved.  

2.2.3. Expansion devices: Burnett method 

Another well-established and widely-used density measurement device is the Burnett 

apparatus. Burnett [15] suggested a technique to measure the densities of sample fluids 

without measuring the mass or volume directly. An expansion device contains two cells. 

During operation, the sample is charged initially into the first cell and, after pressure and 

temperature measurement, expanded into the second cell. The ratio of the final volume to 

the original volume equals the ratio of densities before and after the expansion. Only 

pressure and temperature are measured before and after expansion of the sample from a 

single volume (VA) into the combination of the original volume and a second volume 

(VA+VB). Some of the gas goes through a sequence of isothermal expansions into a chamber, 

which is evacuated every time the expansion takes place. Both virial coefficient and gas 

density can be calculated with this method. The ratio of the densities before and after the 

expansion is calculated for each expansion: 
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where  
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


0
lim a b

P
a

V V

V
   (5) 

In equation 4,  a  and  ab  are the pressure distortions of the volumes Va and (Va +Vb) 

respectively,   is the zero pressure cell constant, m  is the density at the lowest pressure 

and subscripts i and superscript m indicate the value after the i-th and m-th (last) 

expansions, respectively. A serious problem that can affect the Burnett apparatus is 

adsorption of the sample gas on the inner surfaces of the measuring cell [16]. Also a Burnett 

apparatus is difficult to automate fully because of frequent valve operations. Because of 

error accumulation, very high precision is necessary in the pressure measurements, which 

necessitates use of high-quality dead-weight gauges. The adsorption affect can be 

minimized by the using two cells with a surface area ratio almost equal to the volume ratio 

[17]. Eubank et al. have formulated new adsorption correction schemes, based upon the BET 

adsorption isotherm [18]. 

2.2.4. Continuously weighed pycnometer method 

In the continuously weighed pycnometer method, the mass of the sample is determined by 

direct weighing of the cell. A typical pycnometer consists of a weight measurement system, 

constant temperature bath, temperature control system and data acquisition system, a 
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volume bellows cell for changing pressure and density without transferring mass, and a 

high vacuum system [19]. The major component of this method is a constant volume 

pycnometer suspended from a digital balance. The pycnometer can be filled and evacuated 

with an extension tube that enables faster measurements and reduces operator errors. The 

mass of the pycnometer when empty and when filled with fluid is measured by a digital 

balance. The density of the fluid being measured at constant temperature and pressure is 

calculated from the measured mass value of the fluid and the known volume of the 

pycnometer. One disadvantage of this method is that the long feed tube exposes part of the 

sample to ambient temperature making it impossible to measure mixture densities when the 

sample exists as one phase at the cell set point temperature and at room temperature. 

2.2.5. Hydrostatic buoyancy methods 

The hydrostatic buoyancy force technique is based upon Archimedes’ Principle. Basically, 

Archimedes’ Principle states “when a solid body is immersed in a fluid, it displaces a 

volume of fluid the weight of which is equal to the buoyancy force exerted by the fluid on 

the sinker.” This means that the buoyancy force is proportional to the density of the fluid in 

the measuring cell under pressure. This principle can be applied to determine the gas 

density of any pure fluid or mixture. Historically, improvements have appeared in the 

application of buoyancy method based densimeters.  

2.2.5.1. Classical methods 

In classical hydrostatic buoyancy densimeters, an object (sinker hereafter), usually a sphere 

or cylinder, is suspended from a commercial digital balance by a thin wire. The fluid is kept 

in a pressure cell at constant temperature using a temperature control mechanism. The 

sinker is submerged in the fluid and weight of the sinker is constantly monitored. According 

to Archimedes’ principal, the apparent loss in the true weight of the sinker is equal to the 

weight of the displaced fluid. Density of the fluid results from: 

  



,

V a

S

m m

V T P
 (6) 

In above equation mv is the ‘true’ mass of the sinker in vacuum, ma is ‘apparent’ mass of the 

sinker in the fluid and Vs is the calibrated volume of the sinker, which is a function of 

temperature and pressure. In such densimeters, several corrections are necessary to reduce 

the effect of surface tension between the sample liquid and the immersed part of the wire, 

and the effect of the buoyant force of air on the masses of the analytical balance. Zero shift of 

balance readings, buoyancy forces on auxiliary devices, adsorption effects and surface 

tension may reduce the accuracy of such measurements [20]. 

2.2.5.2. Magnetic suspension devices 

To overcome limitations in achievable accuracy, the need for frequent calibration of the 

apparatus with reference fluids, complexity of operation, limitations on temperature and 
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pressure, Kleinrahm and Wagner [9] introduced an MSD based upon magnetic levitation of 

the sinker in the measuring cell. The novelty of the magnetic suspension coupling was that it 

used non-physical-contact force transmission between the sinker in the pressurized cell and 

the weighing balance at atmospheric pressure, thus allowing a cell design that covered a 

very wide temperature and pressure range [21]. Then, Kleinrahm and Wagner [20] modified 

the hydrostatic buoyancy force method by introducing an alternative force transmission 

method in which they levitated two sinkers through a magnetic suspension coupling. By 

compensation for surface tension, buoyancy, adsorption effects and shifts in zero-point of 

the balance, a two-sinker MSD improved the accuracy of the density measurements.  

Operation of a two-sinker MSD is rather complex and its advantage is not required for 

medium or high-density measurements encountered in many practical applications. To 

extend the instrument range towards higher temperatures and pressures, Wagner et al. [16] 

have developed a single-sinker densimeter. Although the single sinker design is much 

simpler than that of the two-sinker densimeter, it is still possible to perform high-accuracy 

density measurements at relatively low gas densities by applying some of the advantageous 

features of the two sinker device [22]. The single-sinker densimeter also operates based 

upon Archimedes’ principle and the force transmission comes from levitation of the sinker 

in the measuring housing of the high-pressure cell. Klimeck et al. [23] have concluded that 

the accuracy of density measurement from a single-sinker densimeter is lower than that 

from a two-sinker densimeter especially at low densities because it lacks compensation for 

the adsorption effect. Moreover, the force transmission error has more effect on total density 

measurement uncertainty than observed in a two-sinker densimeter. Also for small 

densities, having the load compensation system outside of the measuring cell is less effective 

than having it inside as with the two-sinker densimeter.  

3. Viscosity measurement techniques 

3.1. Introduction 

Viscosity is a remarkable property for natural gas because of its influence on flow behavior, 

which is especially important for reservoir conditions. Natural gas viscosity is several orders 

of magnitude lower than for oil or water, and thus, natural gas mobility in reservoirs is 

larger than for water or oil. Moreover, gas flow is predominantly laminar in reservoirs, and 

thus, the influence of viscosity is especially important. The upstream gas industry faces new 

challenges for precision monitoring of gas supplies, for which accurate and reliable 

knowledge of the natural gas viscosity is a prerequisite. Davani et al. [24] and Denney [25] 

analyzed the gas viscosity estimation errors on the gas recovery from a high pressure-high 

temperature (HPHT) reservoir, showing that a -10 % error in gas viscosity estimation can 

produce a relative 8.22 % error in estimated cumulative gas production, and a + 10 % error 

can lead to a relative 5.5 % error in cumulative production. Moreover, uncertainty in gas 

viscosity data has a direct effect for inflow performance relationship curves [26], Davani et 

al. [27] showed that a 1 % uncertainty in gas viscosity data leads to a 1 % uncertainty in gas 

flow rate.  
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Sanjari et al. [28] reported in recent study that common prediction methods for natural gas 

viscosity lead to large deviations when applied for high pressure – high temperature ranges, 

and thus, these methods should be applied with caution for reservoir estimations. This lack 

of accuracy for current predictive viscosity models, and the large economical impact of 

viscosity uncertainties, show the need of experimental accurate natural gas viscosity to 

analyze i) the effect of natural gas composition on viscosity for wide pressure – temperature 

ranges, and ii) the predictive performance of current viscosity analyze the predictive 

performance of current viscosity predictive models and developing more accurate 

predictive approaches.  

Experimental accurate measurement of gas viscosity is very difficult, requires properly 

designed equipment, especially for high pressure–high temperature conditions, and is very 

costly both in time and resources. Moreover, possible natural gas mixtures under 

experimental study is very large considering that natural gas composition depends strongly 

on the origin, age, and depth of the reservoir [29]. Likewise, conditions of interest, especially 

the high pressure – high temperature conditions found in many new reservoirs that can be 

explored with current technologies [30], has a remarkable effect on natural gas viscosity, and 

discard the use of traditional measurement techniques. The analysis of published viscosity 

data in the open literature shows its scarcity both in the number of studied systems and the 

experimental conditions (high pressure data are almost absent) [28,31]. Therefore, 

systematic studies on natural gas viscosity has to be carried out in wide pressure-

temperature ranges and as a function of mixture compositions, for selected mixtures 

representative of key reservoirs. Our group is involved in a multilaboratory international 

research project in which natural gas viscosity is measured, and other relevant 

thermophysical properties, using state-of-the-art equipments [31,32]. As a result of our 

research, we report in this section a detailed analysis of the available experimental methods 

for measurement of natural gas viscosity. 

3.2. Viscosity measuring devices 

3.2.1. Rolling ball viscometers 

Rolling ball viscometers measuring principle is based on the travelling time of a metal or 

glass ball through a known distance to measure the viscosity of the fluid, Figure 3. The ball 

of known diameter rolls down a tube of known length, at a known inclination, filled with 

the fluid under study, under isothermal-isobaric conditions.  

The viscosity of the fluid is proportional to the ball travelling time, considering that the fluid 

flow around the ball is laminar. Sage and Lacey [33] proposed corrections to be applied in 

case of viscosity measurements under turbulent flow. 

The working principle of rolling ball viscometers may be summarized in equation (7): 

                   1 2, , , , ,bP T k P T t k P T   (7) 
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Figure 3. Scheme of a rolling ball viscometer. 

Where b and  stand for the ball and fluid density, respectively, t for the ball travelling 

time, and k1 and k2 for the calibration constants, which are function of the measurement 

angle (). Calibration constants are obtained with fluids of known viscosity for the required 

pressure-temperature ranges. It should be remarked that rolling ball equipments are 

kinematic viscometers, and thus, and additional instrument is required for density 

measuring in the studied pressure-temperature ranges. 

The use of rolling ball viscometers for gas measurements is very scarce, and high pressure 

data are almost absent. Sage and Lacey [33] measured viscosity data for methane and two 

hydrocarbon gases up to 2900 psi, Bicher and Katz [34] measured the viscosities of methane-

propane mixtures up to 5000 psi. The uncertainty of viscosity measurements using rolling 

ball viscometers it is claimed to be ± 2 % when applied for measurements in the liquid state 

[35], although no detailed uncertainty analysis is available for gas measurements. Dolan et 

al [36] carried out gas phase measurements for n-butane using a capillary viscometer and 

showed large difference with rolling ball viscometer data by Sage et al. [37], who claimed a ± 

5 % for their gas phase viscosity measurements.  

3.2.2. Capillary tube viscometers 

The working principle of classical capillary viscometers (so-called Rankine viscometers) is 

based on the introductions of a pellet of mercury into a tube filled with the gas under 

study, with the mercury pellet completely filling the cross section of the tube. The 

mercury pellet will reach a steady descending velocity will for any inclination of the tube. 

The descending pellet will act as a moving piston, which will force the gas through an 

adjacent capillary, leading to a constant pressure difference across the fine capillary. Gas 

viscosity is obtained from the measurement of the mercury pellet falling time between 

two fixed points. Capillary viscometers have been widely studied for gas measurement 

θ

travelling time sensors
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because of their operational simplicity and the small amounts of required gas. Heath [38] 

analyzed the performance of capillary viscometers for gas phase measurements, and 

Kobayashi [39] carried out a detailed analysis of the application of Hagen-Poiseuille's law 

for gases to the Rankine viscometer. Giddings et al. [40] developed a high-pressure 

capillary viscometer, which was applied for measurements of methane, propane and their 

mixtures up to 544.4 atm with a 0.25 % claimed reproducibility. Lee et al. [41] carried out 

systematic measurements of the viscosity of natural gas mixtures using a capillary 

viscometer with an estimated accuracy of ±2.00. In a recent work, May et al. [42] obtained 

reference viscosity data for several gases, including methane, using a modification of 

capillary viscometer. 

3.2.3. Vibrating wire viscometers 

The falling body and the capillary tube methods for viscosity measurements require 

hydrodynamic corrections and approximations for ends, edges, and walls. These applied 

corrections are not always known, and in most cases are sources of important errors. These 

corrections are avoided by the use of vibrating wire based viscometers. These apparatus 

are based on the damping of the vibrations of a wire in the fluid under study. An applied 

external field disrupts the wire immersed in the fluid, leading to periodic oscillations. In 

the free-decay mode the damping of the oscillations depends on the viscosity and density 

of the fluid [43]. This technique can be applied in a straightforward manner to low 

viscosity fluids, in fact most of the available contemporary natural gas viscosity data have 

been measured using vibrating-wire based approaches. Tough et al. [44] and Trappeniers 

[45] were the first to apply vibrating wire devices for the measurement of low viscous 

fluids and gases at high pressures. Assael et al. [46] carried out viscosity measurements of a 

natural gas mixture with a claimed uncertainty of ± 1 % up to 15 MPa. Langelandsvik et al. 

[47] measured viscosity of three natural gas mixtures with a ± 1% estimated uncertainty up 

to 5.0 MPa. Schley al. [48] measured viscosity of methane and two natural gases up to 29 

MPa with a ±0.3 % and ±0.5 % estimated uncertainties for methane and gas mixtures, 

respectively. Likewise, vibrating-wire viscometers are considered as quasi-primary 

measurement methods [43].  

3.2.4. Falling body viscometers 

The experimental setup for these instruments is very similar to that for rolling body 

viscometer with the exception that the ball is replaced with a piston. These equipments 

have been widely for measuring liquid viscosity but measurements for low viscous 

gases are scarce. In most cases the viscometer arrangement is vertical, which is a serious 

limitation for gas measurements considering the very short travelling times. Heidaryan 

et al. [49] used a falling body viscometer for measuring methane viscosity up to 140 

MPa. 

A modification of traditional falling body viscometers has recently proposed to withdraw 

the aforementioned disadvantages and to apply this equipment to large pressure 
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temperature ranges. In this equipment a piston is placed inside a cylindrical measuring 

chamber filled with the fluid (gas or liquid) under study, the piston is driven 

electromagnetically by two coils located at opposite ends and the time taken by the piston to 

complete one motion is correlated to the viscosity of the fluid in the measuring chamber by a 

working equation. A scheme of the equipment installed in our laboratory is showed in 

Figure 4. The measurement chamber is placed at 45º inclination, and the setup allows 

measurements from 0.02 to 10000 cp, simply changing the used piston. 

 

 
 

Figure 4. Electromagnetic viscosity measuring device [31]. 

The main advantage of this equipment is the ability to carry out fast measurements in 

wide pressure-temperature ranges. Nevertheless, Thomas et al. [50] and Viswanathan [51] 

reported problems for gas viscosity measurements using electromagnetic viscometers, 

mainly raising from the poorly defined pressure-temperature dependence of the 

measurement chamber properties. Therefore, we proposed a new calibration method 

using this equipment to avoid these problems, which was validated against reference 

viscosity data, leading ± 0.1 % reproducibility and to ± 2.5 % and ± 4.0 % uncertainties, for 

pressures lower than 30 MPa and higher than 30 MPa, respectively. Nevertheless, we 

should remark that the uncertainty values are derived from the uncertainties obtained 

from the calibration fluids. This is a remarkable problem for viscosity measurements, the 

use of secondary methods requires the knowledge of highly accurate viscosity data for 

reference fluids, in wide pressure – temperature ranges, which is not currently available 

[43]. Nevertheless, the use of electromagnetic based viscometer allow to obtain wide 

collection of viscosity data for gas mixtures, in wide pressure – temperature ranges, with 

acceptable accuracy and at moderate costs. 
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4. Phase equilibria measurement techniques 

4.1. Introduction 

The prediction of natural gas vapor–liquid equilibria is of primary importance for industrial 

purposes [52]. This property, together with the knowledge of PVT behavior, is required in 

all the stages of natural gas production / transportation chain. The vapor–liquid equilibria of 

natural gas mixtures is commonly analyzed using the pressure–temperature projection, so–

called phase envelope, Figure 5, in which a curve separating the two–phase (vapor–liquid 

equilibria) and single–phase (vapor or liquid) regions is plotted.  

 

Figure 5. Phase envelope of a typical natural gas. 

In this curve, three points are of remarkable importance: i) the critical point, where bubble 

and dew points curves meet, ii) the cricondenbar, the maximum pressure at which vapor 

and liquid phases may coexist, and iii) the cricondentherm, the highest dew point 

temperature. Therefore the importance of an accurate knowledge of natural gas phase 

envelopes could be summarized in three main areas: i) reservoir engineering, ii) custody 

transfer and iii) gas transportation through pipelines [53]. 

For reservoir engineering purposes, care must be taken to maintain the gas in single phase 

conditions because during exploration a pressure depletion may lead to an erroneous 

determination of reservoir composition (and thus to incorrect field–development designs), 

because dew point curve is crossed and liquid is formed, and during production liquid 

drop-out may lead to valuable hydrocarbons left behind in the reservoir [54]. If liquid drop-
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out appears in the wellbore, it may lead to liquid loading concerns. For custody transfer 

purposes, the inaccuracy in the knowledge of phase envelopes may lead to contractual 

disputes rising from the contract sales gas dew point specifications between the company 

that sales the gas and the purchaser. For transportation through pipelines [29], it is essential 

to maintain the fluid pressure above the cricondenbar to protect the compressors which may 

be damaged by the presence of liquid drops [55]. Moreover, the sizing of the compressors 

depends on the value of the predicted cricondenbar, and thus, inaccuracy in the knowledge 

of this value may lead to an oversizing of the expensive compressors (if the real value is 

lower than the predicted ones) or to a two–phase flow (if the real value is above the 

predicted one) along the pipelines. Hence, accurate knowledge of phase envelopes allows 

reducing the design margins, to optimize the pipelines capacity, and thus, to improve the 

economic viability of new pipelines projects [56]. 

Therefore phase envelopes must be known before production / transportation operations are 

designed for any new gas–field. The most accurate and reliable way to obtain the phase 

envelope for any natural gas mixtures is its determination through experimental 

measurements [12] Nevertheless, these measurements require state–of–the–art apparatus, 

which are very costly, both in time and resources, and, considering that the composition, 

and thus properties, of natural gases can vary widely depending upon the reservoir from 

which the fluid comes, it is almost impossible carry out measurements for all the possible 

mixtures over the wide temperature and pressure ranges required. Thus, the common way 

to obtain phase envelopes for design purposes in the gas industry is through available 

theoretical models, using gas chromatography determined compositions, and thus, the 

reliability of the designs stands on the accuracy of the used models. In the natural gas 

industry, equations of state (EOS) are the common choice for phase equilibria predictions, 

and cubic EOS are mainly used because of their simplicity. Multiparametric EOS developed 

in the last years, such as AGA8–DC92 [4], which are used with high accuracy for density 

predictions are not applicable for phase equilibrium calculations or for liquid properties, 

and thus other EOS such as cubic ones or new multiparametric GERG2008 [7] are used to 

characterize natural gas. Nonetheless, the predictive ability of available models for phase 

equilibria have to be studied against accurate experimental data to test their reliability, and 

thus, experimental measurements for selected natural gas mixtures using accurate methods 

are required [57].  

Experimental methods for measurement of vapor-liquid equilibria in high pressure 

conditions may be classified as i) analytical and ii) synthetic [58].  

4.2. Phase equilibria measuring methods  

4.2.1. Analytic methods 

For the analytic method, pressure and temperature are fixed and then phase separation is 

produced, sampling for each phase under equilibrium is carried out and then composition is 
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determined by chromatographic methods. This technique may carried out using static or 

dynamic circulation approaches. The experimental results from this type of experimental 

equipment are usually isothermal or isobaric phase diagrams. Natural gas mixtures usually 

contain small fractions of heavy components (C6+ fractions), which are difficult to measure 

accurately through chromatographic methods, and thus, this approach is not very useful for 

the study of natural gas mixtures.  

4.2.2. Synthetic methods 

In the synthetic method a mixture of known composition is prepared and its behavior 

observed as a function of pressure or temperature. The experimental results from this type 

of equipment are isopleth phase diagrams. The synthetic method may be subdivided into 

visual and non-visual. 

4.2.2.1. Visual synthetic methods 

Chilled mirror dew point meters is the simplest and most widely applied method of 

hydrocarbon dew point measurement in the gas industry. These instruments have a metallic 

mirror surface inside a high-pressure sample cell. The instruments are also equipped with a 

glass viewing port through which operator can observe the mirror surface. Mirror dew point 

meters normally are used for periodic spot check measurements [59]. 

The principle of the mirror dew point meter is to observe the very first signs of condensate, 

Figure 6. Therefore, cooling samples for several pressures allows to build the phase 

envelope, Figure 7.  

 

Figure 6. Scheme of a chilled mirror equipment for phase envelope measurements. 

The main difficulties in making such a measurement lie in the characteristics of 

hydrocarbon condensates. The natural gas condensates are colorless and have low 
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surface tension. This means that the liquid film that forms as the sample cools through 

the dew point temperature is almost invisible to operators. At the same time, the 

decreasing temperature measurement reading must be observed as the mirror 

temperature drops. To achieve the best sensitivity and repeatability of measurement, the 

rate of mirror cooling is critical and should be as slow as possible through the region in 

which the dew point is likely to be found [60]. The subjective nature of such a 

measurement technique can result in large uncertainty in natural gas dew point 

measurement [59]. 

 

Figure 7. Scheme of experimental procedure for measuring phase envelopes using visual chilled mirror 

method.  

4.2.2.2. Non-visual synthetic methods 

The method usually involves a blind pVT cell filled in the single-phase region with a 

mixture of known composition. Variation of one of the measured quantities allows 

measurement of a second quantity while the third is held constant. Therefore, 

measurements are made along either an isobaric or isochoric or isothermal path with the 

homogenous / heterogeneous boundary (phase envelope) determined from a discontinuity 

in the slope of the other two variables [61]. Among the non-visual methods, the isochoric 

technique is probably the most useful for the determination of phase envelopes in natural 

gas mixtures, its amenability to automation allow the collection of large quantities of 

accurate data at moderate costs. 

The technique for determining phase loops using isochoric method utilizes the change of the 

slope of an isochore as it crosses the phase boundary, Figure 8. 

220 240 260 280 300
T / K

0

4

8

12

P
 /

 M
P

a

individual dew points



 
Review on Natural Gas Thermopysical Property Measurement Techniques 69 

It should be remarked that the change of slope does not occur at the cricondentherm, which 

has a collinear isochore [62]. The apparatus cell volume changes slightly with pressure and 

temperature, and thus, experimental data require an application of the cell distortion 

equation to correct the results to truly isochores. In a recent work Acosta et al. [63] 

developed a new computational method for the analysis of isochoric data to obtain phase 

envelope experimental data points, reporting that the phase boundary temperatures and 

pressures could be determined within 0.45% and 0.04%, respectively. Our research group 

has developed a systematic measurement program on selected natural gas-like mixtures 

using the isochoric method with the cell design reported in Figure 9 [64-66]. The reported 

results allowed to analyze the predictive ability of the equations of state commonly used in 

the gas industry for phase envelope predictions showing large deviations, which justify the 

need of very accurate experimental data for the analysis and prediction of natural gas phase 

equilibria. 

 

 

 

 

 

 

 

 

 

Figure 8. Method for determine phase envelope from isochoric measurements. 
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Figure 9. Scheme of isochoric cell design [65]. 

5. Conclusions 

Techniques for the measurement of the most relevant thermophysical properties for the 

characterization of natural gas mixtures are reviewed showing the state-of-the-art, and the 

weaknesses and strengths of the current methods. Accurate determination of density, 

viscosity and phase equilibria are extremely important for the natural gas industry, both for 

technical and economical reasons, for production, processing and transportation purposes. 

Likewise, exploration and production using non-conventional reservoirs, including high 

pressure conditions, requires the accurate measurements in wide pressure-temperature 

ranges. Moreover, current predictive theoretical models using in the gas industry can not be 

used out of their tested pressure – temperature ranges, and thus, new accurate data are 

required to check the models performance and / or develop new theoretical predictive 

approaches. Therefore, this review could help to guide in the selection of the most suitable 

experimental approach for the determination of the required properties in wide pressure – 

temperature ranges. 
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