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1. Introduction

Nowadays, governments are developing ambitious goals toward the future green and sus‐
tainable sources of energy. In the U.S., the penetration level of wind energy is expected to be
20% by the year 2030 [1]. Several European countries already exhibit the adoption level in
the range of 5%–20% of the entire annual demand. Also with further developments in the
solar cells technology and lower manufacturing costs, the outlook is that the photovoltaic
(PV) power will possess a larger share of electric power generation in the near future. Grid-
connected PV is ranked as the fastest-growing power generation technology [2]. PV gener‐
ates pollution-free and very cost-effective power which relies on a free and abundant source
of energy.

Due to the increasing wind and solar penetrations in power systems, the impact of system
variability has been receiving increasing research focus from market participants, regulators,
system operators and planners with the aim to improve the controllability and predictability
of the available power from the uncertain resources. The produced power from these re‐
sources is often treated as non-dispatchable and takes the highest priority of meeting de‐
mand, leaving conventional units to meet the remaining or net demand. This issue makes
the optimum scheduling of power plants in power system cumbersome as embeds the sto‐
chastic parameters into the problem to be handled. The unpredictability along with poten‐
tial sudden changes in the net demand, may face operators with technical challenges such as
ramp up and down adaptation and reserve requirement problems [3-4].

© 2013 Abedi et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Several investigations aiming at handling the uncertain nature of wind and solar energy re‐
sources have been reported. Basically, the methods found in the literature can be classified
into three groups: methods that deal with the prediction of uncertain variables as an input
data pre-processing, methods that use stochastic scenario-based approach within the optimi‐
zation procedure to cover all the outcomes per the probable range of uncertain variables,
and methods based on a combination of these two approaches. The studies presented in
[5-7] can be mentioned as one of the most recent efforts lying in the first group. In [5-6] an
Artificial Neural Network (ANN) forecast technique is employed and followed by risk anal‐
ysis based on the error in the forecast data. Then, the so called pre-processed data is directly
taken as the input to the optimization process. Relying on the forecast tools, such methods
suffer from high inaccuracy or ex-ante underestimation of the available power which in‐
creases the scheduled generation and reserve costs. Anyway, this approach is useful as it ac‐
counts for the temporal correlation between the random variables representative of each
time step of the scheduling period, in terms of time-series models. On the other hand, in
[8-9] which belong to the second group, the focus is on the stochastic scenario analysis rath‐
er than the forecasting methods. The usage of this approach also has its own advantages, as
it tries to model the likely range of values for the random variables. However, the efficiency
of this approach largely depends on the accuracy and reliability of their probabilistic analy‐
sis; based on which the potential scenarios are built.

The most effective approach is associated with the third group, which applies the advantag‐
es of both forecast techniques and scenario-based optimization approach. Reference [10]
presents a computational framework for integrating a numerical weather prediction (NWP)
model in stochastic unit commitment/economic dispatch formulations that describes the
wind power uncertainty. In [11], the importance of stochastic optimization tools from the
viewpoint of the profit maximization of power generation companies is investigated. The
exposed financial losses regarding the wind speed forecast errors are discussed. A stochastic
model is also presented in [12]which uses a heuristic optimization method for the reduction
of random wind power scenarios. The wind speed data is assumed to follow the normal
PDF. A similar approach is introduced in [13] whereas the wind speed error distribution is
considered as a constant percentage of the forecasted data. In [14], the Auto-Regressive
Moving Average (ARMA) time series model was chosen to estimate the wind speed volatili‐
ty. Based on the model, the temporal correlation of wind speed at a time step with respect to
the prior time steps is well analyzed.

In this chapter, the authors present a framework for stochastic modeling of random process‐
es including wind speed and solar irradiation which are involved in the power generation
scheduling optimization problems. Based on a thorough statistical analysis of the accessible
historical observations of the random variables, a set of scenarios representing the available
level of wind and solar power for each time step of scheduling are estimated. To this aim,
the Kernel Density Estimation (KDE) method is proposed to improve the accuracy in model‐
ing the Probability Distribution Function (PDF) of wind and solar random variables. In ad‐
dition, the concept of aggregation of multi-area wind/solar farms is analyzed using Copula
method. Taking the advantage of this method, we can reflect the interdependency and spa‐
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tial correlation of the power generated by several wind farms or PV farms that are spread
over different locations in the power system. A final framework is developed to perform the
stochastic analysis of the random variables to be input into the stochastic optimization proc‐
ess, as discussed in the following sections.

2. Methodology of data processing

2.1. Probability distribution function and data sampling

In order to generate sample data for random variables, the random behavior should be si‐
mulated somehow that the model follows the historical data pattern with the most homolo‐
gy to real data. In order to specify the pattern of a random variable, the PDF should be
obtained. There are two classes of methods to determine the PDF of a random variable in‐
cluding parametric and non-parametric methods [15]. In parametric methods, the data sam‐
ples are fitted to one of the well-known standard PDFs (such as Normal, Beta, Weibull, etc.)
so that the most possible adaptation between the PDF and the existing data is achieved. The
values associated with the PDF parameters are evaluated using Goodness of Fit (GoF) meth‐
ods such as Kolmogorov-Smirnov test [16]. On the other hand, the nonparametric methods
do not employ specific well-known PDF models.

The use of parametric methods in some studies in which simulation of probabilistic models
for wind and solar data is included have been reported, as in [6, 12]. Similarly, authors in [9]
employ a fixed experimental equation to represent the PDF of wind data. However, this ap‐
proach to PDF estimation can bring about some defects as follows:

1. The parametric methods may show significant deviation to the actual distribution of
data, mainly because the actual distribution does not characterize the underlying sym‐
metry in the standard PDFs. As an example, Figure1 shows the distribution function for
yearly solar irradiation sample data at 11 AM in a region. As seen in the figure, the
parametric distribution fittings are not capable of modeling the right side skewness in
the actual distribution, which will reveal considerable error in the outcoming samples.

2. Some random variables in general and particularly solar irradiation and wind speed are
very time-dependent in behavior. In other words, their patterns change with different
time periods, months and seasons. Hence, the nonparametric approach is advantageous
in terms of time period adaptation, because it does not consider a specific type of distri‐
bution. However, the parametric approach tries to nominate a certain type of PDF to
each random phenomenon in all circumstances. For instance, it is common to associate
a Weibull pattern to wind speed data, which may not be the most appropriate option to
be generalized to all time periods.

Based on the aforementioned facts, in this study, it is desired to obtain the most accurate dis‐
tribution model taking the advantage of Kernel Density Estimation (KDE), categorized as a
non-parametric method.
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Figure 1. Solar irradiation data histogram for samples at 11 AM during a season and the parametric and nonparamet‐
ric PDF fits to the data

2.2. Kernel Density Estimation (KDE)

The simplest  and most  frequently  used nonparametric  method is  to  use a  histogram of
historical samples. As a brief description of the method, the distance covering the range
of  samples  is  divided  into  equal  sections  called  "bin".  For  each  bin,  a  sample  value  is
considered as the kernel of that bin.  A number of rectangular blocks equal to the num‐
ber of samples in each bin, each with unity area, are located on each bin. In this way, a
discrete  curve  is  obtained  that  somewhat  describes  the  probability  distribution  of  sam‐
ples. However, the overall curve is largely dependent on the size of bins and their mar‐
ginal points, because with the alterations in the bin size, the number of samples in each
bin  will  be  changed  [17].  Besides,  the  obtained  curve  suffers  from  high  raggedness.
Hence, KDE method was introduced to solve the mentioned drawbacks. In this method,
considering the samples as the kernels of each bin, the blocks are with a unity width and

a height equal to the inverse of the number of samples for each sample value ( 1
n ) totally

gaining a block with unity area. The accumulation of these blocks builds the PDF curve.
In order to smooth the curve and eliminate the dependency to the block width, continu‐
ous  kernels  such  as  Gaussian  or  Cosine  along with  kernel  smoother  methods  are  used
[18].  Figure  2  demonstrates  a  KDE  with  Gaussian  kernel.  The  overall  PDF  will  be  ob‐
tained by:

f̂ (x)= 1
N ∑

i=1

N 1
h i

.K ( x −X i
h ) (1)
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Figure 2. Demonstration of a KDE with Gaussian kernel

where h is the smoothing factor. The kernel function in Gaussian case is given by:
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In the present study, the KDE method is used to obtain the PDF of the seasonally wind
speed and solar irradiation data for each hour in a day. The method is implemented using
the dfit tool function in MATLAB.

2.3. Correlation of random variables

Sample generation from a random variable is possible simply using a Monte Carlo simula‐
tion of its corresponding PDF. However, this is more cumbersome for a group of random
variables which may have underlying dependence or correlation. Neglecting the correlation
will result in the inaccurate multivariate PDF and then to irrelevant and deviated samples.

There are several correlation coefficients to quantify the correlation among a number of ran‐
dom variables, among which the most famous one is the Pearson coefficient:

cov( , )
cov( , ).cov( , )

i j
i i j j

r = (3)

where cov is the covariance function. This analysis reflects only the linear correlation among
the random variables. Nevertheless, in many cases, random variables reveal nonlinear corre‐
lation and more complicated relationships among themselves, especially when the PDF of
the variables are not of similar patterns [19]. In a case with a large number of random varia‐
bles, neglecting the nonlinear relation will result in more significant deviation of output
samples from what they actually should be. For instance, the solar irradiation behavior in
two different regions in power system may not establish a linear relation between each oth‐
er, though they are not completely independent. The nonlinear correlation concept is pre‐
sented in Figure 3.
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Figure 3. A representation of linear vs. nonlinear correlation between two random variables.

In the problem under study, i.e. power system scheduling in the presence of uncertain re‐
newables, we consider the presence of multiple wind farms and solar farms throughout the
power system. The solar power and wind power as well as load demand are three distinct
stochastic processes. They can be discriminated into 24 random variables representing 24
hours of the day.

The random variables within each random process have their own temporal relation which
can be modeled by time series prediction methods [14]. However, there may also be spatial
correlation among the random variables from different processes, although it might seem
unlikely. Here, we are going to deal with the tangible nonlinear correlation between the
hourly random variables for a wind farm and another farm located in a close region, as well
as for a PV farm and another one located in a close region. The interested reader may exam‐
ine other possible dependence structures between random variables / processes. Obviously,
taking into account these relations results in more accuracy and enhancement of the models
and solutions. Figure 4 presents how neglecting the correlations and directly using single
variable PDFs to generate samples for a multivariate process may lead to model malfunc‐
tion. For two random variables with similar Log-normal distribution and Pearson correla‐
tion of 0.7 (with diagonal covariance matrix), 1000 samples have been generated considering
total independence (Figure 4 (a)) and linear dependence (Figure 4 (b)). It is observed in Fig‐
ure 4 (b) that X1 values tend to be closer to X2 values especially in the upper range, in com‐
parison with Figure 4 (a).

In order to describe the correlations between random variables including nonlinear correla‐
tions, a method named Copula can be employed which is described in the following section.

2.3.1. Copula method

The correlation between random variables or samples is measured by the Copula concept.
Embrechts & McNeil introduced Copula functions for application in financial risk and port‐
folio assessment problems [20]. Recently, much attention is being paid to this method in
statistical modeling and simulation problems.

Copulas provide a way to generate distribution functions that model the correlated multi‐
variate processes and describe the dependence structure between the components. The cu‐
mulative distribution function of a vector of random variables can be expressed in terms of
marginal distribution functions of each component and a copula function.
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Figure 4. The effect of correlation on generation of random samples: (a) the samples are generated assuming com‐
plete independence and (b) the samples are generated considering the correlation.

The basic idea behind the copula method is described as the Sklar's theorem [21]. It shows
that a multivariate cumulative distribution function (CDF) can be expressed in terms of a
multivariate uniform distribution function with marginal density functions U(0,1). In fact, if
we have n random variables with an n-variable CDF, F, with margins F1, F2, …,Fn, there is an
n-variable distribution function, C, given by:

1 2 1 1( , ,..., ) ( ( ),..., ( ))n n nF x x x C F x F x= (4)

This equation can be rewritten to extract the Copula of the joint distribution function of the
random variables, as follows:

1 1
1 1 1( ,..., ) ( ( ),..., ( ))n n nC u u F F u F u- -= (5)

where Fi
-1(ui) is the inverse CDF. If F is a continuous multivariate PDF with continuous sin‐

gle-variable PDFs, the implicit copula distribution function is obtained as follows:
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This equation can be restated as:

1
1 1

1 1

( ,..., )
( ( ),..., ( ))

( ).... ( )
n

n n
n n

f x x
c F x F x

f x f x
= (7)

where c is the PDF corresponding to C. Therefore, a multivariate PDF can be written in terms
of the product of its single-variable marginal distributions and its underlying copula (c):

1 1 1 1 1( ,..., ) ( ( ),..., ( )). ( )... ( )n n n n nf x x c F x F x f x f x= (8)

Various copula functions are introduced by present. They are generally classified into ex‐
plicit and implicit types. The implicit copulas are inspired by standard distribution func‐
tions and have complicated equations, whereas the explicit ones are simpler and do not
follow the specific functions. Among the most widely used implicit copulas, Gaussian copu‐
la and t-Student copula and among the explicit ones, Clayton copula and Gumbel copula
can be mentioned. The selection of the most appropriate copula is a complicated problem
itself. Here, the t-Student copula is employed because of its simplicity and flexibility. The t-
Student copula is formulated as [21]:

1 1
( 2)/22 2( ) ( )

, 2 1/2 2
1 2( , ) 1

2 (1 ) (1 )
t u t v s st tC u v dsdtu u

u

r u
r

p r u r

- -
- +

-¥ -¥

ì ü- +ï ï= +í ý
- -ï ïî þ

ò ò (9)

where (ρ,υ) are the copula parameters, tυ
-1(.) is the T distribution function with υ degrees of

freedom, mean of zero and variance of υ
(υ - 2). The best values for these parameters can be

estimated using Inference Functions for Margins (IFM) or Canonical Maximum Likelihood
(CML) methods. In both methods, at first the parameters of the single-variable marginal dis‐
tribution functions are computationally or experimentally determined. Then, by substitution
of these functions into Copula likelihood functions, the Copula functions are calculated so
that the Copula likelihood functions are maximized. Further discussion on the mathematical
background and the calculation methods can be found in [21-23] which is suggested to be
pursued by the interested reader.

In the current study, the authors employed the two-dimensional Copula method to present
the correlation of the wind speed patterns between two wind farms and the correlation of
the solar irradiation patterns between two PV farms, for every hour of the day. The available
data for three years are initially normalized:
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where μx ,  σx  are the mean and standard deviation of data x, respectively. The simulation
results for wind speed data distribution in farm 1 (x axis) and farm 2 (y axis) for 7 and 11
AM in fall season are shown in Figure 5. Figure 6 shows the samples for solar irradiation
data distribution on two farms. Also, the values of linear correlation coefficients, the Ken‐
dall's tau correlation and the t-Student copula parameters for wind speed are presented in
Table 1.  The results state that the correlation of wind speed (and similarly solar irradia‐
tion) between two farms may not be negligible since they have similarities in their climat‐
ic conditions.

 

(a) 

(b) 

Figure 5. Correlated samples for wind speed of two farms for 7 and 11 AM in fall season.
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(a) 

(b) 

Figure 6. Correlated samples for solar irradiation of two farms for 7 and 11 AM in fall season

Kendall's tau correlation Freedom degree (υ) Linear correlation (ρ) Hour

-0.14 3.7 -0.21 7

-0.12 15.58 -0.19 10

-0.08 7.39 -0.13 11

-0.12 24.31 -0.18 16

Table 1. The parameters of the two-variable t-Student copula distribution for wind speed of two farms at different
hours of the day in fall season

2.4. Time-series prediction of wind speed and solar irradiation

As mentioned earlier, besides the spatial correlation among different farms, the wind speed
and solar irradiation random variables assigned to the scheduling time steps exhibit tempo‐
ral correlation, i.e., they are dependent on the condition of random variables at previous
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time steps (hours). In order to take into account the temporal correlation, time-series predic‐
tion models can be used. Here, For the purpose of day-ahead scheduling of power system,
an initial prediction of random variables should be performed using ANN. Other forecast
tools such as ARMA model are reported [6, 24], but ANN is preferred due to its capability of
reflecting nonlinear relations among the time-series samples and better performance for
long-term applications. Afterwards, the distribution of forecast errors is analyzed to deter‐
mine the confidence interval around the forecasted values for the upcoming potential wind
speed and solar irradiation data on the scheduling day.

The forecast process is performed using two Multi-Layer Perceptron (MLP) neural networks
[25] for wind speed and solar irradiation. Each network is configured with three layers in‐
cluding one hidden layer. The input is a 24 hour structure in which a vector of 90 data sam‐
ples forms its arrays (representing each hour of the day for three month of a season). The
available data is divided into three groups proportional to 70%, 15% and 15% for training,
validation and test steps, respectively. The hourly data of wind speed and solar irradiation
for the first farm are presented in Figure 7 and Figure 8, respectively. The plots of forecast
results along with the actual data for one week are followed in Figure 9 and Figure 10.

2.5. Estimation of the confidence interval and risk analysis for wind speed and solar
irradiation scenarios

From the power system planning viewpoint, the important aim is to reduce as far as possi‐
ble the uncertainty and risk associated with generation and power supply. The risk is more
crucial when the ex-ante planned generation is less than the ex-post actual generation. The
error in the forecast data can be estimated with a level of confidence (LC), in order to deter‐
mine a reliable level of generation to be considered in the planning stage. Here, the confi‐
dence interval method [26], known in risk assessment problems is proposed as a constraint
to specify a lower and upper band for the wind speed and solar irradiation scenarios. For
example, LC=90% means that the probability of forecast error (Powerrisk) being less than a
definite value obtained from the distribution of forecast error
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Figure 7. Hourly wind speed data in farm 1
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Figure 8. Hourly solar irradiation data in farm 1
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Figure 9. forecast results of wind power along with the actual data for one week
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Figure 10. forecast results of wind power along with the actual data for one week
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(Powerrisk,max) is more than 90%. The value of Powerrisk,max is referred to as the "Value at Risk"
(VAR).

, risk risk maxP Power Power LCé ù£ >ë û (11)

In order to calculate the VAR of forecast based on the defined LC, the PDF of forecast error
should be analyzed. In fact, the maximum value of Powerrisk,max that satisfies equation (11) is
chosen as the VAR. Given the forecast error PDF to be a normal distribution with mean μe

and standard deviation σe, the VAR is calculated by (Figure 11):

100 LCa = - (12)

[ ]
100e eP e za
am s³ + < (13)

~

,risk e ePower e zam s= = +max
(14)

where e
~

 is the maximum forecast error at which the condition is satisfied. The error is ex‐
pressed in terms of µe and σe where zα is the coefficient of σe. Then, this value is subtracted
from and added to the forecasted data to give the lower band and upper band of the confi‐
dence interval, respectively. This band limits the scenarios generated for wind speed and so‐
lar irradiation and provides a reliable range for generation of scenarios that will be
considered in the stochastic optimization process. Figure 12 and Figure 13 present an exam‐
ple of the distribution of forecast error of wind speed and solar irradiation at 11 AM, respec‐
tively. A representation of the confidence interval method applied to the wind speed data is
depicted in Figure 14.

2.6. Scenario generation and reduction

The final step of data processing before performing the stochastic optimization procedure is
the scenario generation and reduction. This makes the main distinction between the deter‐
ministic programming and the stochastic programming approach. The deterministic pro‐
gramming deals with determined inputs and pre-defined parameters of the system model,
whereas the stochastic programming combines the process of assignment of optimum val‐
ues to the control variables with the stochastic models of the existing random variables. The
variables with stochastic behavior are indeed represented by a bunch of scenarios reflecting
the most probable situations that is likely to occur for them. Here, in the scenario generation
step, using the multivariate distribution function obtained, a large set of random vector sam‐
ples will be generated using the Monte Carlo simulation. Then, since all of the generated
scenarios may not be useful and some of them may exhibit similarities and correlation with
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other scenarios, the scenario reduction techniques are applied to eliminate low-probability
scenarios and merge the similar ones to extract a limited number of scenarios keeping the
whole probable region of the variables covered. Furthermore, the scenario reduction techni‐
que increases the computational efficiency of the optimization process. The most well-
known methods for scenario reduction are fast backward, fast forward/backward and the
fast forward method [27-28]. The first step in scenario reduction is clustering. By clustering,
the scenarios which are close to each other are put in one cluster. In the following, we
present a description on the fast backward method.

The backward method is initialized by selection of scenarios as the candidates to be elimi‐
nated. The selection criterion is based on the minimum value for the product of each sam‐
ple's probability by the probabilistic distance of that sample to others. The probabilistic
distance of each sample to others is considered as the minimum distance of that sample to
each of the other samples in the same set. In the next step, the same analysis is performed on
the remaining scenarios, however, in this step the product of the eliminated scenarios proba‐
bilities in the previous step by the distance of the current sample to other samples are also
included. This process continues until the probabilistic distance obtained in each step (itera‐
tion) would be less than a predefined value as the convergence criterion. Mathematically
speaking, the algorithm can be summarized as follows:
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(15)

where N is the total number of scenarios, n is the number of remaining scenarios, and |J| =
N – n. ξ i is scenario i with probability pi. Here, 1000 initial scenarios are generated based on
the obtained Copula multi-variable distribution function within the calculated confidence
interval. Then, the scenarios are reduced to 20 uncorrelated scenarios using SCENRED func‐
tion in GAMS software. Figure 15 and Figure 16 demonstrate the final set of scenarios for a
day of scheduling.

The power generation scheduling problem including units with uncertain and volatile char‐
acteristic is commonly treated as a stochastic optimization problem. In this approach, the ob‐
jective function calculation is repeated per all final scenarios in each iteration of the
optimization process, where the summation of these objective values commonly defines the
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overall objective function value to be optimized. As a comparison, the mean square error

(MSE) of the calculated scenarios with respect to the real data is calculated in two cases. In

the first case, the scenarios are obtained from the Copula distribution and within the calcu‐

lated confidence interval, based on the proposed framework. In the second case, the scenar‐

ios are generated from the single-variable distributions without modeling the underlying

temporal and spatial correlations. Table 2 exhibits that the error in the first case is less than

that in the second case in three days under study.

Figure 11. Value at risk calculation based on the distribution of forecast error
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Figure 12. Distribution of error for wind speed forecast at 11 AM
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Figure 13. Distribution of error for solar irradiation forecast at 11 AM

MSE in Case 2 MSE in Case 1

1.97e-3 1.4e-3 Day 1

5.99e-3 4.05e-3 Day 2

4.11e-3 3.31e-3 Day 3

Table 2. MSE in Case 1 and 2 for the total power of two wind farms
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Figure 14. Upper and lower band of confidence interval for wind speed data on one day
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Figure 15. Final scenarios of wind speed within its confidence interval
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Figure 16. Final scenarios of solar irradiation within its confidence interval

3. Conclusion

Natural characteristics of wind and solar energy impose uncertainty in their design and op‐
eration. Hence, considering various possible scenarios in the model of these resources can
lead to more realistic decisions. The uncertain parameters are expressed by probability dis‐
tributions, showing the range of values that a random variable could take, and also account‐
ing for the probability of the occurrence of each value in the considered range. Therefore,
the way the random processes are modeled in terms of their PDF is a significant problem.
The possible spatial correlations have been addressed and shown effective using the Copula
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method. Similarly, the possible temporal correlations have been taken into account using a
time-series analysis. In summary, the overall framework can be listed as follows:

1. Take historical data of random variables;

2. Data normalization;

3. Calculate the PDF for each random variable using KDE;

4. Calculate multivariate Copula PDF;

5. Forecast the data time-series over the scheduling horizon;

6. Calculate the confidence interval of potential scenarios for the vector of random varia‐
bles based on error analysis of forecast data;

7. Generate initial set of scenarios within the confidence interval obtained from the previ‐
ous step, based on the PDF of step 4;

8. Perform scenario reduction;

9. Perform stochastic optimization based on the final set of scenarios for each random
process.

Author details

Sajjad Abedi1, Gholam Hossein Riahy1, Seyed Hossein Hosseinian1 and Mehdi Farhadkhani2

1 Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

2 Electricity Markets Research Group, Niroo Research Institute, Tehran, Iran

References

[1] 20% “Wind Energy By 2030: Increasing Wind Energy’s Contribution to U.S. Electrici‐
ty Supply,," Office of Energy Efficiency and Renewable Energy DOE/
GO-102008-2567, 2009.

[2] REN21 Steering Committee, Renewables Global Status Report 2009 Update [Online].
Available: http://sitedev.cci63.net/europe/actu/2009/0609/doc/ener‐
gie_renouv2009_Update.pdf

[3] S. Abedi, et al., "Risk-Constrained Unit Commitment of Power System Incorporating
PV and Wind Farms," ISRN Renewable Energy, vol. 2011, 2011.

[4] S. Abedi, et al., "A comprehensive method for optimal power management and de‐
sign of hybrid RES-based autonomous energy systems," Renewable and Sustainable En‐
ergy Reviews, vol. 16, pp. 1577-1587, 2012.

New Developments in Renewable Energy118



[5] S. Abedi, et al., "Risk-Constrained Unit Commitment of Power System Incorporating
PV and Wind Farms," ISRN Renewable Energy, vol. 2011, p. 8, 2011.

[6] K. Methaprayoon, et al., "An integration of ANN wind power estimation into unit
commitment considering the forecasting uncertainty," Industry Applications, IEEE‐
Transactions on, vol. 43, pp. 1441-1448, 2007.

[7] B. C. Ummels, et al., "Impacts of wind power on thermal generation unit commitment
and dispatch," Energy Conversion, IEEE Transactions on, vol. 22, pp. 44-51, 2007.

[8] C. L. Chen, "Optimal wind–thermalgenerating unit commitment," Energy Conversion,
IEEE Transactions on, vol. 23, pp. 273-280, 2008.

[9] M. A. Ortega-Vazquez and D. S. Kirschen, "Estimating the spinning reserve require‐
ments in systems with significant wind power generation penetration," Power Sys‐
tems, IEEE Transactions on, vol. 24, pp. 114-124, 2009.

[10] E. M. Constantinescu, et al., "A computational framework for uncertainty quantifica‐
tion and stochastic optimization in unit commitment with wind power generation,"
Power Systems, IEEE Transactions on, pp. 1-1, 2011.

[11] [L. V. L. Abreu, et al., "Risk-Constrained Coordination of Cascaded Hydro Units With
Variable Wind Power Generation," Sustainable Energy, IEEE Transactions on, vol. 3,
pp. 359-368, 2012.

[12] V. S. Pappala, et al., "A stochastic model for the optimal operation of a wind-thermal
power system," Power Systems, IEEE Transactions on, vol. 24, pp. 940-950, 2009.

[13] H. Siahkali and M. Vakilian, "Stochastic unit commitment of wind farms integrated
in power system," Electric Power Systems Research, vol. 80, pp. 1006-1017, 2010.

[14] R. Billinton, et al., "Unit commitment risk analysis of wind integrated power sys‐
tems," Power Systems, IEEE Transactions on, vol. 24, pp. 930-939, 2009.

[15] J. W. GOETHE, "Non-Parametric Statistics," 2009.

[16] G. Marsaglia, et al., "Evaluating Kolmogorov’s distribution," Journal of Statistical Soft‐
ware, vol. 8, pp. 1-4, 2003.

[17] A. R. Mugdadi and E. Munthali, "Relative efficiency in kernel estimation of the distri‐
bution function," J. Statist. Res, vol. 15, pp. 579–605, 2003.

[18] R. D. Deveaux, "Applied Smoothing Techniques for Data Analysis," Technometrics,
vol. 41, pp. 263-263, 1999.

[19] K. Sutiene and H. Pranevicius, "Copula Effect on Scenario Tree," International journal
of applied mathematics, vol. 37, 2007.

[20] P. Embrechts, et al., "Correlation and dependence in risk management: properties
and pitfalls," Risk management: value at risk and beyond, pp. 176-223, 2002.

[21] U. Cherubini, et al., Copula methods in finance vol. 269: Wiley, 2004.

Improved Stochastic Modeling: An Essential Tool for Power System Scheduling in the Presence of Uncertain
Renewables

http://dx.doi.org/10.5772/45849

119



[22] D. Berg, "Copula goodness-of-fit testing: an overview and power comparison," The
European Journal of Finance, vol. 15, pp. 675-701, 2009.

[23] M. Dorey and P. Joubert, "Modelling copulas: an overview," The Staple Inn Actuarial
Society, 2005.

[24] G. Riahy and M. Abedi, "Short term wind speed forecasting for wind turbine applica‐
tions using linear prediction method," Renewable Energy, vol. 33, pp. 35-41, 2008.

[25] M. T. Hagan, et al., Neural network design: PWS Boston, MA, 1996.

[26] D. Y. Hsu, et al., Spatial Error Analysis: A Unified, Application-oriented Treatment:
IEEE Press, 1999.

[27] GAMS/SCENRED Documentation [Online]. Available: http://www.gams.com/docs/
document.htm

[28] N. G.-K. J. Dupacová, and W. Römisch, "Scenario Reduction in Stochastic Program‐
ming: An Approach Using Probability Metrics," Math. Program, pp. 493–511, 2000.

New Developments in Renewable Energy120


