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1. Introduction 

The population on planet Earth, according to FAO forecasts, will increase from 6 billion to 

8.1 billion inhabitants in 2030 and will coincide with an increase in water demands to meet 

human needs. Fresh water has ceased to be an inexhaustible resource to become a rather 

limited and scarce one. 

Earth's hydrosphere has an approximate volume of 1.38x1010 km3 of water, which has 

remained virtually constant since its formation over 3 billion years ago. This volume of 

water is distributed into four groups:  

1. The vast majority is in the oceans, at 97.6% of the total (1,350x106 km3),  

2. In second place is solid water, in glaciers, at 1.9% (26x106 km3), 

3. Third is groundwater, with 0.5% of the total, which is 7x106 km3, and 

4. The remainder of water on Earth (0.03% of total) is divided among lakes (0.017), soil 

(0.01%), the atmosphere (0.001%), Biosphere (0.0005%) and rivers (0.0001%). 

Ocean water is salt water and the glaciers are difficult to utilize because they are located far 

from major populated areas. Therefore, we find that groundwater is the largest volume of 

freshwater available to man. The volume of groundwater is 4,000 times greater than that of 

rivers and 30 times higher than the rest of liquid water that is on the surface of the 

continents. In addition, groundwater has characteristics that make it especially attractive to 

combating the processes of drought and desertification. Unlike surface water, groundwater 

does not evaporate, there are no major seasonal variations and flow is very slow, so it is 

difficult to contaminate (Castaño et al., 2008). 

Groundwater is held in a naturally occurring reservoir called an aquifer, a geologic 

formation capable of storing, receiving and transmitting water so that man can easily 
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take advantage of economically significant quantities to meet needs. The water is 

contained in any geological formation (ie: river gravel, karstified limestone, porous 

sandstone and so on). 

Like all scarce resources, groundwater management must be approached from a dual 

approach (Knowledge and Sustainability): 

Knowledge: There must be a sound understanding of the hydrogeological aquifer system 

to be managed. This should include a detailed analysis of the hydraulic aspects 

(geology, hydraulic parameters and groundwater flow) and should be contrasted with 

the hydrochemical aspects of water containing (origin of the substances dissolved in 

groundwater and hydro-chemical changes due to movement through groundwater 

flow). 

Sustainability: Groundwater pumping of a region (an aquifer) shouldn’t exceed the water 

received, that is, the available resources. If users pump a volume of groundwater for short-

term needs (ie: drought conditions), beyond the resources available, they use the aquifer 

reserves. Then, the aquifer must be given time to recover (either by saving water or allowing 

recharge to increase during periods of more rainfall). Otherwise resources suffer 

overexploitation, putting the aquifer at risk of becoming depleted. It is obvious that the 

water volumes involved should be determined as precisely as possible. 

In managing groundwater resources, Geographical Information System (GIS) are tools 

capable of storing and managing spatial hydrogeological data by spatial referencing in 

digital formats. The correlation of all data with location is the key feature of GIS, which 

provides the ability to analyze and model hydrologic processes and produce results in maps 

and in digital formats. Thus, GIS can be considered a support system in decision making 

and an ideal tool for monitoring certain hydrogeological processes with socio-economic 

impacts (Goodchild et al., 1996). 

Figure 1 shows a diagram of a GIS aquifer system modeling tool (Case study of the Mancha 

Oriental System). This scheme is integrated into a) a block of hydrogeological data maps of 

the study area, which supplies data on groundwater from urban and industrial and general 

hydrological information (surface and groundwater hydrology) necessary to carry out the 

integration and interpretation of some results, and b) a block of data from remote sensing 

imagery. Remote sensing allows for classification of crops and their relationship to water 

supply for irrigation, mapping of wells, and the assessment of recharge by precipitation of 

rainfall. All this information is transferred to software that simulates groundwater flow in 

the Mancha Oriental aquifer using intersection tools. 

The main goal is to show the methods some GIS applications have in hydrogeological 

studies. This chapter is divided into two sections which describe some examples of 

hydrogeological characterization, and secondly, a method for calculating groundwater 

abstraction. To demonstrate these applications one of the largest aquifers in southern 

Europe (in terms of area), the Mancha Oriental System has been chosen. 
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Figure 1. Basic diagram of coupling remote sensing and GIS techniques with the groundwater flow 

model of the Mancha Oriental System. 

2. GIS & hydrogeological characterization 

In general, among the Earth Sciences and particularly hydrogeology, sources of data tend to 

be from points (wells, points of water, lithological columns, etc.) defined by a geographic 

location (UTM or geographic coordinates) and attributes (topographic top or bottom of a 

hydrogeologic entity, groundwater level, hydraulic parameters, concentration of a chemical 

compound). This type of data, usually measured in the field, must be spatially distributed in 

a continuous manner such that a value is given for any point within the space. To achieve 

this, interpolation or spatial estimation is used. This method derives an interpolation 

function that provides estimates for a point in space based on the points measured. GIS tools 

have incorporated algorithms which perform these operations with discrete entities (vector) 

and generate spatially continuous entities (raster, line models, etc.). In addition to 

expanding and the geodatabase and adding values, these techniques create a foundation for 

spatial modeling (Peña Llopis, 2006). 

The most commonly used spatially continuous entities are raster maps, which are 

characterized by a two-dimensional numerical matrix or digital image. Each element of the 

matrix, called a picture element or pixel, has an attribute assigned to it in the database. The 

only requirements are for maps to have attribute values referenced to the same coordinate 

system and the same number and arrangement of pixels to perform algebra operations with 

them (ie: isopaches: difference between top and the bottom raster maps of the geologic 

formation; calculation of storage volumes: difference between raster maps and contour lines 

or groundwater for different dates, multiplied by the storage coefficient, etc.). 
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2.1. Theoretical foundations 

Using a spatial domain and a series of points (which we will refer to as points of 

observation) Pi, where i= 1, 2, ….n, which have a series of coordinates xi where variable Z 

has been measured in Pi points; Zi (observed values), the interpolation or spatial estimation 

aims to find the value of Z (estimated values) at any point in the known space. An 

interpolation function must be obtained: 

 Z(x)=θ(x,xi,Zi) =f(x) (1) 

The interpolation function should have certain characteristics: a) accuracy: the estimated 

value in points of measurement should coincide with the measured value, b) spatial 

continuity, c) ability to be derived: the interpolation should be “smooth” and d) it should be 

stable with respect to the location of the variable as well as its value such that small 

variations in data do not provoke large variation in the interpolation. As a function of these 

characteristics, especially the last condition, there is no universal interpolator and there is 

always another interpolation method which can be applied (Samper & Carrera, 1996). Most 

GIS software presents two interpolation methods: Deterministic and Stochastic.  

2.1.1. Deterministic methods 

This type of method is characterized by associating a mathematical function, such as an 

interpolation function, to the measured or observed values, in which these points are 

considered without error. Following the nomenclature followed until now, this 

mathematical function could be written in the following manner: 

 
1

( ) ´( ) ( )
n

i i
i

Z x f x c f x


   (2) 

where for each x a Z(x) value is measured through a function f(x), which is defined by the 

sum of all “n” points of observation of a product between a base function f(x)i and 

coefficients, Ci. For example, in a simple exact interpolation the observed or measured 

values (Zi) coincide with the Cs values, multiplied by a weighting factor given by the 

function f(x)i. The deterministic interpolation functions differ from one another in the means 

of evaluating f(x)i and Ci. 

There are various deterministic interpolation techniques. The most commonly used methods 

are presented here (ESRI, 1997) (Samper & Carrera, 1996): 

Nearest neighbor (Thyessen polygons, Polygons of influence). 

This method assigns the value of each measured or observed point to each pixel or node of 

the interpolated area. For each point of observation the Euclidean distance is calculated for 

all other points and each is given the closest value. The result is a map of polygons with an 

interpolated value (Fig. 2A). This method is often used for regular grids and/or dense 

observed data, or to find areas of influence. 
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Interpolations based on weighting functions. 

The estimation or interpolation in this type of method is performed by a weighted average 

of the observed values. At each point of observation a weight is assigned. The selection 

criterion is that the weighting function is exclusively dependent upon the distance (d). The 

weight will decrease with increasing distance between points. The most common strategy 

for generating this criterion is the Inverse of Distance raised to some exponent (a). 

 
1

( )
a

f x
d

  (3) 

This exponent shows the “speed” with which the weight of a point of observation decreases 

with distance from the point of estimation. At times the number of points of influence is 

restricted, or a radius or maximum distance is assigned for considering points of 

observation. This interpolation method is exact and is commonly applied, with the only 

disadvantage being creating the feared “bulls-eyes” (Fig. 2B).  

Polynomial interpolation. 

In this method the interpolating function is a polynomial function which varies in its 

exponential order. The choices for polynomial are: a) through exact fit and b) fit by least 

mean square. The first method aims to resolve the system of equations defined by the n 

points of observation. If there are many points of observation, the fit of higher order 

polynomials can become unviable, giving unrealistic interpolations with exaggerated 

variation among the values (Fig. 2C). In fact, by default these methods limit the polynomial 

to third order and only use the number of points in a nearby group. One special case of 

polynomial interpolation is linear interpolation, wherein the interpolation function is a first 

order polynomial which directly depends on the position of the observed values. It is an 

exact method and does not take into account the spatial distribution of the variable, with the 

result of soft surfaces. It is an easy method and is often used, above all in cases when not a 

lot of data is available and the aim is to study the spatial variation of a certain variable. In 

general, this interpolation method is not used for spatial estimates on realistic structures 

(topography, groundwater levels, etc.) but rather to determine the tendency of data (Fig. 

2C). 

Spline functions. 

Within polynomial interpolation, this general method generates a different series of 

expressions for each subdomain into which the whole interpolation space has been divided, 

wherein continuity requisites are imposed, especially in the contours common to more than 

one subdomain. The results of this interpolation tend to be surfaces with small changes in 

levels (Fig. 2D). 

2.1.2. Stochastic methods 

This methodology is based on the premise that the variable to be interpolated is a random 

function associated with probabilistic distribution laws. This type of method gives a  
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Figure 2. Examples of the different deterministic interpolation methods using GIS tools. A) Polygons of 

Influence (Thyessen polygons, Nearest neighbor), B) Interpolations based on weighting functions (in 

this case the function is the inverse distance squared (IDW); C) polynomial interpolation, in this case 

third order; D ) Spline functions. The same data are used for each case and the results are shown as 

continuous identical spatial entities, with the same size and pixel size. 

measure of error of the interpolation based on the data. There are two classes of stochastic 

interpolation: a) non-parametric, which are not exact because the errors are assumed to be 

independent and b) parametric, wherein the interpolation function depends on certain 

parameters calculated as a function of the observed data (IDW or Krigging) (Samper & 

Carrera, 1996). The most common method, Krigging, which is available in most GIS 

software packages, is explained below. 

Krigging was created under a new discipline, geostatistics, as a result of problems presented 

by deterministic interpolation in Earth sciences due to the uncertainty and variability of data 

(Cassiraga, 1999). The starting hypothesis of geostatistics is that the data of study has a 

correlation spatial structure, as the realization of an infinite amount of possible realizations. 

For this reason, geostatistics is called the science of regionalized variables. For spatial 

estimation using Krigging, the steps below should be followed, among others, and the 

variable to be interpolated should meet the criteria of normality and stationarity (Johnston 

et al., 2001).  
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The first step is structural analysis, with the objective of estimating the semivariogram. This 

relates the Euclidean distance among the points of observation with the variability of the 

measured values (Samper & Carrera, 1996). First, the variable should be defined as 

stationary, if there is a tendency among the data, etc. The function of the semivariogram 

(estimator of spatial variability) is expressed as:  

    
2

1

1
( )

2

n

i i
i

x Z x h Z x
N




       (4) 

where: 

Z(xi): experimental data, 

h: distance between points of observation (Variogram step), 

N: number of pair separated by vector h found in a group of data, 

Xi, xi+h: experimental points in an n-dimensional space. 

At first, from the observed data an experimental semivariogram will appear. A theoretical 

function with similar behaviourcan be fit to this in order to calculate a weighting matrix for 

each point, and statistical error affecting the interpolation can be calculated. The 

semivariogram is composed of a series of elements (Fig. 3A):  

Range: the distance from which the spatial correlation is practically null (Area of influence), 

Sill: value that the semivarogram takes in the Range, 

Nugget: value of the semivariogram when it intersects at the coordinate axis. 

 

Figure 3. A) Elements of a spherical semivariogram. B) Experimental and theoretical semivariogram 

sets. 

The experimental variogram cannot be used for the geostatistical application. It must be fit 

to a theoretic model (Fig. 3B). There are different technical variogram models available, with 

the most popular being the stationary or spherical semivariogram. Once the theoretical 

semivariogram has been chosen, the Krigging technique performs the spatial estimation of 
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the data. There are diverse Krigging techniques as a function of diverse methodological 

hypotheses: 

Simple: Hypothesis of stationary variable with a known mean and covariance, 

Ordinary: Hypothesis of stationary variable with an unknown mean and known covariance, 

In an environment (by blocks): Quasistationary hypothesis, 

Residual: Non-stationary hypothesis with a known drift, from which residuals are derived 

and ordinary Krigging can be performed, 

Universal: Non-stationary hypothesis and polynomial form with a drift set a priori. 

2.2. MOS case study 

The Mancha Oriental System (MOS) is located in the SE of the Iberian Peninsula and is one 

of the largest aquifers in Spain (7,260 km2) (Fig. 4). The area has a semiarid Mediterranean 

climate. Average rainfall is 350 mm/year and mean annual temperature is 13-15°C; the 

continental nature of the climate is clear from the extreme temperatures that occur. 

The area is characterized as a high plain (700 masl mid-altitude) surrounded by gentle relief, 

interrupted only by a valley which was carved by the action of the Júcar River. From a 

hydrogeologic perspective, the MOS is formed by the superposition of three limestone 

aquifer hydrogeologic units (UHs): UH2: Tertiary, UH3: Upper Cretaceous and UH7: 

Middle Jurassic. These HUs are separated by aquitards/aquifuges that comprise UH1 (upper 

and lower), UH4, UH5 and UH6 (Sanz et al., 2009). The impermeable base and southwest 

boundary of the area of study is composed of marl, clay and gypsum from the Lower 

Jurassic, belonging to HU8 (Fig. 4). 

Over the last 30 years the progressive transformation of approximately 100,000 ha from dry 

to irrigated farmland has translated into an acceleration of socioeconomic development due 

to widespread use of groundwater resources. Groundwater abstractions in the MOS exceed 

400 Mm3/yr, of which 98% is used for irrigated agriculture and the rest to supply a 

population of 275,000 Inhabitants (Estrela et al., 2004). Groundwater pumping is not 

sustainable with the amount of available resources, estimated at 320 Mm3/yr by the Júcar 

Water Authority. Therefore, two major impacts are occurring: (a) the quantity of available 

groundwater is descending, noted as a continuous decline in the regional water level and a 

decrease in aquifer discharge to the Júcar River; and (b) the quality is also affected, as 

researchers have found a significant increase in nitrate concentrations in groundwater 

(Moratalla et al., 2009). 

In this context, the MOS is an ideal case study for testing and validating the usefulness of 

GIS Techniques for understanding the aquifer system and planning for sustainable 

management. Following is a description of the interpolation methods applied to these 

variables: a) The elevations of the top and bottom of the aquifer units, b) Hydraulic 

parameters, c) Groundwater level data d) Groundwater chemistry. The approach is to 

explore the variable data with histograms and spatial trend analysis in order to understand 

the behaviour of the variable in space as well as to establish whether the data are consistent or  
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Figure 4. Simplified hydrogeological map of the MOS. Taken from Sanz et al. (2009). JRB Jucar River 

Basin. Graphical output from GIS software. 
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anomalous. After analyzing the data, a variable is selected to be interpolated. The type of 

interpolation to apply for raster maps or continuous spatial entities is chosen. 

2.2.1. Hydrostratigraphic framework 

Any attempt at making a coherent hydrogeological model should be approached by first 

understanding, with a certain amount of precision, the geometric configuration. In addition 

to information on the surface geology, lithologic columns should be analyzed and gathered 

from water sampling points, and tested materials should be classified within the defined 

hydrogeologic units (Murray & Hudson, 2002). Using this information, layers of 

geographically located points (X, Y coordinates) as well as the topographic height of the 

superior (top) and inferior (bottom) limits were made into attributes of each hydrogeologic 

unit that behaves as an aquifer. Using geostatistical interpolation models developed on 

theoretic and applied foundations, GIS software (i.e. ArcMap ® 9.3) was used to determine 

the continuous geographic entities, ie: raster maps of the surfaces corresponding to the top 

and bottom of each hydrogeologic aquifer unit. The result is the three-dimensional structure 

of the hydrogeologic system (Fig. 5A). These 3D geologic models (Fig. 5), constructed using 

GIS tools, became the foundation for the numeric simulation models in later steps. 

2.2.2. Hydrodynamic characterization 

Transmissivity, permeability and storage coefficient are hydraulic parameters that must be 

quantified for an aquifer because they are needed to estimate the progression of 

groundwater levels, groundwater flow through a section of the aquifer, contaminant 

transport time, the degree of aquifer homogeneity and the numeric parameterization of the 

groundwater flow models (Mace, 2000). Generally, estimating these parameters requires 

pumping tests in specific points. These provide specific geographic entities defined by their 

coordinates, and attribute values for the hydraulic parameters in the well. It is also useful to 

have previous knowledge on the spatial behavior of the variable and establish a relationship 

for the interpolation model (ie: the type of distribution function of the variable). In the case 

of the Mancha Oriental System, to determine the spatial distribution of any of the 

parameters mentioned, these logarithms have been used because the variable tends to have 

a log-normal distribution. In this case, the value estimated by the Krigging method is the 

absolute optimum and the semivariogram better represents the structure of the spatial 

variability (Samper & Carrera, 1996). Once the structure of the spatial variability of log-T 

was studied, ordinary Krigging type interpolation models were applied (Fig. 5B and 3A). 

2.2.3. Characterization of groundwater flow 

As is the case with aquifer hydraulic parameters, data on the height of the groundwater 

levels are also point data. The attribute of the groundwater level in this point geographic 

entity is compiled in the inventory of water points by subtracting the topographic height of 

the point from the depth of the water level in the well. These measurements should be 

performed for a specific date and in the least amount of time possible. 
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Figure 5. Examples of hydrogeologic variable interpolation. a) The elevations on the top of HU7 Mid-

Jurassic aquifer, b) Hydraulic parameters (Transmissivity of HU2 Miocene Aquifer,) c) Groundwater 

level data for 1975 d) Groundwater chemistry (Nitrate rate-2008). 

The raster maps obtained using the data on groundwater level height are called 

groundwater contour maps (isopiestic lines). These maps serve to determine how 

groundwater flow functions, where are the recharge and/or pumping areas in addition to 

indicating gradient calculations, flow and permeability (Fig. 5C). By crossing groundwater 

contour maps for different dates, contour descent maps can be obtained for that period. In 

addition, Variation in Saturated Thickness (VST) can be calculated between those dates. 
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2.2.4. Hydrochemical characterization 

The chemical composition of groundwater is conditioned by a multitude of factors. Among 

those, the most important are: a) chemical composition and disposition of materials with 

which the water is in contact, b) time of contact with these materials, c) temperature, d) 

pressure, e) presence of gases, and f) level of water saturation in relation to distinct 

incorporated salts (Custodio & Llamas, 1983). Although the composition of groundwater is 

continually changing, the anthropogenic factors can significantly influence the composition. 

In fact, changes in land use are considered the most influential factor in groundwater 

pollution. Ions such as NO3, SO4, Na and Cl can come from agricultural fertilizers, livestock 

waste and waste from industry and urban centers. Nitrate is accepted as the most common 

contaminant in groundwater (Gulis et al., 2002; Jalali, 2009). 

In Europe, the objective is for waterways to achieve “good” chemical and ecological status 

according to Directive 2006/118/EC of the European Parliament and Commission (DOCE, 

2006). This directive describes the protection of groundwater from pollution and 

deterioration and the establishment of a pollution prevention and reduction plan by 2015. In 

addition, water bodies should be in good quantitative and qualitative status, especially in 

reference to nitrate content, which should not exceed 50 mg/l. 

Thus, establishing the spatial distribution of NO3 concentrations in groundwater within the 

aquifer is of vital importance. To accomplish this, point analyses of groundwater in wells 

and springs must be performed. Using advanced interpolation capacities provided by GIS 

tools, a complete geostatistical study can be performed to establish the most contaminated 

areas in terms of nitrate (Fig. 5D).  

3. GIS & groundwater abstractions 

Intensive use of groundwater for irrigation in arid and semiarid regions has often been the 

main driver of socioeconomic development over the past four decades (Shah, 2005). 

However, poor management of pumped volumes of water has led to negative consequences 

in terms of quality and quantity of available groundwater resources and associated 

ecosystems. 

Controlling the groundwater withdrawals from a wide area of intensive irrigation is not 

easy. The largest volume of water used for agriculture has been extracted through tens of 

thousands of pumping-wells which generally have no measurement system and, in many 

cases, do not meet legal requirements or are unknown even in their location. Various 

methods of calculating groundwater abstractions have been known for years, but all of them 

are very expensive or inaccurate in their application to large areas (Brown et al., 2009). 

In this scenario, the data provided by satellites (remote sensing) and the computerized 

processing of these geo-referenced data (GIS) represent a new approach to monitoring and 

quantifying groundwater abstractions, with the following characteristics: instantaneous 

observations are available over large areas, there are several images throughout the year, 
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there is information not visible to the naked eye, data distributed in both space and time is 

available, the information is not conditioned by the legal or administrative characteristics of 

the pumping wells, and satellite image acquisition and processing is very low-cost 

compared to traditional methods (Castaño et al., 2009).  

3.1. Theoretical foundations 

The methodology for determining groundwater pumping for irrigation follows these steps: 

First, the irrigated crops are identified and classified by the multitemporal analysis of 

images obtained by multispectral sensors on satellite platforms, comparing the phenological 

evolution of the crops with the evolution of the Normalized Difference Vegetation Index 

(NDVI; González-Piqueras, 2006). Then, the area covered by crops is quantified by 

introducing the data into a Geographic Information System (GIS) and overlay them with the 

areas or required limits. Based on the surface area of each crop and the knowledge of their 

water requirements, the theoretical amount of water needed for those crops to reach the 

stage of development seen in the images is calculated. When agricultural practices are 

known, a correction factor is applied to translate the theoretical amount of water applied to 

each crop. Finally, all the information generated is integrated (spatially and temporally 

distributed) in a Geographic Information System (see Figure 1) and is used to establish 

relationships among all elements of the water balance (Brown et al., 2009). 

3.1.1. Multitemporal analysis of satellite images and cross with vector cartography 

The term “Remote Sensing” has different definitions, but the most commonly used is “a 

group of techniques that analyze data obtained by multispectral sensors located on 

airplanes, spatial platforms or satellites.” The sensors (on satellites) that observe the surface 

of the Earth are instruments that register the radiation from Earth and the atmosphere and 

transform it into a signal that can be managed in analog or digital format (Calera et al., 

2006). The sensors do this by detecting the electromagnetic signal from the Earth and the 

atmosphere of a certain wavelength and converting them into an established physical 

magnitude. The energy values detected, quantified and coded from the sensors are usually 

in a two-dimensional number matrix or digital image (raster). Each element of the matrix, 

called a picture element or a pixel, has a digital value assigned to it (digital levels) which is 

usually registered in a byte or binary code (28 values, from 0 to 255). These represent the 

energy associated with the wavelength to which the detector is sensitive.  

According to Chuvievo (2002), each satellite scene can be used to extract four types of 

information, each with its respective resolution (Table 1): 

1. Spatial, derived from the organization and presence of elements on the surface of Earth 

in three dimensions, 

2. Spectral, dependent upon the observed and measured energy, 

3. Temporal, associated with changes over time in a specific spatial location and  

4. Radiometry, related with the conversion of voltage collected by the apparatus that 

receives the signal sent from quantifying entities and later on digital levels. 
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Landsat Satellite TM sensor NOAA Satellite AVHRR sensor 
Spatial 

resolution, 
pixel size 

Spectral 
resolution

Temporal 
resolution

Radiometric 
resolution 

Spatial 
resolution, 
pixel size 

Spectral 
resolution

Temporal 
resolution 

Radiometric 
resolution 

30 x 30 
meters 

7 bands 15 days 8 bits 1x1 Km 5 bands 12 hours 10 bits 

Table 1. Type of resolution of two kinds of sensors, such as Landsat and NOAA satellite. (see 

http//:www.landsat.org and www.noaa.gov/). 

The information referred from the sensor is treated digitally to obtain a geo-referenced 

representation of the land. Once the interactions of the atmosphere are removed from it, the 

radiation values received correspond exactly with those measured on the surface (see more 

detailed information in Chuvieco (2006) or Calera et al., (2006). 

The source of radiant energy is solar radiation on the land surface after moving through the 

atmosphere. The radiation the sensor obtains is that which emerged from the land surface to 

the proper region of the spectrum when the emissions due to temperature are considered 

null. Therefore, the electromagnetic spectrum is the continuous succession of these 

frequency values (wavelengths). Conceptually it can be divided into bands in which 

electromagnetic radiation has a similar behaviour (Fig. 6). 

 

Figure 6. Main features of the electromagnetic spectrum. 

Three basic elements can be distinguished as the components comprising all forms of the 

landscape on the Earth’s surface: soil, water and vegetation. The behaviour of these elements 

in different regions of the electromagnetic spectrum can be observed in Figure 7. The energy 

emitted (reflectivity) from the ground in the solar spectrum has a uniform response, showing 

a flat curve and ascending to greater wavelengths. It is important to know that bare soil can 

present different curves according to the chemical composition, humidity content, organic 

material content, etc. In the optical spectrum, water can be observed as a strong contrast 

between the reflectivity of the visible (5%) and the infrared, where water absorbs almost all 

the radiation in these wavelengths (Fig. 7). This effect is used to separate the water-soil limit. 
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Similarly to soil, the characteristic reflectivity curve for water can vary as a function of factors 

such as depth, suspended materials, roughness, etc. (Calera et al., 2006). 

 

Figure 7. Reflectivity curve characteristic of soil, water and vegetation. 

The morphology of the reflectivity curve against the wavelength that vegetation has is well 

defined (Fig. 7). It has low reflectivity (10%) with a maximum relative to the region of green, 

high reflectivity in the near infrared which is gradually reduced to the middle of the 

infrared spectrum. The strong contrast between the reflectivity of red and near infrared 

indicates that the higher the contrast is, the more vigorous the vegetation is, either due to 

greater land cover or greater photosynthetic activity (Calera et al., 2006). This spectral 

behaviour is the foundation for the development of certain indices with an objective to 

highlighting active vegetation from other components (soil, water, dry vegetation). From the 

reflectivity of each band (quantitative information distributed and geo-referenced in space) 

a relationship with the biophysical characteristics can be established (biomass, fraction of 

plant cover, etc.). This allows for quantitative, spatial-temporal monitoring of the processes 

on the Earth’s surface (Bastiaanssen et al., 2000; Calera et al., 2001; González-Piqueras, 2006). 

Nonetheless, reflecting the spatial and temporal variability of plant cover is complicated if 

different spectral bands with the reflectivity values are used. To unify this process, the 

Vegetation Indices have been developed, one of the most important being the NDVI (Rouse 

et al., 1973). 

The NDVI is: 

 
( )

( )

NIR R
NDVI

NIR R





 (5) 
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where: 

NDVI: Normalized Difference Vegetation Index, 

NIR: Near Infrared reflectivity (spectrum range in micrometers), 

R: reflectivity in red reflectivity. 

GIS tools have the capacity to establish dynamic processes if they contain spatially 

referenced information which is repeated over time in addition to the ability to study spatial 

changes over the land surface. Mathematical operations can be used between the different 

sensor bands (digital images) to obtain quantitative information of each satellite scene 

obtained for a specific date. In this way, a temporal series is available for establishing the 

progression of a variable, for example NDVI. Multitemporal analysis stems from the 

availability of a time sequence of images, so these scenes must meet a set of requirements 

such as geometric coregistration (ability to superimpose images with the highest precision 

possible and radiometric normalization; Calera et al., 2005). 

With this information and digital classification tools each pixel of the image from each date 

can be assigned a class defined through an automated process. There are two methods for 

classification: a) supervised and b) unsupervised (does not require intervention of an 

“interpreter”). The difference between the two is in the method of obtaining the spectral 

reference classes for assigning one to each pixel. 

Supervised classification stems from a priori knowledge on specific land uses located in 

space, which are called training plots. These serve to establish spectral reference classes. 

There are several methods and a procedure for assigning a class to each pixel, but the most 

commonly used is an algorithm of maximum probability. Without getting into the details of 

this method, the algorithm is based on multivariate statistical analysis of components that 

identify each pixel in terms of their closest resemblance. 

Other classification methods that could be used as alternatives or complimentary methods 

are decision tree (expert systems). These procedures are based on separating the pixel values 

of a layer into homogeneous groups and subgroups. Another method, called contextual 

filters, can also be applied. This not only considers the spectral characteristics of an 

individual pixel, but also considers neighboring pixels (Calera et al., 2006). 

Once the classified map has been obtained, the spectral classes can be used to select the 

classes that are of interest from a hydrogeologic point of view. In our case study, this is 

crops irrigated with groundwater. Therefore, it is important to know the area of irrigated 

crops and their spatial distribution. One of the most commonly used GIS techniques for this 

is overlay vectorial and raster cartography, which is the only way to obtain this information 

for rasterized areas. There are two types of overlays that depend on the pixel value (ESRI, 

1997). When the pixel has a real value (for example a precipitation map, groundwater level, 

NDVI, etc.) a statistic is calculated for areas by obtaining statistical values from the raster 

within the selected polygons (mean, minimum, maximum, etc.). The other case is when the 

attribute of each pixel is a discrete value defining a series of classes (i.e. raster map of the 

classified land uses). In this occasion (tabulate areas) the result is the surface of each class 
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within the vectorial polygons selected (ESRI, 1997). Once the areas of each irrigated crop 

have been determined and the amount of irrigation water supply is known, it is possible to 

calculate the volume of water used to irrigate crops in the area on an annual basis (see 

summary in Castaño et al., (2009). 

3.2. MOS case study 

The use of groundwater resources of the MOS above its recharge capacity has led to several 

quantitative impacts: a steady decline in groundwater level, reduced aquifer discharge to 

the Júcar River and aquifer pollution. In fact, the quantitative analysis performed on the 

Júcar River Basin (Estrela et al., 2004) for the European Water Framework Directive (EU, 

2000) clearly indicates that the environmental objectives set are not being reached at the 

present time and there is a certain risk of not meeting them by 2015. 

In this situation, quite common in a semi-arid river basin, it is particularly important to 

precisely quantify the groundwater balance in order to determine aquifer sustainability. The 

information provided by the multispectral images becomes critical because these data sets 

are the only consistent and objective information on crops and can replace the data on 

agricultural statistics. In this regard, the MOS is an ideal case study for testing and 

validating the adequacy of remote sensing and GIS techniques for calculating groundwater 

abstractions in agricultural basins in semi-arid climates (Castaño et al., 2009).  

Following is a description of several studies in the MOS to classify irrigated crops and 

quantify the ground water consumption required for ideal phenological development. 

3.2.1. Calculation of groundwater withdrawals 

The development of a method to calculate groundwater abstractions has been briefly 

described in the section on the theoretical foundations. In addition to knowing the method, 

one must have previous knowledge of the study area in order to choose the type of satellite 

image, for example crops and natural vegetation (phenologic development), soils, climate, 

relief, etc. In this study, due to the characteristics of the study area, the ideal images for 

thematic cartography are those from Landsat5 TM and Landsat7 ETM+ (Tables 1 and 2). 

 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Wavelength 

(λ μm) 
0.45 0.52 0.45 0.52 0.45 0.52 

Region 

 
Blue Green Red Near Infrared Middle Infrared Far Infrared 

Table 2. Bands and wavelengths from the Landsat 5 TM and Landsat 7 ETM+. Information on band 6 

from this sensor is omitted because it is not relevant in this study. 

Using this information, the number of scenes required can be established as well as the 

bands to use for differentiating the crops of interest. For example, at least two images are 
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necessary to establish a time series and to identify the non-irrigated crops, one in May or 

June (maturation process) and another in July (harvest). If more Landsat scenes on specific 

dates are included spring irrigated crops can be identified. Generally, a minimum of 16 

images are used for performing the classification. If the temporal progression of the spectral 

response is considered a discriminating element for crops (phenologic development), the 

NDVI spectral band is the most useful. This is obtained by performing mathematical 

operations with the images for the same dates using bands 3 and 4 of the Landsat sensor 

(Table 2 and Figure 8). 

 

Figure 8. Example of the RGB composition for a maize plot and the temporal progression of NDVI 

during the crop growth cycle in the year 2005. (From Calera, et al., 2005). 

The next step is to choose the classes to use in the classification as a function of those which 

can be differentiated using the spectral band in the images used such that they meet the 

objectives of the study (Spring Irrigation, Summer Irrigation, Spring-Summer Irrigation, 

Alfalfa, Bare soil, Dry farming crops, Shrubs, Forest). For classification, a study is required 

on the training plots called “true land.” 
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This information is used to perform the classification using the maximum probability 

algorithm, tree decision and contextual filters. These classifications will be capable of 

discriminating between the sources of error that can be generated, e.g. in dry farmed crops 

because several images can have similar spectral responses. For example, in a rainy spring, 

cereals grown in irrigated or dry farming can be difficult to differentiate. Therefore, using 

other scenes with tree decision can help in the classification process. Contextual filters can 

be used to eliminate error on the plot boundaries or isolated pixels that belong to a different 

class than the rest of the plot. The result is a raster map with the classification of all irrigated 

crops (Fig. 9). 

 

Figure 9. Cropland irrigated with groundwater map, classified by remote sensing techniques for a 2001 

in the MOS from LANDSAT-TM scenes. 

Once the maps have been classified, the spectral classes can be used to select the classes of 

interest from a hydrogeologic point of view. The area of irrigated crops must be determined 

(divided into spring, summer and spring-summer irrigated crops) as well as their spatial 

distribution (overlay tools). Information on the irrigation needs of the crops present in the 

MOS are provided weekly through the Irrigation Assessment Service (SAR) by the 

Agronomic Institute of Technology of the Province of Albacete (ITAP) using the method 

proposed by Allen et al., (1998). For each agricultural year, the institution groups the 

irrigation needs for each crop and publishes them in the annual monitoring reports 

(http://www.itap.es). The theoretical irrigation needs represent the minimum water 

consumption for sustaining the crops of interest. To determine the true water needs, 

correction coefficients must be applied to the theoretical irrigation volumes (Castaño et al., 

2009). Field work to quantify the agricultural practices applied in the region should be done 
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to perform this calculation. Thus, the irrigation efficiency can be used to calculate the 

correction coefficient that transforms the theoretic quantity of water necessary into the true 

values applied to each crop in the area. Generally the true amount of groundwater 

abstraction is higher than the theoretical irrigation needs. 

Therefore, the calculation of water consumption for the different types of irrigated crops by 

applying the following equation: 

 iVr A D   (6) 

Where:  

Vr = the annual volume of irrigation water for each type of crop (m³). 

A = the area of each type of irrigated crop (ha). 

D = the irrigation needs for each type of crop, applying the correction coefficient (m³/ha). 

i = Hydrogeologic Domain, Municipality…In this way groundwater consumption could be 

calculated for the MOS or any part of it. 

Estimating the amount of water required for irrigation is critically important in times of 

water shortage and especially in the current situation of increasing water demands with 

increasing populations. The use of GIS tools in this endeavor greatly increases the accuracy 

and efficiency of these types of study. This chapter is meant to be a summary of some 

methods used in the case study of the Mancha Oriental System, but they can be applied to 

other systems worldwide at risk of groundwater overexploitation or as a preventative 

measure to protect natural resources. 

Author details 

David Sanz, Santiago Castaño and Juan José Gómez-Alday 

University of Castilla - La Mancha / Remote Sensing and GIS Group, Albacete, Spain 

Acknowledgement 

This study was funded by the Spanish Government under research grant CGL2008-06394-

C02-02/BTE. Special thanks go to the Jucar Water Authority (CHJ) and Stakeholders 

(JCRMO) in the Mancha Oriental System for providing information. The findings presented 

therein belong to the authors. Special thanks go to Dr. A. Moratalla (UCLM) for providing 

some of the chemistry data and to Dr. A. Calera and Dr. M. Belmonte (UCLM), for 

providing the multitemporal classification of the crops in the study area. We would also like 

to thank S.A. Kroll for improving the English text. 

4. References 

Allen, RG.; Pereira, LS.; Raes, D. & Smith. (1998). Crop evapotranspiration. Guidelines for 

computing crop water requeriments. FAO Irrigation and Drainage. Paper 56. FAO, Rome 

300pp. 



 
GIS Applied to the Hydrogeologic Characterization – Examples for Mancha Oriental Aquifer (SE Spain) 217 

Bastiaanssen , W.G.M.; Molden, D. & Makin, IW. (2000). Remote sensing for irrigates 

agriculture: examples from research and possible applications. Agric Water Manage 46: 

137-155. 

Calera, A.; Jochum, AM.; Cuesta, A.; Montoro, A. & López, P. (2005). Irrigation management 

from space: Towards user-friendly products. Irrig Drain. 19. p. 337-353. 

Calera, A.; Martínez, C. & Meliá, J. (2001). A procedure for obtaining green plant cover. Its 

relation with NDVI in a case study for barley. Int J Remote Sens. 22. p. 3357-3362.  

Calera, A; Castaño, S. y Quintanilla, A. (2006): Historia y visión general de la Teledetección. 

In La evaluación del impacto ambiental de Proyectos y Actividades agroforestales. La 

Información en un SIG. In La evaluación del impacto ambiental de Proyectos y Actividades 

agroforestales. Ed. Ediciones de la Universidad de Castilla-La Mancha. Cuenca. ISBN: 84-

8427-416-0. 

Cassiraga, E.; (1999). Incorporación de información blanda para la cuantificación de la 

incertidumbre: aplicación a la hidrogeología. Tesis doctoral, Universidad Politécnica de 

Valencia. 

Castaño, S.; Gómez-Alday, J.J. & Sanz, D. (2008). Aguas continentales: Gestión de recursos 

hídricos y calidad del agua. Teledetección y SIG en la gestión de aguas subterráneas. Centro 

Superior de Investigaciones Científicas. (CSIC). Madrid. ISBN:978-84-00-08664-0. 

Castaño, S.; Sanz, D. & Gómez-Alday, J.J. (2009). Methodology for quantifying groundwater 

abstractions for agriculture via remote sensing and GIS. Water Resou Manage 24:795-814. 

Chuvieco, E.; (2006). Teledetección ambiental. 2 Ed. Ariel Ciencia, Barcelona. 592p. ISBN: 978-

84-34-48072-8 

European Committee (2000). The Water Framework Directive 2000/60/EC of the European 

Parliament and the Council of establishing a Framework for Community Action in the 

field of Water Policy, European Commission, Brussels. 

Custodio, E.; & Llamas M.R. (1983). Hidrología subterránea. Omega, Barcelona. 2350 pp. ISBN 

84-282-0446-2 

Environment Systems Research Institute (ESRI) (1997): Understanding GIS – the ARC/INFO 

Method, Self-study Workbook. 4th Ed.  

Estrela, T.; (ed). (2004). Jucar Pilot River Basin. Provisional Article 5 Report pursuant to the Water 

Framework Directive. Ministerio de Medio Ambiente, Valencia, Spain.  

Goodchild, M.F.; (ed). (1996). GIS and environmental modeling: progress and research issues. GIS 

World Books, Fort Collins, CO. 

Gulis, G.; Czompolyova, M. & Cerhan, J.R. (2002). An ecologic study of nitrate in municipal 

drinking water and cancer incidence in Trnava District, Slovakia. Environmental 

Research; 88(3):182-187. 

Jalali, M.; (2009). Geochemistry characterization of groundwater in an agricultural area of 

Razan, Hamadan, Iran. Environmental Geology; 56:1479-1488. 

Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K. & Lucas, N. (2001). Using Arc-Gis Geostatylical 

Analyst. Ed. ESRI. USA, 300 p. 

Mace, R.E.; (2000). Estimating transmissivity using specific-capacity data, The University of 

Texas at Austin, Bureau of Economic Geology, Geological Circular 01-2 



 
Application of Geographic Information Systems 218 

Moratalla, A.; Gómez-Alday, JJ.; De las Heras, J.; Sanz, D. & Castaño, S. (2008) Nitrate in the 

water-supply wells in the Mancha Oriental Hydrogeological System (SE Spain). Water 

Resour Manag 29:1621-1640. 

Murray, K.E.; & Hudson, M.R. (2002). Three-Dimensional Geologic Framework Modeling 

for a Karst Region in the Buffalo National River, Arkansas. U.S. Geological Survey Karst 

Interest Group. Proceedings, Shepherdstown, West Virginia. Eve L. Kuniansky, editor. Water-

Resources Investigations Report 02-4174 

González-Piqueras, J.; (2006). Evapotranspiración de la cubierta vegetal mediante la determ,inación 

del coeficiente de cultivo por teledetección. Extensión a escala regional: Acuífero Mancha 

Oriental. Dissertation, University of Valencia. 

Peña Llopis, J.; (2006). Sistemas de Información Geográfica aplicados a la gestión del territorio. Ed. 

Club Universitario. Alicante, 310 p. ISBN 84-8454-493-1. 

Samper, F.J.; & Carrera, J. (1996). Geoestadística: aplicaciones a la hidrogeología subterránea. 2ª 

Ed. Mundi-Prensa. Barcelona, 484 p. ISBN 84-404-6045-7. 

Sanz, D.; Gómez-Alday, J.J.; Castaño, S.; Moratalla, A.; De las Heras, J. & Martínez Alfaro 

P.M. (2009). Hydrostratigraphic framework and hydrogeological behaviour of the 

Mancha Oriental System (SE Spain). Hydrogeol J 17:1375-1391 

Shah, T.; (2005). Groundwater and Human Development: Challenges and Opportunities in 

Livelihood and Environment, Water Science and Technology 8:27-37 


