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1. Introduction 

Virtual reality is state of the art technology, but its concept can be found in many fields even 

in the past. These technologies, such as computer graphics, simulation, and human-

computer interfaces have all led to the evolution of virtual reality technology. The virtual 

reality technology developed in the 1960s is similar to what we see in the present day. In the 

fields of computer graphics, Ivan Sutherland created the pioneering virtual reality system, 

The ultimate display in which he used computers for the designing, construction, navigation 

and habitation of virtual worlds. He also developed a head mounted display which was 

designed to immerse the viewer in a visually simulated 3D environment. During the 1960s 

and 1970s, virtual reality technology had been applied to aerospace and military fields. The 

US Air Force established a laboratory at Wright-Patterson Air Force Base in Ohio and 

created flight simulators for high speed military aircraft. This resulted in the construction of 

the Super Cockpit in the 1980s which Tom Furness created as the director of this project. It is 

widely credited that Jaron Lanier, director and founder of VPL (Visual Programming 

Language), coined the term virtual reality in 1989 to bring all of the virtual projects of VPL, 

such as eyephone, dataglove and datasuit under a single term. In 1990 the human machine 

interfaces for teleoperators and virtual environments conference was held in Santa Barbara, 

CA and virtual reality was given as a general term for all related technologies. 

Virtual reality (VR) consists of indispensable elements including a virtual world, immersion, 

sensory feedback, and interactivity. The distinguishing characteristic of VR is a sense of 

immersion that occurs from the user interacting with a VE using multimodal stimuli, such 

as visual, auditory, and tactile stimuli. Another distinguishing characteristic is that VR gives 
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the illusion that objects that do not exist in the real world exist inside a computer-generated 

VE. Virtual reality technology is used in a variety of fields and possible medical application 

has attracted keen interest. Potential benefits have been reported in applications such as 

treatment of post-traumatic stress disorder following the terrorist attack on the World Trade 

Center [1], rehabilitation following a stroke [2], and disability management following 

accidents or surgery [3]. Virtual reality technology holds the promise as an analgesic 

modality in diverse ways. There is growing evidence about the successful application of VR 

technology to alleviate acute pain during medical procedures. Recently, the application of 

VR for chronic pain control has also been gaining attention. There are excellent review 

articles about this issue [4] [5]. 

This manuscript consists of three chapters. Chapter 1 presents an overview of VR 

technology applied to pain treatment, especially focusing on the treatment of chronic pain 

such as phantom limb pain. The scope of the topic in chapter 1 expands into a new 

approach for the treatment of phantom limb pain. Because technology is advancing 

rapidly, it is now possible to create a prosthesis that allows patients to control it by their 

thoughts alone. Perhaps if patients with phantom limb pain could use a high-tech 

prosthesis that they can directly control with their thoughts, phantom limb pain could be 

relieved. Chapter 2 introduces the virtual reality-mirror visual feedback (VR-MVF) therapy 

that we have developed and its analgesic efficacy in patients with complex regional pain 

syndrome (CRPS). Chapter 3 introduces our VR-MVF system for home use. Although the 

advanced MVF with VR technology showed increased analgesic efficacy and benefit, few 

patients can benefit from this treatment. The reason why VR-MVF has not yet become 

popular for clinical practice is due to the cost and the elusiveness of the technology 

required for VR. We have been working on two projects to resolve these problems. The 

drawbacks of virtual reality should be considered, because it will limit the applicability of 

VR for wide-spread use. Drawbacks of VR can be divided into two categories, technology-

related disadvantages and VR-related side effects. Technology-related disadvantages 

include the high cost and the complexity of the system which requires extensive 

knowledge of VR for its repair and maintenance. For example, the hardware including the 

head-mounted displays, data-glove and motion capture system, requires frequent 

adjustments to be made for maintaining the sense of immersion. Particular concern for VR-

related side effects is necessary because these systems are occasionally applied to patients 

with impairment. These patients may have a higher susceptibility to side effects. There are 

also concerns about the social impact that virtual environments affect on people, such as 

the psychological effects of prolonged usage. As an example of social disadvantage, some 

concerns are raised on desensitization. Although virtual reality technology is applied to 

systemic desensitization therapy which is a technique used to treat phobias and fear, in 

extreme cases there are concerns that users could fail to recognize the consequences their 

actions in virtual environments may cause in the real world. VR-related side effects include 

Cybersickness and Aftereffects. Cybersickness is a form of motion sickness. Symptoms 

include eyestrains, blurred vision, headaches, vertigo, imbalance, nausea and vomiting. 

Cybersickness is believed to occur as a result of conflicts between visual, vestibular and 
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proprioceptive perception. Symptoms of Aftereffects include disturbed locomotion, 

postural instability, fatigue and drowsiness. The users adapt to the sensorimotor 

requirements in virtual environments (VEs), and after leaving VEs they must readapt to the 

sensorimotor requirements in the real world. Aftereffects is believed to occur as a result of 

a lag in the sensorimotor response recalibration. 

1.1. Virtual reality and pain management 

Virtual reality technology as an analgesic modality was initially applied to attenuate pain 

perception during painful medical procedures. Hoffman et al. first reported that VR could 

alleviate pain perception during painful burn care in adolescent patients [6]. The application 

of VR for pain control during burn care has been the most intensively studied application [7-

8]. Other procedures to which VR has been applied include dental procedures [9] and 

intravenous placement [10]. Virtual reality technology with a head-mounted display allows 

the user to feel as if they are present in the VE, and interaction with the VE through 

manipulation strengthens the user’s immersion. With strong immersion, the user’s attention 

is focused on the VE, which subsequently can take the user’s attention away from pain. This 

is the distraction theory, which is one of the hypotheses of the mechanism of VR analgesia. 

Virtual reality analgesia has been speculated to be the result of distraction. Recently, 

advancement in neuro-imaging studies has revealed how VR distraction modulates pain 

processing in brain regions known as the pain matrix [11][12]. Neuroimaging studies have 

identified several brain regions that are consistently activated during nociceptive 

stimulation. These brain regions are referred to as the pain matrix which includes the 

anterior cingulate cortex (ACC), the insula, the thalamus, and the primary (S1) and 

secondary (S2) somatosensory cortices. Hoffman et al conducted a study using fMRI in 

healthy volunteers to investigate the associated changes in pain-related brain activation 

during nociceptive thermal stimulation and compared these results under conditions of no 

analgesia, opioid (hydromorphone) analgesia alone, VR distraction alone, and opioid 

analgesia combined with VR distraction [12]. VR distraction alone significantly reduced 

subjective pain and significantly reduced pain-related brain activity in the insula, thalmus, 

and S2. Combined opioid with VR distraction reduced pain reports more effectively than 

did opioid alone for subjective pain.  

Although interests and expectations in the application of VR for the treatment of chronic 

pain are growing, few studies about the analgesic efficacy of VR in patients with chronic 

pain have been reported. The application of VR to chronic pain treatment has not 

progressed further due to the lack of complete understanding about the mechanism of VR 

analgesia. We still do not know how we can use VR technology to build a system for 

providing analgesic efficacy for patients with chronic pain. However, a novel approach is to 

enhance the existing treatment, which is already known to have some analgesic efficacy for 

chronic pain, with VR technology. In this context, VR technology has been successfully 

applied as VR-hypnosis [13], VR-MVF therapy for phantom limb pain [14], and treatment 

for CRPS [15]. Hypnotic analgesia has gained special attention as an analgesic modality [16]. 

Oneal et al. integrated hypnotic analgesia with VR technology and applied the combination 
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in the treatment of chronic neuropathic pain [13]. A patient with a 5-year history of C4-

quadriplegia and upper extremity neuropathic pain received an audio recording of a 

hypnotic induction, i.e., suggestions for pain relief. After a 6-month trial of VR-hypnosis, the 

patient’s rating for pain and discomfort dropped more than 30%. Another example of the 

application of VR to pain treatment has been shown by Sarig-Bahat et al. [17]. They 

developed a VE in which the cervical range of motion (CROM) of a patient with neck pain 

was assessed during a simple but engaging gaming scenario and compared with that of 

individuals with no neck pain. The participants’ task in the VE was to spray a fly with a 

spray canister. Once a fly was sprayed, it vanished and a new target appeared within a 

larger ROM. The results of a single session revealed increasing CROM and decreased neck 

pain. They speculated that VR may play a role in overcoming the fear of motion via pain 

distraction, which subsequently improves CROM and results in pain reduction. Patients 

with chronic pain avoid moving the affected part of the body for fear that it will exacerbate 

the pain; this is the so-called fear-avoidance model [18]. Lowering fear-avoidance has been 

shown to be effective for the treatment of chronic back pain [19]. This type of approach is 

also known as cognitive behavioral therapy, the beneficial effects of which have been shown 

in patients with chronic pain [20]. The graded exposure of cognitive behavioral therapy in 

vivo can improve disability through reducing anxiety, which results in decreased pain in 

patients with CRPS [21]. 

1.2. Virtual reality for phantom limb pain 

Virtual reality allows the user to experience a computer-generated VE by using advanced 

technology such as a head-mounted display with tracking systems. Interestingly, the 

application of VR to chronic pain treatment was initially made without the help of these 

cutting-edge technologies. Ramachandran and Roger–Ramachandran introduced mirror 

visual feedback (MVF) therapy with a virtual mirror box for the treatment of phantom limb 

pain and reported its promising analgesic efficacy [22]. A vertical mirror was placed and an 

upper limb amputee was asked to place his normal hand on one side (the reflecting side) of 

the mirror and to look at the reflection of the hand optically superimposed on the felt 

location of the phantom. If the subject moved his normal hand, he not only saw his phantom 

move but felt it moving as well. In some cases, this relieved painful cramps in the phantom 

limb. A distinguishing characteristic is that the VR gives the illusion as if objects that do not 

exist in the real world exist inside a computer-generated VE. This outstanding characteristic 

of VR makes it possible for missing extremities to emerge inside the virtual world. Thus, it 

seems reasonable to integrate Ramachandran’s MVF therapy for phantom limb pain with 

VR technology. Murray et al. developed an immersive VR system that transposes 

movements of an intact limb onto that of a virtual limb in a computer-generated VE [14]. 

Their system contains a head-mounted display, data glove and sensors for an upper limb, 

sensors for lower limb, and a Fastrak tracking device for monitoring the movements of 

head, arm, and legs. Three patients with phantom limb pain, two with upper limb and one 

with lower limb amputation, who participated in two or five treatment sessions over a 3-

week period, reported a reduction in their pain. 
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Mirror visual feedback therapy including VR-MVF is not always able to induce beneficial 

analgesic effects for patients with phantom limb pain. Although most patients feel reduced 

phantom limb pain during the therapy, pain relief could be sustained in only a limited 

number patients after the therapy. It is speculated that MVF decreases phantom limb pain 

by restoring the shrunken somatosensory area (reorganization) that formally corresponded 

with the deafferentiated limb. Because technology is advancing rapidly, if patients with 

phantom limb pain had a prosthesis that they could directly control, and, moreover, if 

patients could feel feedback sensations such as haptic or proprioceptive feelings in response 

to their motor commands, it would help to restore the normal cortical map and phantom 

limb pain would be dramatically relieved. Moreover, unlike with MVF, patients with 

phantom limb pain could wear the high-tech prosthesis and use it in their daily life, which 

has the advantageous effect of restoring the normal cortical map sooner and subsequently 

providing long-lasting pain relief. This means that such a high-tech prosthesis could be a 

new approach for the treatment of phantom limb pain. 

It is known that different mechanisms are underlying phantom limb sensation and phantom 

limb pain. Blakemore et al. explained phantom limb sensation using a forward model [23]. A 

forward model uses an efference copy to predict the sensory consequences of the motor 

commands and compares this with the actual sensation of the movement. They suggested 

that the normal experience of the limb is based on this predicted state, rather than the actual 

state. Even in the case of missing limbs, motor commands lead to the prediction of the 

movement that results in phantom limbs sensation. Approximately 50-80% of all amputees 

have phantom limb pain [24]. Both peripheral and central mechanisms and even 

psychological factors have been implicated as the mechanisms of phantom limb pain [25]. 

Flor et al. especially focused on the pain memory established before the amputation as a 

powerful elicitor of phantom limb pain. They explained that if a somatosensory pain 

memory has been established with an important neural correlate in the spinal and 

supraspinal structures, such as in the primary somatosensory cortex, subsequent 

deafferentation and an invasion of the amputation zone by neighboring input may 

preferentially activate cortical neurons coding for pain [25]. Meanwhile, reorganization in 

the primary somatosensory motor cortex has been strongly correlated with phantom limb 

pain [26]. However, no conclusive explanation about why reorganization in these brain 

regions causes phantom limb pain has been made. The adult brain was formerly recognized 

as a hard-wired organ but recent neuroscientific evidence revealed that substantial plastic 

changes can occur. It is also known that this plasticity can be reversed. Birbaumer et al. 

showed that suppression of afferent input from the amputation stump by brachial plexus 

anesthesia eliminated both cortical reorganization and phantom limb pain in half of the 

subjects [27]. In the other half, both cortical reorganization and phantom limb pain were 

unchanged during upper extremity anesthesia. The authors suggested that in some 

amputees, cortical reorganization and phantom limb pain may be maintained by peripheral 

input, whereas in others, intracortical changes might be overriding. The approach for 

restoring this reorganization into a normal state is expected to be a promising analgesic 

modality [28]. Lotze et al., using functional magnetic resonance imaging, investigated the 
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effect of prosthesis use on phantom limb pain and cortical reorganization [29]. Patients who 

used a myoelectric prosthesis that provides sensory, visual, and motor feedback showed 

decreasing phantom limb pain that was subsequently correlated with less cortical 

reorganization compared with patients who used a cosmetic prosthesis or no prosthesis. 

1.3. A new treatment approach for phantom limb pain: A brain-controlled 

prosthesis 

The idea of direct brain control of a prosthesis is mainly aimed to improve the functionality 

of a prosthesis rather than to treat phantom limb pain, which subsequently helps the 

disability of amputees. However, because phantom limb pain tremendously impairs the 

amputees’ quality of life, the analgesic efficacy provided with a brain-controlled prosthesis 

on phantom limb pain has also gained keen interest. However, if a high-tech brain-

controlled prosthesis can only make movement in response to patients’ motor intention and 

no sensory feedback other than visual feedback can be obtained, there may be no significant 

difference between MVF therapy and a brain-controlled prosthesis in terms of analgesic 

efficacy. However, even if this were the case, a brain-controlled prosthesis still might have 

some advantage over MVF. To construct the image of the missing limb with the reflection of 

a mirror image in MVF therapy, an amputee makes a motor command of the healthy limb. 

However, with a brain-controlled prosthesis, only the motor-related brain region for the side 

of the missing limb is activated. Because there is communication between the two brain 

hemispheres, activity on one side is known to inhibit activity on the opposite side [30]. In 

this context, brain activity in the case of a brain-controlled prosthesis might be more 

strongly activated than that in MVF, which subsequently may be favorable from the point of 

view of restoring normal brain state. Because delivering sensory feedback as a consequence 

of motor commands improves the functionality of a prosthesis, researchers working on a 

brain-controlled prosthesis have been trying to deliver effective feedback. This will give 

tremendous beneficial effects on the analgesia that a brain-control prosthesis is expected to 

provide. 

To make a brain-controlled prosthesis move, the first step is to extract voluntary commands. 

Once motor commands are extracted, the next step is to deliver the extracted information 

(motor commands) to the artificial limb (prosthesis). Ideally, the last step is to deliver the 

haptic and proprioceptional information as sensory feedback that the patient expects to feel 

as a consequence of motor commands. Sensory feedback is expected not only to improve the 

functionality of a prosthesis but also to decrease phantom limb pain. There are several 

approaches for the extraction of motor commands, incuding electromyographic (EMG)-

based controls with targeted reinnervation [31] [32], a brain (cortical)-controlled 

neuroprosthesis [33] [34], and a longitudinal intrafascicular peripheral interface [35]. 

For example, an EMG-based control as a recording modality of motor commands has the 

advantages of simplicity and noninvasiveness because of its surface electrodes. The current 

detectable by an EMG-based control is larger than that detectable by a brain (cortical)-

controlled prosthesis. Meanwhile, a brain-controlled prosthesis needs an invasive 
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intracranial electrode. Hochberg et al. have implanted intracranial electrodes in the human 

motor cortex as a prosthetic control and also reported that a patient with quadriplegia could 

use neural control to open and close a prosthetic hand [34]. There are considerable 

problems, including complexity and biocompatibility, which have to be solved before a 

brain (cortical)-controlled prosthesis can be used as a modality for prosthesis control. 

The EMG-based prosthesis which is controlled with myoelectrical signals from a remaining 

pair of agonist-antagonist muscles in the amputated limb, provide very limited motion. To 

overcome this drawback, Kuiken et al. have developed targeted reinnervation for enhanced 

prosthetic arm function [31]. Surgery is performed on a patient with a traumatic 

amputation. Residual peripheral nerves of the brachial plexus are transferred to the patient’s 

pectoral and serratus muscles. When the patient thinks about closing his hand, for example, 

the amplified myoelectrical signal from the pectoralis muscle causes constriction that is used 

to control the closing movements of the computerized prosthesis. The targeted muscle 

reinnervation technique allows an amputee to intuitively control a prosthesis. Another 

outstanding characteristic of Kuiken‘s technique is targeted sensory reinnervation that can 

provide sensory feedback as a result of motor intention. The anterior chest skin that was 

overlying the targeted muscle reinnervation site is denervated and reinnervated with the 

ulnar and median nerves. A patient’s intention to move the prosthetic hand causes 

constriction of the anterior chest muscle and simultaneously, the skin on the surface of the 

constructed muscle activates the reinnervated nerves that subsequently provide the feeling 

that the patient’s hand was touched. Kuiken‘s technique can allow amputees to directly 

control a prosthesis with their intentions and delivers sensory feedback as a consequence of 

motor commands. Before the targeted reinnervation surgery, one amputee had severe 

phantom limb pain but it resolved after 4 weeks of treatment following the surgery. Motor 

commands can be extracted by interfaces with the peripheral nervous system. Horch et al. 

implanted longitudinal intrafascicular peripheral interfaces (LIFEs) into the median nerve of 

three amputee subjects [36]. They reported that the motor signals recorded using LIFEs can 

be used to control a robotic system. These LIFEs also seem to be able to provoke sensory 

feedback. In a preliminary study on amputees conducted by Horch et al., they reported that 

stimulating different afferent nerves using LIFEs could provide sensory feedback [37]. 

Micera pointed out that the peripheral nervous system-based control of a prosthesis using 

LIFEs may help to modify the plastic reorganization after the amputation and restore brain 

areas to a normal state, which subsequently is expected to decrease phantom limb pain [35]. 

Dietrich et al. reported that sensory feedback prosthesis reduced phantom limb pain [38]. In 

their system, the pressure information measured by a sensor located in the bend between 

the thumb and index finger of a myoelectric prosthesis was transformed into electrical 

stimulation patterns by a microcontroller. Then electrocutaneous stimulus was delivered as 

sensory feedback to the skin of the subject’s stump. Two-week training with this system 

provided significant improvement in the functionality of the prosthesis and reduced 

phantom limb pain. Although the sensory feedback in Dietrich’s system was not exactly 

haptic or proprioceptive sensation in response to the motor intention, it still could provide 

considerable analgesia. Thus, if real sensory feedback such as haptic or propriocetive 
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sensation could be provided in the near future, phantom limb pain could be completely 

relieved. However, both peripheral and central mechanisms and even psychological factors 

have been implicated as the mechanism of phantom limb pain, so some patients may still 

not have pain relief from a brain-controlled prosthesis. 

2. Application of virtual reality for chronic pain treatment of patients 

with complex regional pain syndrome 

Complex regional pain syndrome includes a variety of pain conditions with both motor and 

autonomic symptoms [39]. The underlying pathogenesis is not yet fully understood, which 

makes it difficult to establish effective treatments. Alternative analgesic modalities have 

been actively sought for the treatment of CRPS. Ramachandran introduced MVF therapy 

[22]. CRPS type 1 shares many strikingly similar characteristics with phantom limb pain [26] 

[40] [41]. Mirror visual feedback therapy is expected to provide analgesic effects for patients 

with CRPS. The advanced MVF system with virtual reality technology (VR-MVF) contains 

very specific target-oriented motor control tasks and enables subjects to feel engaged and 

rewarded, thus encouraging them to repeat the exercise with intensity. In this regard, VR-

MVF has tremendous potential as a non-invasive alternative analgesic modality for CRPS. 

2.1. Virtual reality-mirror visual feedback system 

A personal computer-based desktop VR system was developed for MVF therapy. The 

system contains a personal computer (operating system: Windows XP Professional SP2; 

central processing unit: Intel Core 2 Duo 3.16 GHz; graphics: Radeon HD 4679), a 

CyberGlove (Immersion Co.) as a hand input device, a Fastrak device (POLHEUMS Co.) as 

a real-time position and motion tracker, and a 20-inch desktop monitor (EIZO FlexScan 

SX2761W, EIZO Nanao MS Corp. Japan). A VE was developed using commercially available 

software, Autodesk 3DS Max. The system is shown in Figure 1. In the VE, three objects of 

different sizes and shapes are initially located on the table with a back shelf. The forearm 

and hand on the affected side appears on VE and every movement or any laterality of the 

real arm can be precisely reproduced. The movement of the fingers and wrist of the virtual 

hand is simulated by the CyberGlove, which is attached on the non-affected side because 

pain is induced if the affected hand is used. The Fastrak position tracker that determines the 

position and orientation of the virtual arm is mounted on the affected side. In the VR-MVF 

system, a virtual forearm moves in the same manner as the affected side, but the hand and 

finger motions are simulated by the non-affected side. This is the biggest difference between 

MVF therapy with a mirror box and VR-MVF therapy. Recently, we renovated our VR-MVF 

system (Figure 2). A 50-inch Panasonic TH-P50VT5 display monitor and 5DT Data Glove 

5/14 Ultra hand input device were used. A VE was developed using OpenGL (Silicon 

Graphics) as the application program interface and a three-dimensional model was 

constructed by Metasequoia. The most distinguishable change was made in the physics 

simulation. Havok Physics (Havok Co.) was used as the physics engine that makes objects in 

the VE roll and bounce in a very realistic manner on the screen. 
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Figure 1. Virtual reality-mirror visual feedback therapy in Okayama University Hospital 

 

Figure 2. The renovated version of virtual reality-mirror visual feedback therapy 
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2.2. Application for patients with complex regional pain syndrome 

Virtual reality-mirror visual feedback exercises are target-oriented motor control tasks. The 

sequences of hand exercises consisted of the movements of reaching out, grasping, 

transferring, and placing. Five patients with CRPS of the hand attended VR-MVF therapy. 

The therapy was given once a week at an outpatient pain clinic in Okayama University 

Medical Center, where the VR-MVF system was set up. In each therapy session, no time 

limit was set. Analgesic medications were continued at the same regimens as before the 

therapy. If patients reported an increase in pain intensity or related side effects of VR-MVF 

therapy, treatment was immediately cancelled and additional drugs or treatment were 

administered. However, if patients reported decreased pain intensity, medication was 

adjusted or stopped as directed by the patient. Subjective pain was evaluated according to a 

visual analogue scale (0 = no pain, 100 = worst pain) before and after each treatment session. 

All patients reported spontaneous pain in the affected limb that increased with movement. 

The pre-treatment score on the visual analogue scale (64 ± 14) (mean ± SD) decreased to 31 ± 

26 after consecutive treatment sessions. Four of the five patients (80%) showed 50% 

reduction of the pre-treatment visual analogue scale value. The analgesic effect provided by 

VR-MVF therapy in five cases of CRPS is shown in Figure 3. All cases showed a short-term 

reduction in pain intensity (before-and-after comparison of the visual analogue score in each 

session) and four of the five cases showed consecutive decreases of visual analogue scale 

score, which led to a 50% reduction of the pre-treatment value after respective treatment 

sessions. 

Effective pain reduction (50% reduction) was accomplished after the third treatment session 

in Cases 1 and 2, the fourth session in Case 3, and the eighth session in Case 5. 

In this preliminary work, our VR-MVF therapy was able to provide successful analgesic 

efficacy: 80% of patients showed more than a 50% reduction of pain intensity after three to 

eight consecutive treatment sessions. It is worth noting that all five patients were in a 

chronic state of CRPS, which is known to be difficult to treat by original MVF therapy with a 

mirror box. In two patients, the analgesic effect continued even after cessation of the 

therapy. Moreover, none of the five patients in the present study reported experiencing any 

related side effects. Our result showed that VR-MVF therapy is a promising alternative 

treatment for CRPS. 

3. Virtual reality-mirror visual feedback therapy for home use 

As described in Chapter 2, VR-MVF treatment showed increased analgesic efficacy and 

benefit in patients with CRPS. However, only a limited number of patients can benefit from 

this treatment and there are several barriers to performing frequent VR-MVF treatments. 

First, the VR-MVF equipment is too expensive for individual purchase, so systems are only 

available in hospitals. Second, using VR-MVF systems requires extensive knowledge of VR 

and computer systems. The user must be able to set up the system, VR software, and 

treatment tasks. Third, treatment records, such as the hand and finger movement data and 
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visual analogue scale evaluations before and after treatment, are hard to obtain without the 

help of doctors or medical staff. These problems restrict treatment time and frequency. We 

have been working on two projects to resolve the problems. 

 

Figure 3. Analgesic effect provided by VR-MVF  therapy 

A plausible solution for these problems is a remote personal VR-MVF system. This system is 

composed of an internet-connected personal computer with videophone application software 

and an inexpensive input device for measuring movements of the non-affected forearm, 

hand, and fingers. The VE treatment programs are sent through the internet from a server at 

a hospital. The treatment data, such as pain levels before and after treatment, treatment time, 

and movement data, are temporarily stored in the personal computer and sent back to the 

server after treatment sessions. The authors have developed a prototype personal VR-MVF 

system and plan to expand the prototype to a remote version. This expansion will be 

accomplished by adding a server and developing data communication and treatment data 

management software. In a personal VR-MVF system, it is important that the patient be able 

to observe the virtual hand and forearm movement of the affected side on a display without 

actually moving the hand and forearm of the affected side. As shown in Figure 4, this system 
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is composed of a computer with a display, an input device, a web camera with an infrared 

filter, and processing software for the VE and movement data of the non-affected hand. 

Another web camera is prepared for videophone communication with a doctor at the 

hospital. The system measures hand movements and grasping actions on the non-affected 

side by processing the image data collected by six infrared light-emitting diodes (LEDs) in the 

input device, as shown in Figure 5. The infrared LED on the palm of the hand detects 

grasping actions and the infrared LEDs around the hand measure hand location and 

direction. The system then displays the hand and forearm of the affected side in the VE 

according to these movement measurements. When the LED in the hand is hidden and the 

input device receives no infrared light, a grasping motion is detected. A prepared animation 

of a grasping motion is then played. Conversely, when the infrared light from the LED in the 

hand is received by the input device, a hand-opening motion is detected. The prepared 

animation of the grasping motion is then played in reverse. The input device does not 

measure the motion of each finger. These measurements are not necessary because treatment 

tasks include grasping an object, moving it, and placing it at a specified position. 

 

Figure 4. Composition of a personal virtual reality-mirror visual feedback system 

 

Figure 5. Arrangement of infrared light-emitting diodes in the input device 
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The applicability of the personal VR-MVF system was evaluated by indices of control and 

realism by the presence questionnaire [42]. The presence questionnaire is a test for 

measuring the presence of a VE. Each question is related to one or more categories 

pertaining to control, sensory, realism, and distraction factors of the VE. Each question is 

evaluated on a scale of fitness from 1 (completely unfit) to 7 (good fit). The control factor 

measures how easily the user is able to control an object in the VE. The sensory factor 

measures how well the user perceives the VE. The realism factor measures how authentic 

the VE feels to the user. The distraction factor measures the user’s level of distraction during 

the session. 

Five men and one woman evaluated the system. All subjects were healthy and right-

handed, with an average age of 22.6 years. Because sound was not utilized in the original 

VR-MVF or the personal VR-MVF systems, questions related to auditory stimuli were 

omitted. 

 

Figure 6. Comparison of presence questionnaire evaluations for the original and personal virtual 

reality-mirror visual feedback systems (a) Control factor (b) Realism factor 

The results of these evaluations are shown in Figure 6. A detailed description of the 

questionnaire was reported by Witmer [42]. A dark bar indicates the average evaluation of 

the VR-MVF system and a light bar indicates that of the personal VR-MVF system. The fine 

lines indicate standard deviations of the evaluation points. For Questions 11 and 25 in 

Figure 6, lower values indicate better system performance. The personal VR-MVF system 
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received relatively better evaluations than the original system for the questions related to 

the control factor and comparable evaluations for the questions related to the realism factor. 

From these results, the personal VR-MVF system was confirmed to be applicable for patients 

with chronic pain such as CRPS. 

Another approach to VR-MVF for home use is based on the idea of transforming the 

procedure of VR-MVF into sounds (music) in which data are stored in mobile MP3 

players that could then be taken home. Hearing the music reminds the patients of images 

of VR-MVF that are expected to activate the same brain networks activated during VR-

MVF. It is intended to provide some kind of analgesia in patients with chronic pain 

including CRPS. 

4. VR-MVF therapy with sound therapy system 

Components of the therapy system 

The VR-MVF with a sound therapy system is composed of the following components in a 

virtual environment: data glove, magnetic sensor, virtual upper limb, several virtual square 

objects, and a 10 × 10 matrix of square white switches to turn objects on and off. The object is 

pressed once and turned on and then pressed again and turned off like a switch of an 

illumination lamp. When an object is turned on, the white switch changes to blue and 

signals to emit a sound (Figure 7). To develop this system, we consulted the Yamaha 

Corporation on the tenori-on [43] because this electronic musical instrument is 

comparatively easy for the average person who has never played music to perform on. 

Playing music that a patient prefers contributes largely to therapy; in addition, the patient 

would continue treatment with enjoyment. 

How to perform music 

To use a tenori-on, the user pushes buttons with his or her finger. In our system, however, 

a user does not press buttons with his or her finger to switch the signal, because grasping 

virtual objects and moving them are important activities in the therapy of CRPS. Therefore, 

a patient changes the signal by dropping a spherical object onto a switch he or she wants to 

turn on or off. As with VR-MVF, the objects behave as real objects by means of simple 

physics simulation, making it easy to create music. Several objects collide and then each 

object moves in a different direction. As a result, each object presses a button and the user 

does not need to drop objects on all buttons that he or she wants to switch. When a button 

is pressed, no sound is emitted, but a point of emission is set. A pressed button emits its 

defined sound at a constant frequency when a time line is exceeded. The time line 

represents the frequency of an emission and moves from right to left. The time line is at the 

right edge in Figure 7. Each button in a single row produces a different sound. Sounds are 

allocated to each button from back to front in a row. The sound is ranked from lower to 

higher in a scale of musical notes. Ten rows having the same sounds are put on the virtual 

table in Figure 7. 



 
A Novel Application of Virtual Reality for Pain Control: Virtual Reality-Mirror Visual Feedback Therapy 

 

251 

 

Figure 7. The VR-MVF with a sound therapy system  

5. Conclusion 

Virtual reality technology has tremendous potential to provide alternative analgesic 

modalities to patients with chronic pain conditions such as phantom limb pain and 

CRPS. Virtual reality-mirror visual feedback therapy is a successful example of applying 

virtual reality technology to pain treatment, especially for patients with chronic pain. In 

our preliminary study, we showed its beneficial analgesic effects on patients with CRPS. 

Although VR-MVF is a promising analgesic modality, there are several barriers to VR-

MVF becoming a widely used treatment, including its high initial cost. To resolve this 

problem, we have been working on VR-MVF for home use. Our strategies are intended 

to provide analgesia for many patients who need an alternative non-invasive analgesic 

modality.  
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