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1. Introduction 

Snake venoms are a complex mixture of compounds with a wide range of biological and 

pharmacological activities, which more than 90% of their dry weight is composed by 

proteins, comprising a variety of enzymes, such as proteases (metalo and serine), 

phospholipases A2, L-aminoacid oxidases, esterases, and others [1-5]. A great number of 

proteins were purified and characterized from snake venoms [1, 2]. Some of these proteins 

exhibit enzymatic activity, while many others are non-enzymatic proteins and peptides. 

Based on their structures, they can be grouped into a small number of super-families based 

on remarkable similarities in their primary, secondary and tertiary structures, however 

showing distinct pharmacologic effects [3]. 

One of the most important protein super-families present in snake venoms are the 

phospholipases A2 (PLA2, E.C. 3.1.1.4), a class of heat-stable and highly homologous 

enzymes, which catalyse the hydrolysis of the 2-acyl bond of cell membrane phospholipids 

releasing arachidonic acid and lysophospholipids (Figure 1). These proteins are found in a 

wide range of cells, tissues and biological fluids, such as macrophages, platelets, spleen, 

smooth muscle, placenta, synovial fluid, inflammatory exudate and animal venoms. There is 

a high medical and scientific interest in these enzymes due to their involvement in a variety 

of inflammatory diseases and accidents caused by venomous animals. Since the first PLA2 

activity was observed in Naja snake venom, PLA2s were characterized as the major 

component of snake venoms, being responsible for several pathophysiological effects caused 

by snake envenomation, such as neurotoxic, cardiotoxic, myotoxic, cytotoxic, hypotensive 

and anti-coagulant activities [1-10].  
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Phospholipases constitute a diverse subgroup of lipolytic enzymes that share the ability to 

hydrolyse one or more ester linkages in phospholipids, with phosphodiesterase as well as acyl 

hydrolase activity. The amphipathic nature of phospholipids creates obstacles for the enzymes, 

as the substrates are assembled into bilayers or micelles and are not present in significant 

amounts as a single soluble substrate [11]. According to Waite [12], all phospholipases target 

phospholipids as substrates, they vary in the site of action on the phospholipid molecule, their 

function and mode of action, and their regulation. Phospholipases function in various roles, 

ranging from the digestion of nutrients to the formation of bioactive molecules. This diversity 

of function suggests that phospholipases are relevant for life; the continuous remodelling of 

cell membranes requires the action of one or more phospholipases. The most common 

phospholipids in mammalian cells are phosphatidylcholine (PC), phosphatidylserine (PS), 

phosphatidylinositol (PI) and phosphatidylethanolamine (PE). The plasma membrane of most 

eukaryotic cells contains predominantly PC and sphingomyelin in the outer leaflet, and PI, PE 

and PS in the inner leaflet [11]. 

 

Figure 1. Phospholipase hydrolysis specificity sites in a 1,2-diacylglycerolphospholipid molecule 

(structure design from the ACD/l Lab. via Chem. Sketch – Freeware Version 1994 – 2009 software). 

Phospholipases are classified according to their site of action in the phospholipid molecule. 

Thus, a phospholipase A1 (PLA1) hydrolyzes the 1-acyl group of a phospholipid, the bond 

between the fatty acid and the glycerine residue at the 1-position of the phospholipid. A 

phospholipase A2 (PLA2) hydrolyzes the 2-acyl, or central acyl, group and phospholipases C 

(PLC) and D (PLD), which are also known as phosphodiesterases, cleave on different sides 

of the phosphodiester linkage (Figure 1). The hydrolysis of a phospholipid by a PLA1 or a 

PLA2 results in the production of a lysophospholipid. The phospholipase metabolites are 

involved in diverse cellular processes including signal transduction, host defense (including 

antibacterial effects), formation of platelet activating cofactor, membrane remodeling and 

general lipid metabolism [12-14]. 
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According to the latest classification [6], these proteins constitute a superfamily of different 

enzymes belonging to 15 groups and their subgroups including five distinct types of 

enzymes: the ones called secreted PLA2 (sPLA2), the cytosolic (cPLA2), the Ca2+ independent 

(iPLA2), the acetyl-hydrolases from platelet activating factors (PAF-AH) and the liposomal. 

The classification system groups these enzymes considering characteristics such as their 

origin, aminoacid sequence and catalytic mechanisms, among others. 

The sPLA2s have a Mr. varying from 13,000 to 18,000, usually containing from 5 to 8 

disulphide bond. They are enzymes that have a histidine in the active site and require the 

presence of the Ca2+ ion for the catalysis. Phospholipases A2 from the IA, IB, IIA, IIB, IIC, 

IID, IIE, IIF, III, V, IX, X, XIA, XIB, XII, XIII, XIV groups are representative of the sPLA2s. The 

cPLA2s are proteins with Mr between 61,000 to 114,000 that also use a serine in the catalytic 

site (groups IVA, IVB, IVC, IVD, IVE, IVF). The iPLA2s are enzymes which also use a serine 

for catalysis (groups VIA-1, VIA-2, VIB, VIC, VID, VIE, VIF). The PAF-AH are 

phospholipases A2 with serine in the catalytic site that hydrolyze the acetyl group from the 

sn-2 position of the platelet activating factors (PAF), whose representative groups are VIIA, 

VIIB, VIIIA, VIIB. The liposomal PLA2s are assembled in group XV and are enzymes with an 

optimum pH close to 4.5 that have preserved histidine and aspartate residues, suggesting 

the presence of the catalytic triad Ser/His/Asp and also a supposed sequence N-terminal 

sign and N-bond glycosylation sites [6]. 

With the discovery of a great variety of phospholipase A2 in the last decade and the present 

expansion of the research in the area, more PLA2s should be discovered yet. Phospholipase 

A2 found in snake venoms (svPLA2s) are classified into groups I and II. The phospholipase 

A2 from group I have two to three amino acids inserted in the 52-65 regions, called “elapid 

loop”, being isolated from the snake venoms of the Elapidae family (subfamily: Elapinae 

and Hydrophiinae). The ones from group II are characterized by the lack of the Cys11-Cys77 

bond which is substituted by a disulphide bond between the Cys51-Cys133, and besides that 

had five to seven amino acids extending the C-terminal regions, being bound in snake 

venoms of the Viperidae family (subfamily Viperinae and Crotalinae) [15,16]. 

The myotoxic PLA2s of the IIA class have been subdivided in two main groups: The Asp49, 

catalytically active; and the Lys49, catalytically inactive. The essential co-factor for the 

phospholipase A2 catalysis Ca2+. The phospholipase A2 Asp49 require calcium to stabilize 

the catalytic conformation, presenting a calcium bond site that is constituted by the β-

carboxylic group of Asp49 and the C=O carbonylic groups of the Tyr28, Gly30 and Gly32. 

The presence of two water molecules structurally preserved complete the coordination 

sphere of Ca2+ forming a pentagonal pyramid [9,15]. 

The catalytic mechanism of the PLA2-phospholipid involves the nucleophilic attack of a 

water molecule to the sn-2 bond of the phospholipid substrate (Figure 2). In the proposed 

model, the proton from position 3 of the imidazole ring of the His48 residue involved in a 

strong interaction with the carboxylate group of the Asp49 prevents the imidazole ring 

rotation to occur and keeps the nitrogen at position 1 of this ring, in an appropriate special 

position. A water molecule then promotes the nucleophilic attack to the carbon of the ester 

group of the substrate and, at this moment, the imidazole ring of the His48 receives a proton 
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from the water molecule, favoring the reaction. Subsequently to the acyl-ester bond 

hydrolysis at the sn-2 position of the phospholipid, this proton is donated by the imidazole 

ring to the oxygen, which then forms the alcohol group of the lysophospholipid to be 

released together with the fatty acid [15,17]. 

The Ca2+ ion, coordinated by the Asp49 residue, a water molecule and the oxygen atoms 

from the Gly30, Trp31 and Gly32 (not shown), are responsible for the stabilization of the 

reactive intermediary [15]. 

 

Figure 2. Schematic representation of the catalysis mechanism proposed for the PLA2s. Interaction of 

the residues from the catalytic site of sPLA2s and the calcium ion with the transition state of the catalytic 

reaction in which a water molecule polarized by the His48 and Asp99 residues binds to the carbonyl 

group of the substrate [18]. 

The substitution of the Asp49 residue by the Lys49 significantly alters the binding site of Ca2+ 

in the phospholipase A2, preventing its binding and resulting in low or inexistent catalytic 

activity. Thus, the Asp49 residue is of fundamental importance for the catalytic mechanism of 

the phospholipase A2. It is likely that this occurs due to its capability of binding and orienting 

the calcium ion, however, there is no relevant difference between Asp49 and Lys49 in relation 

to the structural conformation stability of these enzymes [9,15,19]. 

The absence of catalytic activity does not affect myotoxicity. Most snake PLA2s from the 

Bothrops genus already described are basic proteins, with isoelectric point between 7 to 10, 

showing the presence or absence of catalytic, myotoxic, edematogenic and anticoagulating 

activities [9,20]. 
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On the other hand, acid PLA2s present in Bothrops snake venoms were not studied as well 

as basic PLA2s, resulting in little knowledge regarding the action mechanism of these 

enzymes [21-25]. 

PLA2s catalytic activity represents a key role in envenomation pathophysiology, however, 

recent studies have shown that some effects are independent of PLA2s catalytic activity, 

such as myotoxicity [19,26]. The absence of a tight correlation between PLA2 catalytic and 

non-catalytic activities, together with the diversity of biological effects produced by these 

proteins increases the scientific interest in the understanding of the structural basis of PLA2 

mechanisms of action. 

Evidences suggest that these activities can be mediated by interactions between PLA2s and 

endogen acceptors on the target cell membrane [27-29]. 

2. PLA2 purification 

Snake venom components, obtained with high degree of purity, could be used for the 

understanding of the role of these components in the physiopathological processes resulted 

from poisoning, as well as biotechnological/nanotechnological applications. Hence, many 

purified PLA2s from snake venoms, as well as epitopes of these molecules, are being 

mapped in order to identify determinants responsible for the deleterious actions seen, as 

well as possible applications in biotechnological models. 

New advances in materials and equipments have contributed with protein purification 

processes, allowing the obtaining of samples with high degree of purity and quantity. These 

advances have allowed process optimization, providing reduction of steps, reagents use and 

thus avoiding the unnecessary exposure to agents that may, in some way, alter the sample’s 

functionality or physical-chemical stability. 

Thus, the selection of adequate techniques and chromatographic methods oriented by 

physical chemical properties and biological/functional characteristics, are of fundamental 

importance to obtain satisfactory results. The information pertinent to protein structure, 

such as the homology to others already purified, should be taken into consideration and 

could make the purification processes easier. 

Ion exchange chromatography was introduced in 1930 [30] and still one of the main 

techniques used for protein purification. It has been extensively used in single step 

processes as well as associated to other chromatographic techniques. Ion exchange 

chromatography allows the separation of proteins based on their charge due to amino acid 

composition that are ionized as a function of pH. 

Proteins with positive net charge, in a certain pH (bellow their isoelectric point), can be 

separated with the use of a cation exchange resin and on the other hand, proteins with 

negative net charge in a pH value above their isoelectric point, can be separated with an 

anion exchange resin. 
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Scientific publications have shown that the use of cation-exchange resins is a very efficient 

method to obtain PLA2s from bothropic venoms, particularly those with alkaline pH (Table 1). 

The versatility of this technique can be observed in the work done by Andriao-Escarso et al. 

[21] who compared the fractioning of many bothropic venoms. In this work, the venoms were 

fractioned in a column containing CM-Sepharose® (2 x 20 cm), equilibrated with ammonium 

bicarbonate 50 mM pH 8.0 and eluted with a saline gradient of 50 to 500 mM of the same 

reagent. Under these conditions, MjTX-I and MjTX-II from B. moojeni snake venom were co-

purified (isoforms of PLA2 with pIs of 8.1 and 8.2 values, respectively). The same occurs with 

B. jararacussu venom, where the BthTX-I and BthTX-II were purified. However, the most 

expressive result was observed with B. pirajai venom, from which 3 isoforms of myotoxins, 

called as PrTX-I (pI 8.50), PrTX-II (pI 9.03) and PrTX-III (pI 9.16) were purified. In the above 

cases, it is important to note that the protein elution occurs always following pIs increasing 

value. In our lab we used this technique routinely in order to isolate myotoxins from bothropic 

venoms, which can be observed in the chromatograms shown in Figure 3. 

 

Figure 3. Chromatographic profile using CM-sepharose® Column 1ml (Hitrap) equilibrated with Tris 

50 mM buffer (buffer A) and eluted with a linear gradient of Tris 50 mM/NaCl 1 M (buffer B) in pH 8.0. 

A. Chromatography of the crude venom from Bothrops brazili B. Chromatography of the crude venom 

from Bothrops moojeni C. Chromatography of the crude venom from Bothrops jararacussu. Absorbance 

read at 280 nm. ,2,3,4,5 and 6 marks indicate the fractions corresponding to the PLA2s of each venom. 
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Species PLA2 
PLA2 

Activity 

MW 

(kDa) 
pI 

Access 

Number 

(Uniprot) 

Purification strategy Ref. 

Agkistrodon bilineatus PLA2 Absence 14.0 10.2 Q9PSF9 Gel filtration chromatography on Sephadex G-75® and 

then submitted to íon-exchange on CM-Cellulose® 

column. 

[78] 

Agkistrodon contortrix 

contortrix 

PLA2 Presence 14.0   Ion-exchange chromatography on DEAE-Cellulose® 

column, followed by affinity chromatography with 

immobilized BSA and then submitted to gel filtration on 

Cellulofine GCL-2000® column. 

[79] 

Agkistrodon contortrix 

laticinctus 

MT1 Absence 14.0 9.0 49121 Anion-exchange chromatography on Waters DEAE-

5PW® column and then submitted to cation-exchange on 

Protein Pak SP-SPW® column. 

[80] 

Agkistrodon contortrix 

laticinctus 

ACL-I Presence 14.0   Gel filtration chromatography on Superdex-200® column 

and then submitted to ion-exchange on CM-Sepharose 

FF® column. 

[81] 

Atropoides nummifer Myotoxin IH Absence 16.0   Cation-exchange chromatography on CM-Sephadex C-

25® column. 

[82] 

Atropoides nummifer Myotoxin I Absence 16.0   Cation-exchange chromatography on CM-Sephadex C-

25® column. 

[83] 

Atropoides nummifer Myotoxin II Absence 13.7 8.7 P82950 Cation-exchange chromatography on CM-Sephadex C-

25® column. 

[84] 

Bothriechis (Bothrops) 

schlegelii 

Miotoxina II Presence 15.0 >9.5 P80963 Ion-exchange chromatography on CM-Sephadex® 

column. 

[85] 

Bothrocophias hyoprora PhTX-I Presence 14.2   Reverse Phase chromatography on Bondapack® C-18 

column. 

[86] 

Bothropoides insularis SIII-SPVI Presence 15.0   Gel filtration chromatography on Sephadex G-150® 

column and then submitted to SP-Sephadex C25® 

column. 

[87] 

Bothropoides insularis BinTX-I 

BinTX-II 

Presence 

Presence 

13.9 

13.7 

5.0 

4.4 

Q8QG87 

P84397 

Reverse Phase chromatography on Vydac® C18 column. [88] 

Bothropoides insularis Bi PLA2 Presence 13.9 8.6  Gel filtration chromatography on Superdex 75® column 

and then submitted to cation-exchange on Protein pack 

SP-5PW® column and Reverse Phase chromatography on 

µ-Bondapack® C18 column. 

[89] 

Bothropoides jararaca BjPLA2 Presence 14.0  P81243 Ion-exchange chromatography on DEAE Sephacel® 

column and then submitted to Reverse Phase 

chromatography on Ultrapore RPRC-C3® column. 

[90] 

Bothropoides jararaca PLA2 Presence 14.2 4.5 Q9PRZ0 Gel filtration on Sephacryl S-200® column and then 

submitted to reverse phase on Pep-RPC HR 5/5® column. 

[91] 

Bothropoides pauloensis BpPLA2 Presence 15.8 4.3 D0UGJ0 Cation-exchange chromatography on CM-Sepharose® 

column followed by Phenyl-Sepharose CL-4B® column 

and then submitted to reverse phase chromatography on 

C8 column. 

[23] 

Bothropoides pauloensis BnSP-7 Absence 13.7 8.9 Q9IAT9 Cation-exchange chromatography on CM-Sepharose® 

column or heparin agarose® column. 

[26] 

Bothrops alternatus BA SpII RP4 Presence 14.1 4.8 P86456 Gel filtration chromatography Sephadex G-75® column 

followed by reverse phase chromatography on C18 column. 

[92] 

Bothrops alternatus PLA2 Presence 15.0 5.0  Gel filtration chromatography on Sephadex G-50® 

column followed by ion-exchange on SP Sephadex C-50® 

column and then submitted to gel filtration 

chromatography on Sephadex G-75® column. 

[93] 

Bothrops alternatus BaTX Absence 13.8 8.6 P86453 Gel filtration chromatography on Superdex 75® column 

followed by reverse phase chromatography on µ-

Bondapack® C18 column. 

[94] 

Bothrops asper MTX-I 

MTX-II 

MTX-III 

MTX-IV 

Basp-I-PLA2 

Presence 

Absence 

Presence 

Absence 

Presence 

14.1 

14.2 

14.2 

Nd 

14.2 

8.1- 8.3 

8.1- 8.3 

8.1- 8.3 

8.1- 8.3 

4.6 

 Ion-exchange chromatography on CM-Sepharose® 

column followed by hydrophobic interaction 

chromatography on Phenyl-Sepharose® column. 

[95] 

Bothrops asper Myotoxin I Presence 10.7 nd  Ion-exchange chromatography on CM-Sephadex C-25® 

column followed by gel filtration chromatography on 

Sephadex G-75® column. 

[7] 

Bothrops asper Myotoxin II Absence 13.3 nd P24605 Ion-exchange chromatography on CM-Sephadex C-25® 

column. 

[96] 

Bothrops asper Myotoxin III Presence 13.9 >9.5 P20472 Ion-exchange chromatography on CM-Sephadex C-25® 

column. 

[97] 

Bothrops asper Myotoxic 

PLA2 

Presence 14.1 nd  Gel filtration chromatography on Sephadex G-75® 

followed by ion-exchange chromatography on CM-

cellulose® column. 

 

[98] 

Bothrops asper BaspPLA 2-II Presence 14.2 4.9 P86389 Ion-exchange on CM-Sephadex C-25® followed by 

chromatography on DEAE Sepharose® column, active 

fractions subjected to reverse phase chromatography on 

C8 column and finally chromatography with CM- 

[22] 
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Bothrops atrox BaPLA2I 

BaPLA2 III 

Presence 

Presence 

15.0 

15.0 

9.1 

6.9 

 Gel filtration chromatography on Sephacryl S-100 HR® 

column followed by reverse phase on C4 column. 

[99] 

Bothrops atrox Basic 

Myotoxin 

Presence 13.5   Ion-exchange chromatography on CM-Sephadex C-25® 

column and then re-chromatographed on the same column 

and same conditions. 

[32] 

Bothrops atrox Myotoxin I Absence 13.8 8.9 Q6JK69 Ion-exchange chromatography on Carboximetil-Sephadex 

C-25® followed by reverse phase chromatography on C8 

column. 

[100] 

Bothrops brazili MTX-I 

MTX-II 

Presence 

Absence 

14.0 

14.0 

  Ion-exchange chromatography on CM-Sepharose® 

column. 

[101] 

Bothrops brazili BbTX-II 

BbTX-III 

Absence 

Presence 

13.9 

13.6 

8.7 

8.4 

 Reverse phase chromatography on C18 column. [102] 

Bothrops erythromelas BE-I-PLA2 Presence 13.6   Gel filtration chromatography on Superdex 75® followed 

by chromatography on monoQ® column, fractions being 

subjected to reverse phase chromatography on C4 column 

afterwards. 

[103] 

Bothrops jararacussu BthTX-I 

BthTX-II 

Absence 

Presence 

13.0 

13.0 

8.2 

 

Q90249 

P45881 

Gel filtration chromatography on Sephadex G-75®, 

followed by cation-exchange chromatography on SP-

Sephadex C-25® column. 

[34] 

Bothrops jararacussu BJ IV Presence 15.0  P0CAR8 Ion-exchange chromatography on Protein Pack SP 5PW® 

column followed by reverse phase chromatography on µ-

Bondapack® C18 column. 

[104] 

Bothrops jararacussu BthA-I-PLA2 Presence 13.7 4.5 Q8AXY1 Ion-exchange chromatography on CM-Sepharose® 

column, followed by reverse phase chromatography on 

C18 column. 

[58] 

Bothrops jararacussu SIIISPIIA 

SIIISPIIB 

SIIISPIIIA 

SIIISPIIIB 

Presence 

Presence 

Presence 

Presence 

15.0 

15.0 

15.0 

15.0 

5.3 

5.3 

5.3 

5.3 

 Gel filtration chromatography on Sephadex G-75® 

column, followed by ion-exchange chromatography on 

SP-Sephadex C-25® column, and finally HPLC on C18 

column. 

[105] 

Bothrops lanceolatus PLA2-1 

PLA2-2 

PLA2-3 

Presence 

Presence 

Presence 

15.0 

13.0 

18.0 

5.3 

5.3 

5.3 

 Reverse phase chromatography on Lichrosfera RP100® 

C18 column. 

[106] 

Bothrops leucurus BLK-PLA2 

BLD-PLA2 

Absence 

Presence 

14.0 

14.0 

 P86974 

P86975 

Gel filtration chromatography on Sephacryl S-200®, 

followed by ion-exchange on Q-Sepharose and then 

submitted to reverse phase chromatography on HPLC 

Vydac® C4. 

[38] 

Bothrops leucurus Bl-PLA2 Presence 15.0 5.4 P0DJ62 Ion-exchange chromatography on CM- Sepharose® 

column, followed by hydrophobic interaction 

chromatography on Phenyl-Sepharose® column. 

[43] 

Bothrops marajoensis BmjeTX-I 

BmjeTX-II 

Presence 

Presence 

13.8 

13.8 

 P86803 

P86804 

Ion-exchange chromatography on Protein Pack SP 5PW®, 

followed by reverse phase chromatography on µ-

Bondapack® C18 column. 

[107] 

Bothrops marajoensis BmarPLA2 Absence 14.0 nd P0DI92 Ion-exchange chromatography on Protein Pack SP 5PW®, 

followed by reverse phase chromatography. 

[108] 

Bothrops marajoensis Bmaj-9 Presence 13.7 8.5 B3A0N3 Reverse phase chromatography on µ-Bondapack® C18 

column. 

[109] 

Bothrops moojeni BthA-I Presence 13.6 5.2 G3DT18 Ion-exchange on CM-Sepharose® column, followed by 

hydrophobic interaction chromatography on Phenyl-

Sepharose® column. 

[24] 

Bothrops moojeni MjTX-III 

MjTX-IV 

Absence 

Absence 

14.6 

14.6 

  Gel filtration chromatography on Superdex -75XK® 

column, followed by reverse phase chromatography on 

C18 column. 

[110] 

Bothrops moojeni MjTX-I ou 

Miotoxina-I 

Absence 13.4 8.2 P82114 Ion-exchange chromatography on CM-Sepharose® 

column. 

[26] 

Bothrops moojeni MjTX-II Absence 14.0 8.2 Q9I834 Ion-exchange chromatography on CM-Sepharose® 

column. 

[111] 

Bothrops moojeni BmooTX-I Presence 15.0 4.2  Ion-exchange on DEAE-Sepharose®, gel filtration on 

Sephadex G-75® column and hydrophobic interaction 

chromatography on Phenyl-Sepharose®. 

[42] 

Bothrops moojeni BmTX-I Presence 14.2 7.8 P0C8M1 Reverse phase chromatography on µ-Bondapack® C18 

column. 

[112] 

Bothrops moojeni BmooMtx Absence 16.5   Ion-exchange chromatography on DEAE-Sephacel® 

column and then submitted to gel filtration on Sephadex 

G-75® column. 

[113] 

Bothrops pirajai Piratoxin-I Absence 13.8 8.3 P58399 Gel filtration chromatography on Sephadex G-75® 

column, followed by ion-exchange chromatography on 

Sephadex C25® column. 

[114] 

Bothrops pirajai Piratoxin-III 

ou MPIII 4R 

Presence 13.8  P58464 Ion-exchange chromatography on semi-preparative u-

Bondapack® column, followed by ion-exchange 

chromatography on Protein Pack SP 5PW® column. 

[115] 

Bothrops pirajai Bpir-I PLA2 Presence 14.5  C9DPL5 Ion-exchange chromatography on CM- Sepharose FF® 

column, followed by reverse phase chromatography on 

C18 column. 

[25] 

Bothrops pirajai Piratoxin -II Absence 13.7 9.0 P82287 Gel filtration chromatography on Sephadex G-75® 

column and ion-exchange chromatography on Sephadex 

C25® column. 

[116] 
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Table 1. PLA2s isolated from American snake venoms and respective chromatographic methods used. 

Some authors have proposed changes to the methodology described above. Spencer et al. 

[31] described the purification of BthTX-I with the use of Resourse S® (methyl-sulphonate 

Cerrophidion goodmani Myotoxin I 

Myotoxin II 

Presence 

Absence 

14.3 

13.4 

8.2 

8.9 

 Ion-exchange chromatography on CM-Sephadex® 

column. 

[117] 

Cerrophidion goodmani GodMT-II Absence 13.7   Ion-exchange chromatography on CM-Sephadex® 

column. 

[118] 

Cerrophidion goodmani Pgo K49 Absence 13.8   Gel filtration chromatography on Sephadex G-75 HR® 

column, followed by reverse phase chromatography on 

Vydac® C8 column. 

[119] 

Crotalus atrox PLA2–1 

PLA2–2 

Absence 

Presence 

15.3 

15.5 

4.6 

8.6 

 Gel filtration chromatography on DEAE-cellulose® 

column. 

[119] 

Crotalus atrox Cax-K49 Absence 13.8  Q81VZ7 Gel filtration chromatography on DEAE-cellulose® 

column. 

[119] 

Crotalus durissus 

cascavella 

PLA2 Presence 15.0   Gel filtration chromatography (pharmacia), followed by 

reverse phase on µ-Bondapak® C-18 column. 

[120] 

Crotalus durissus 

collilineatus 

F6a Presence 14.9 5.8 P0CAS2 Reverse phase chromatography on µ-Bondapack® C18 

column. 

[121] 

Crotalus durissus 

cumanensis 

Cdc-9 

Cdc-10 

Presence 

Presence 

14.1 

14.2 

8.25 

8.4 

P86805 

P86806 

Reverse phase chromatography on µ-Bondapack® C18 

column. 

[122] 

Crotalus durissus 

cumanensis 

Cdcum6 Presence 14.3 Nd P0CAS1 Gel filtration chromatography followed by reverse phase 

chromatography. 

[123] 

Crotalus durissus 

ruruima 

PLA2A Presence 14.2  P86169 Gel filtration chromatography followed by reverse phase 

chromatography. 

[124] 

Crotalus durissus 

ruruima 

Cdr-12 

Cdr-13 

Presence 

Presence 

14.3 

14.2 

8.1 

8.1 

P0CAS3 

P0CAS4 

Reverse phase chromatography on µ-Bondapack® C18 

column. 

[121] 

Crotalus durissus 

terrificus 

CdtF16 Presence 14.8  P0CAS6 Gel filtration chromatography on Superdex 75® column, 

followed by reverse phase chromatography on µ-

Bondapack® C18. 

[125] 

Crotalus durissus 

terrificus 

Crotoxin B Presence 14.5 5.1  Gel filtration chromatography on Sephadex G75® column, 

followed by chromatography on Mono-Q® and finally 

ion-exchange chromatography followed by DEAE-

cellulose® column. 

[126] 

Crotalus durissus 

terrificus 

CdtF17 Presence 14.6 8.15 P0CAS7 Reverse phase chromatography on µ-Bondapack® C-18 

column. 

[127] 

Crotalus durissus 

terrificus 

CdtF15 Presence 14.5 8.8 P0CAS5 Gel filtration chromatography on Superdex 75® column 

followed by reverse phase chromatography on µ-

Bondapack® C-18 column. 

[128] 

Crotalus scutulatus 

scutulatus 

MTX-a 

MTX-b 

 14.5 

14.4 

9.2 

7.4 

P18998 

P62023 

 Reverse phase on Vydac® C8 column. [129] 

Lachesis muta LmTX-I 

LmTX-II 

Presence 

Presence 

14.2 

14.1 

8.7 

8.6 

P0C942 

P0C943 

Gel filtration chromatography on Superdex 75® column, 

followed by reverse phase chromatography on µ-

Bondapack® C-18 column and finally reverse phase 

chromatography on C8 column. 

[130] 

Lachesis muta LM-PLA2-I 

LM-PLA2-II 

Presence 

Presence 

17.0 

18.0 

4.7 

5.4 

P0C932 

P0C933 

Gel filtration chromatography on Sephacryl S-200® 

column, followed by reverse phase chromatography on C2 

column and finally reverse phase chromatography on C18 

column. 

[131] 

Lachesis stenophys LSPA-1 Presence 13.8 nd P84651 Gel filtration chromatography on Sephacryl S-200® 

column followed by ion-exchange chromatography using 

MonoQ HR 5/5® column and finally reverse 

chromatography on Sephasil® C-18 column. 

[132] 

Porthidium nasutum PnPLA2 Presence 15.8 4.6  Reverse phase chromatography on C18 column. [133] 

Micrurus tener tener MitTx-beta Presence 16.7  G9I930 Reverse phase chromatography on C18 Vydac® column 

followed by reverse phase on Vydac® C18 column. 

[134] 

Micrurus tener 

microgalbineus 

PLA2-1 Presence   P25072 Gel filtration chromatography on Sephadex G-50® 

followed by ion-exchange chromatography on CM-

cellulose column. 

[135] 

Micrurus pyrrhocryptus PLA2 A1 

PLA2 B1 

PLA2 D5 

PLA2 D6 

Presence 

Presence 

Presence 

Presence 

  P0CAS8 

P0CAS9 

P0CAT0 

P0CAT1 

Gel filtration chromatography on Superdex G 75 HR® 

followed by reverse phase chromatography on Vydac® 

C18 column. 

[136] 

Micrurus nigrocinctus Nigroxin A 

Nigroxin B 

Presence 

Presence 

  P81166 

P81167 

Ion-exchange chromatography on Mono Q FF® column 

followed by reverse phase chromatography on Vydac® C4 

column. 

[137] 

Micrurus nigrocinctus PLA2-1 

PLA2-2 

PLA2-3 

Presence 

Presence 

Presence 

  P21790 

P21791 

P21792 

Gel filtration chromatography on Sephadex G-75® 

column followed by ion-exchange chromatography on 

CM-cellulose® column. 

 

[138] 

Micrurus dumerilli 

carinicauda 

MiDCA1 Presence 15.5 8.0  Reverse phase chromatography on Sephasil Peptide® C18 

column followed by reverse phase chromatography on µ-

Bondapak® C18 column. 

[139] 
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functional group), equilibrated in pH 7.8 (phosphate buffer 25 mM). Sample elution was 

done in increasing ionic strength conditions (NaCl 0 to 2 M), under 2.5 ml/min flow. In this 

model, the BthTX-I was eluted in NaCl 0.42M with a high degree of purity. However, the 

chromatographic profile in the conditions tested differs significantly from the observed in 

other works that describe the fractioning of this venom. This difference is due to the resin 

composition. This is corroborated with data obtained in experiments performed in our lab, 

where the effect of pH in the separation of myotoxin isoforms from B. jararacussu venom 

was used, as shown in Figures 4. SDS-PAGE showed that fractions corresponding to 

myotoxins showed protein bands with apparent molecular mass compatible with PLA2s 

class II (Figure 5). 

 

 
 

Figure 4. Chromatographic profile of the B.jararacussu venom in CM-sepharose® column 1 ml (Hitrap) 

equilibrated with Tris 50 mM buffer (buffer A) and eluted with a linear gradient of Tris 50 mM/NaCl 

1M (buffer B) in different pH conditions. A. pH 5.0 B. pH 6.0 C. pH 7.0 D. pH 8.0. Absorbance was read 

at 280 nm. Fractions numbered (1 to 8) indicate the fractions selected for SDS-PAGE analysis in order to 

confirm the presence of PLA2s (BthTx I e BthTx II). 
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Figure 5. SDS Page analysis. Lines 1 and 2 (pH 5.0); 3 and 4 (pH 6.0); 5 and 6 (pH 7.0); 7 and 8 (pH 8.0). 

BthTx I was obtained in high degree of purity with pHs 5.0, 6.0, and 8.0. BthTx II was obtained with pH 

7.0. 

Resolution differences were also observed by other authors. As performed by Lomonte et al. 

[26], the isolation of two basic myotoxins, MjTX-I e MjTX-II, from the B. moojeni venom was 

obtained using CM-Sephadex C-25 equilibrated with Tris-HCl 50 mM pH 7.0 and eluted in 

saline gradient up to 0.75 M of Tris-HCl. Also, Soares et al. [33] described the isolation of 

MjTX-II with high purity using the combination of CM-Sepharose resin and ammonium 

bicarbonate buffer. According to the authors, the increase of pH to 8.0 has favored the 

elution of several fractions, allowing MjTX-II to be eluted separately with ionic strength 

equal to 0.35 M of ammonium bicarbonate. Moreover, the use of CM-Sepharose® seems to 

have also contributed a lot in the increasing of resolution for this chromatographic 

separation. 

The combination of chromatographic techniques has also been used to purify these toxins. 

The association of the Ion-exchange chromatography and molecular exclusion has been one 

of the most recurrent in isolation and purification of phospholipases from bothropic 

venoms. Gel filtration chromatography is a technique based in particle size to obtain the 

separation. In this type of separation there is no physical or chemical interaction between 

the molecules of the analyte and the stationary phase, being currently used for separation of 

molecules with high molecular mass. The sample is introduced in a column, filled with a 

matrix constituted by small sized silica particles (5 to 10 µm) or a polymer containing a 

uniform net pores of which solvent and solute molecules diffuse. The retention time in the 

column depends on the effective size of the analyte molecules, the higher sized being the 

first ones to be eluted. Different from the higher molecules, the smaller penetrate the pores 

being retained and eluted later. Between the higher and lower molecules, there are the 
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intermediary sized molecules, whose penetration capacity in the pores depends on their 

diameter. In addition to that, this technique has also some very important characteristics, 

such as operational simplicity, physical chemical stability, inertia (absence of reactivity and 

adsorptive properties) and versatility, since it allows the separation of small molecules with 

mass under 100 Da as well as extremely big molecules with various kDa. 

The work performed by Homsi-Brandeburgo et al. [34] is a example of combination of 

different chromatographic techniques for the isolation of myotoxins with PLA2 structure. It 

describes for the first time the BthTX-I purification using the combination of molecular 

exclusion chromatography in Sephadex G-75® resin followed by Ionic exchange 

chromatography in SP-Sephadex C-25®. In the first step, four fractions were obtained, called 

SI, SII, SIII and SIV. The Functional analysis of these fractions showed that the proteolytic 

activity over casein and fibrinogen was detected on fraction SI, while the phospholipase 

activity was concentrated in fraction SIII. The apparent molecular mass profile of this fraction 

showed that it was composed by proteins between 12,900 and 28,800 Da, compatible with 

the mass profile of the class II PLA2s. 

On the second step, SIII fraction was submitted to ionic exchange chromatography and five 

fractions were obtained, identified as SIIISPI to SIIISPIV. The pIs and apparent molecular mass 

evaluation showed the following profile: SIIIPI (pI 4.2 and 22.400 Da), SIIIPII (pI 4.8 and 15.500 

Da), SIIIPIII (pI 6.9 and dimeric structure, each monomer with a molecular mass of 13.900 Da), 

SIIIPIV (pI 7.7 and 13.200 Da) e SIIIPV called BthTX-I that presented pI 8,2 and 12.880 Da. 

Pereira et al. [35] obtained the complete sequence of BthTX-II, a myotoxin homologous to 

the BthTX-I, which corresponds to the SIIISPIV fraction described by Homsi-Brandeburgo et 

al. [34]. 

Another chromatographic technique regularly used in PLA2s purification procedures is 

the Reverse-phase associated with High performance liquid chromatography (RP- HPLC). 

This technique is characterized by its high resolution capacity and is normally used in a 

more refined step of the purification process, being very useful in separating isoforms. 

The retention principle of reverse-phase chromatography is based in hydrophobicity and 

is mainly due to the interactions between hydrophobic domains of the proteins and the 

stationary phase. This technique has many advantages, such as: use of less toxic mobile 

phases together with lower costs, such as methanol and water; stable stationary phases; 

fast column equilibrium after mobile phase change; easy to use gradient elution; faster 

analysis and good reproducibility. 

Rodrigues et al. [36] described the isolation of two PLA2s isoforms from the B. neuwiedi 

pauloensis venom using the combination of ion (cation) exchange chromatography and 

molecular exclusion setting up a preparative phase. Subsequently, a reverse-phase 

chromatography was used for the analytical phase of the procedure. Initially, the venom 

was fractioned in a column containing CM-Sepharose® equilibrated with ammonium 

acetate solution 0.05 M, pH 5.5 and eluted in linear gradient up to 1 M of the same buffer, 

resulting in six fractions. The pH, more acid than the ones used in the work previously 

mentioned, has increased the surface residual charge, intensifying the interaction force 
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between the protein and the resin, thus altering the elution profile when compared to the 

performed by Rodrigues et al. [37]. Proceeding with purification, the sample with 

phospholipase activity (S-5) was submitted to a new fractioning in a Sephadex G-50® 

column yielding 3 fractions, of which the denominated S-5-SG-2 showed catalytic activity. It 

was then submitted to RP- HPLC in C18 column to obtain toxins with high purity degree. 

Also, with the use of a multiple step procedure [38] successfully isolated two isoforms of 

PLA2s from B. leucurus venom. After a first molecular exclusion chromatography using 

Sephacryl S-200®, 7 fractions were obtained, from which the named “P6” showed to be 

composed by proteins with apparent molecular mass bellow 30 kDa, and a major fraction of 

approximately 14 kDa concentrated the phospholipase activity. This fraction was re-

chromatographed in a Q-Sepharose® resin (ion exchange) and equilibrated with Tris-HCl 20 

mM pH 8.0, yielding 6 fractions. The fraction corresponding to the negatively charged 

fraction was eluted without significant interaction with the resin, hence with a positive 

residual charge (basic pI) was selected, showing to be a homogeneous fraction of 14 kDa and 

presenting phospholipase activity. This fraction was submitted to a RP- HPLC in C4 

column, yielding as result two major fractions with close hydrophobicity (eluted with 33% 

and 36% acetonitrile) and apparent molecular mass of 14 kDa. 

Myotoxins with PLA2s structure from bothropic venoms that have acid pI have being more 

difficult to isolate. Different from cation exchange resins (CM Sepharose®, Resource S® and 

CM Sephadex®), anion exchange resins have not been so efficient in the separation of 

components from bothropic venoms, which requires, complementary steps to obtain these 

toxins with a satisfactory purity degree, as shown in Table 1. 

Daniele et al. [32] described the fractioning of the B. neuwiedii venom using a combination of 

double molecular exclusion chromatography followed by anion exchange chromatography. 

The first step of the molecular exclusion chromatography was done using Sephadex G-50® 

where a single fraction with PLA2s activity was eluted. This fraction was re-

chromatographed in Sephacryl S-200® resin, yielding 2 active fractions. The first fraction 

was re-chromatographed in Mono Q® column (functional group quaternary ammonium) 

yielding a PLA2s named P-3. From the second fraction, submitted to the same 

chromatographic procedure, two other PLA2s isoforms were isolated, named P-1 and P-2. 

Although showing different behavior over the molecular exclusion resin, the three isoforms 

showed very close apparent molecular mass (15 kDa) when assayed by SDS-PAGE. This 

difference could be resulted from differential interactions of aromatic residues located on 

the protein surface with the stationary phase [40, 41] and can be also verified in other acid 

PLA2s, like the one obtained from B. jararacussu venom by Homsi-Brandeburgo et al. [34].  

Other procedures used hydrophobic interaction chromatography to isolate these PLA2s. This is 

a method that separates the proteins by means of their hydrophobicity: the hydrophobic 

domains of the proteins bind to the hydrophobic functional groups (phenyl and aryl) of the 

stationary phase. Proteins should be submitted to the presence of a high saline concentration, 

which stabilize then and increases water entropy, thus amplifying hydrophobic interactions. In 

the presence of high salt concentrations, the matrix functional groups interact and retain the 
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proteins that have surface hydrophobic domains. Hence, elution and protein separations can 

be controlled altering the salt or reducing its concentration. 

Santos-Filho et al. [42], working with B. moojeni venom, applied three sequential steps to 

obtain BmooTX-I, a PLA2 with apparent molecular mass of 15 kDa and pl 4.2. In this work, 

the crude venom was chromatographed in DEAE-Sepharose® (Dietylaminoetyl) resin, 

equilibrated with ammonium bicarbonate 50mM, pH 7.8 and brought to a saline gradient of 

0.3M of the same salt. A fraction named E3 showed phospholipase activity, being then 

submitted to molecular exclusion chromatography in Sephadex G-75® resin. Three fractions 

were obtained, from which one named S2G3 was submitted to hydrophobic interaction 

chromatography in Phenyl-Sepharose® resin, the BmooTX-I being eluted in the end of the 

process. 

In a work published in 2011, Nunes et al. [43] described the isolation of an acid phospholipase 

named BL-PLA2, obtained from Bothrops leucurus through two sequential chromatographic 

steps. On the first step, the acid proteins were separated from the others with the use of a 

cation exchange column (CM-Sepharose®) equilibrated with ammonium bicarbonate, pH 7.8. 

The acid fraction (eluted without interaction with the resin) was lyophilized and applied to a 

Phenyl-Sepharose CL-4B® column (1 x 10 cm), previously equilibrated with a Tris-HCl 10mM 

buffer, NaCl 4M, pH 8.5. The elution occurred under decreasing NaCl gradient in a buffered 

environment (Tris-HCl 10 mM, pH 8.5), concluding the process in an electrolyte free 

environment. An enzymatically active fraction (BL-PLA2), (with pI 5.4 and apparent molecular 

mass of approximately 15 kDa) was obtained at the end of the process. 

The bioaffinity chromatography differs from others chromatographic methods because it is 

based in biological or functional interactions between the protein and the ligand. The nature 

of these interactions varies, being the most used those which are based on the interactions 

between: enzymes and substrate analogous and inhibitors; antigens and antibodies; lectins 

and glycoconjugates; metals and proteins fused with histamine tails. The high selectivity, 

the easiness of performance together with the diversity of ligands that can be immobilized 

in a chromatographic matrix make this method a useful tool for the purification of 

phospholipases. Based on the neutralization of myotoxic effects of the venom from B. 

jararacussu by heparin [44-46], the use of a column containing Agarose-heparin® could be 

used for the purification of myotoxins. They also ratify the interactions between heparin and 

myotoxin through the reduction of many biological effects, such as: edema induction, 

myotoxicity (in vivo) and cytotoxicity over mice myoblasts culture (L.6 – ATCC CRL 14581) 

and endothelial cells. 

Following this strategy, Soares et al. [26] described the purification of BnSP-7, a myotoxin 

Lys-49 from B. neuwiedi pauloensis, with the use of chromatographic process based in this 

heparin functionality, which corroborates previous results obtained by Lomonte et al. [46], 

that showed the efficient inhibitory activity of heparin against myotoxicity and edema 

induced by myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper. Also in this study, 

it was possible to infer the participation of the C-terminal region of the protein in the 

damaging effects on the cytoplasmic membrane.   
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Snake venom components share many similar antigenic epitopes that can induce to a 

crossed recognition by antibodies produces against a determined toxin. In this context, 

Stabeli et al. [47] showed that antibodies that recognize a peptide (Ile1-Hse11) from Bm-

LAAO present crossed immunoreactivity with components not related to the LAAOs group 

present in venoms from Bothrops, Crotalus, Micrurus e Lachesis snake venoms. Also, Beghini 

et al. [48] showed that the serum produced against crotoxin and phospholipase A2 from 

Crotalus durissus cascavella was able to neutralize the neurotoxic activity produced by B. 

jararacussu venom and BthTX-I. 

Based on this information, pertinent to the crossed immunoreactivity existent between 

venom components, Gomes et al. [49] described the co-purification of a lectin (BJcuL) and a 

phospholipase A2 (BthTX-1) using a immunoaffinity resin containing antibodies produced 

against the crotoxin. 20 mg of crotoxin was solubilized in coupling buffer (sodium 

bicarbonate 100 mM, NaCl mM, pH 8.3) and incubated overnight at 4 °C with 1 g of 

Sepharose® activated by cyanogen bromide (CNBr). After washing with the same buffer, 

the resin was blocked with Tris-HCl 100 mM buffer. This resin was packed and thoroughly 

washed with saline phosphate buffer (PBS) pH 7.4. Crotalic counter-venom hiperimune 

horse plasma (20 mg) was applied over the resin at a flow of 10 mL/hr and re-circulated 

overnight through the column. Then, it was washed until the absorbance went back to basal 

levels, showing that the material was retained (IgG anti-Ctx), then eluted with glycin-HCl 

100 mM pH 2.8. The IgG anti-Ctx was then immobilized in CNBr activated Sepharose® resin 

through a procedure analogous to the above cited, generating a new resin called Sepharose-

Bound Anti-CtxIgG. 20 mg of the crude venom from B. jararacussu was applied over this 

resin, yielding two fractions: the first, composed by proteins that were not recognized by the 

immobilized antibodies and a second fraction composed by components of venom from B. 

jararacussu that reacted crosswise with the Anti-Ctx antibodies, called Bj-F. A posterior 

analysis of this fraction, done by mass spectrometry, amino-terminal sequencing by Edman 

degradation and search by homology in the NCBI protein data bank, showed that it was 

composed by lectin and BthTX-I. 

Different authors used substrate analogous or reversible inhibitors coupled to the 

chromatographic resin. Rock and Snyder [50] were the first ones to use phospholipid 

analogous to build a bioaffinity matrix [Rac-1-(9-carboxy)-nonil-2-exadecilglycero-3-

phosphocoline]. In addition to them, Dijkman [51] described the synthesis of an analogous 

of acylamino phospholipid[(R)-1-deoxy-1-thio-(ω-carboxy-undecyl)-2-deoxy- (n-

decanoylamino)-3-glycerophosphocholine] which was coupled to a Sepharose 6B® resin 

containing a spacer arm. With the use of this resin it was possible to purify phospholipases 

from horse pancreas, and venoms from Naja melanonleuca and Crotallus adamanteus. 

3. Characterization 

Venomic can be defined as an analysis in large scale of the components present in the 

venom of a certain species. In this context, the proteomic approach has allowed a better 

understanding of the venom components, through the application of many instruments that 



 

Chromatography – The Most Versatile Method of Chemical Analysis 16 

enables the analysis of their expression, structure, pos-traductional modifications and 

classification by homology or function. An approach developed by Calvete [52] for the 

analysis of snake venomic consists in an initial fractioning step of the crude venom using RP 

- HPLC, followed by characterization of each fraction by a combination of amino-terminal 

sequencing, SDS-PAGE, IEF or 2DE and mass spectrometry to determine molecular mass 

and cysteine content. Additionally, the modern venomic analysis use techniques such as 

Peptide Mass Fingerprint and the search for sequence similarity in data banks.  

SDS-PAGE is a method related to the migration of charged particles in a medium under the 

influence of a continuous electric field [53]. From the electrophoretic point of view, the most 

important properties of the proteins are molar mass, charge and conformation. Mono 

dimensional polyacrylamide gel electrophoresis permit the analysis of the protein in its 

native or denatured form. In the first case, there are no alterations in conformation, 

biological activity and between protein subunits. This system is called non-dissociating or 

native, which proteins are separated based on their charge, using the isoelectric focusing 

method (IEF), or else, in vertical gel without SDS. During the IEF, a pH gradient is formed 

and the charged species move through the gel until they reach a specific pH. In this pH, the 

proteins have no effective charge (known as protein pI). The IEF shows high resolution, 

being able to separate macromolecules with pI differences of just 0.001 pH units [54, 55]. In 

dissociating or denaturing systems, the proteins are solubilized in buffer containing the 

reagent used to promote protein denaturation. SDS-PAGE, originally described by Laemmli 

[56], is an electrophoresis technique in polyacrylamide gel (PAGE) that used SDS as a 

denaturing agent, with interacts with the proteins giving them negative charges, allowing 

them to migrate, through a polyacrylamide gel towards a positive electrode a be separated 

by the differences related to their mass 

Teixeira et al [25] described the purification of an acid phospholipase from B. pirajai 

(BpirPLA2I). As a biochemical characterization step, polyacrylamide gel electrophoresis in 

denaturing conditions (SDS-PAGE) was done. Using this approach, carried out in reducing 

and non-reducing conditions, the author could infer that the purified protein had the form 

of a monomer with apparent molecular mass of 14 kDa, both in reducing conditions as well 

as in non-reducing conditions the proteins presented the same mass, being confirmed 

afterwards by mass spectrometry. 

Moreover, Torres [57] fractionated B. marajoensis venom using a cationic ion exchange 

column followed by an analytical phase in RP- HPLC, obtaining a phospholipase BmarPLA2 

that was submitted to SDS-PAGE in reducing conditions showing apparent molecular mass 

of 14 kDa. However, in non-reducing conditions, the author observed the appearance of a 

single band at 28 kDa, concluding that BmarPLA2 was a dimeric structured protein joined 

by disulphide bridges. Thus, the above-cited examples demonstrate the importance of this 

procedure (SDS-PAGE) as a protein characterization step.  

The determination of the isoelectric point is another important biochemical characterization 

of phospholipases A2. Previous studies involving phospholipases from snake venoms have 

shown that the acid phospholipases are catalytically more active than their basic isoforms 
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[22, 42, 58]. Therefore, many authors have included, as a biochemical characterization 

parameter, the determination of the isoelectric point of the by isoelectric focusing. Due to pI 

determination importance, Teixeira [25] used the methodology proposed by Vesterberg and 

Eriksson [59] to evaluate pI of BpirPLA2-1. In order to obtain the pI value, a 7% 

polyacrylamide gel was prepared and polymerized over a glass plate of 12 x 14 cm using a 

U shaped rubber as support. A millimeter plate was previously greased with glycerin for 

better refrigeration of the gel. Two strips of Pharmacia Biotech were used to connect the gel 

and the platinum electrodes. The cathode was in contact with NaOH 1 M solution and the 

anode was in phosphoric acid 1 M. The platinum electrodes were centered over the paper 

strips and the system was then closed. The high voltage source was adjusted to the 

maximum values of 500 V, 10 mA, 3 watts and 30 minutes for a pre-run. Following, the 

samples were applied always in the intersection of two blue lines, exactly over the more 

central line of the gel. Then the source was programed for 1500 V, 15 mA, 10 watts and 5 h. 

The end of the run was determined when the source showed a high voltage and low 

amperage (around 1 mA). After isoelectric focusing, about 1 cm width (lengthwise) were 

sliced from each extremity of the gel and placed in test tubes containing 200 µL of distilled 

water for the pH reading after 2 hours of rest. Next, the pH gradient determination graph 

was plotted. The remaining gel containing the samples was fixed in solution of 

trichloroacetic acid for 30 minutes, followed by silver staining. 

Another important technique as a step to characterize components from snake venoms is the 

bidimensional electrophoresis (2D). This one was initially developed by O'Farrell [60]. The 

original methodology consisted of the preparation of polyacrylamide cylindrical gels, in 

which a pH gradient was established through a pre-run with specific amphoterics (also 

called ampholytes), that present high buffering capability in pHs close to their isoelectric 

points (pIs). The proteins were then submitted to an isoelectric focusing (IEF) and 

subsequently to an electrophoresis in the presence of SDS by a conventional system 

described by Laemmli [56]. Then, proteins were separated in the first dimension according 

to their pIs (IEF) and in the second dimension based on their molecular mass (SDS-PAGE).  

Bidimensional electrophoresis is laborious, time consuming and difficult to be reproduced 

in different laboratories and depended on the ability of the researcher to obtain consistent 

results.  Nowadays, many of these problems were solved with the development of new 

technologies. An important advance which has contributed to the increase of the 2D 

electrophoresis reproducibility was developed by Gorg [61] of the strip form gels with 

immobilized pH gradient (IPG - immobilized pH gel). The strips are made by the 

copolymerization of acrylamide with the Immobiline® (Amershan Biosciences/GE Heathcare) 

reagent, which contains acid and alkaline buffering groups. Another important 

technological progress was the improvement of the protein samples preparation methods, 

together with the discovery of new non-ionic detergents, such as CHAPS surfactants and SB 

3-10, used with reducing agents adequate for IEF, like Dithiothreitol (DTT) and Tributyl 

Phosphine (TBP). Studies performed by Herbert [62] demonstrated that these advances had 

strongly contributed to the solubilization of a greater number of proteins to be analyzed in 

bidimensional electrophoresis. 
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The proteomic analysis of snake components has made use of the 2D electrophoresis as a tool, 

due to its high-resolution capability that allows, in a single process, the determination of 

apparent molecular mass and isoelectric point of the venom constituents. Fernandez et al. [22] 

described the determination of the isoelectric point and apparent molecular mass of Basp-

PLA2-II using this technique. In order to do it, the protein was focused in IPG Immobiline® 

Dry Strip of 7 cm and pH 3-10, under a 200 V tension for 1 min, followed by a second stage of 

3500 V for 120 minutes. The second dimension was done in SDS-PAGE 12% and then 

subsequently dyed with Coomassie blue. It was demonstrated that Basp-PLA2 –II had a pI of 

4.9, which is close to the theoretical isoelectric point value (pI 5.05) defined by the primary 

sequence, evaluated using the Compute pI/MW tool (www.expasy.ch/tools) software and 

apparent molecular weight between 15 and 16 kDa, consistent with the molecular weight (MW 

14,212±6 Da) obtained by ESI/MS (Electrospray Ionization/Mass Spectrometry). 

The advantage of this technique is the high resolution. Alape-Giron [63] working with B. 

asper venom, performed an ontogenic analysis and an analysis based on the snake’s capture 

location in different regions of Costa Rica. Using tryptic digestion, MALDI-TOF mass 

fingerprinting analysis and aminoacid sequencing by MALDI-TOF submitted to similarity 

search by BLAST, the author showed the intra-specific variability in venom composition. It 

was hence evidenced that among the venoms obtained from adult species collected in the 

Caribe area and the Pacific area, there are around 30 proteins that are found in a snake 

group from a place which find no correspondents in the other.  

In our lab, this technique has been used as follows: The proteins are separated by the 

isoelectric point in 13 cm strips with pH values varying between 3 and 10 in a nonlinear 

form. These strips contain polyacrylamide gel, where the gradient pH is formed by the 

presence of ampholytes. To re-hydrate the strips, 250 µL of sample [400 µg of proteins plus 

re-hydration solution (7 M of urea, 2 M of Thiourea, 2% of Triton X-100 (v/v/), 1% of IPG 

Buffer® (v/v) and DTT)] is applied in a channel of the apparatus over which the strips are 

set. The strip’s gel is re-hydrated at room temperature for about 12 hours. After this period, 

the strips are taken to the focusing system in the following conditions: (1) 500 V step until 

accumulates 500 Vh; (2) 500 to 1000 V gradient until it accumulates 800 Vh; (3) 1000 to 8000 

V gradient until it accumulates 11300 Vh and (4) 8000 V step until it accumulates 3000 Vh. In 

average, the program run during 5.5 hours, but the time of the final step can be lengthened, 

if the sample does not reach to the end of the strip during the running according the initial 

program, it could be confirmed by a bromophenol blue line. At the end of focusing, the 

strips are equilibrated in two steps. On the first, 10 mL of the solution containing 6 M of 

urea, 2% of SDS (m/v), 30% of glycerol (v/v), 75 mM of Tris-HCl (pH 8,8), 0,002% of 

bromophenol blue and 1% DTT (m/v) for each strip is used. In the second, the same solution 

is used, but DTT is replaced by 2.5% of iodoacetamide (m/v). Each strip equilibrium step run 

during 15 minutes, under light stirring. Following that, the strips are applied on 10 % 

polyacrylamide gels previously prepared on 180 X 160 X 1.0 mm plates. After each strip and 

the standard stay appropriately accommodated in the polyacrylamide gel, a 0,5% agarose 

(m/v) heated (40 °C) solution is added. The agarose polymerization, provides an effective 

contact between the strip and the gel, thus avoiding the appearance of air bubbles. Protein 
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Figure 6. Electrophoretic profile in 2D-PAGE 10%, 13 cm strip pH 3-10 non-linear of proteins from 

crude venom from Bothrops moojeni. Molecular weight (MW) –Color Plus Prestained Protein Marker – 

Broad Range (7-175 kDa) (P7709S). Coomassie G-250. 

separation, according to molecular mass, is done by applying 25 mA per gel and 100 W 

during approximately 5.5 hours. After this period, the gel is washed with deionized water. 

Then, the proteins are fixed using a solution containing acetic acid 10% (v/v) and ethanol 

40% (v/v) during one hour. Then, the fixing solution is removed and the gel is washed again 

with deionized water 3 times during 10 minutes. The proteins present in the gel are exposed 

using traditional methods for protein coloring, such as Coomassie blue or Silver nitrate. An 

example of the practical application of this methodology can be seen in Figure 6. 

4. Functional characterization 

Many biological activities are related to myotoxins with PLA2 structure obtained from snake 

venoms.  In bothropic snake bite accidents and in experimental models with the use of these 

venoms, the noxious activity induced by these toxins on the striated muscles is striking [64]. 

The detection of the myotoxic activity associated to the phospholipase activity detection (in 

the case of Snake venom PLA2 Asp49) is used as an important auxiliary biological marker in 

the purification procedures, monitoring its presence. 

The myotoxic activity assay can be done in two ways: in vivo and in vitro. The analysis can 

be done through the quantification of the released intracellular enzymes activity to the 
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periphery blood or to the supernatant of the culture medium of cellular lineages. There are 

two main enzymes used to this end: 

Creatine Kinase (EC 2.7.3.2): is a dimeric protein formed by the combination of subunits (B 

and M) and in its cytosolic form is found in many tissues, especially in skeletal muscle tissue 

(CK-MM), cardiac (CK-MB) and in the brain (CK-BB). 

Lactate dehydrogenase (EC 1.1.1.27): is an enzyme widely distributed in many tissues and 

organisms. It is presented in the form of homo or hetero tetramers of subunits M and H, 

being present in muscular tissue in the homotetrameric form of subunit M. 

In vivo, the CK activity quantification in murine models has been the most used to assay the 

presence of myotoxic PLA2, especially due to their low cost, ease of performance and high 

specificity as skeletal muscular tissue lesion markers when exposed to myotoxins. 

As for the In vitro assays, myoblast lineages C2C12 (ATCC CRL-1772), differentiated until the 

formation of myotubules, have been used as models to assay the cellular toxicity, through the 

quantification of LDH levels in the supernatant of cell cultures exposed to toxins.  

Regarding the phospholipase activity detections, it can be done by direct and indirect 

methods. Directly, it is possible to detect the presence of PLA2s with the use of chromogenic 

substrates, such as 4N3OBA(4-nitro-3-octanoyloxybenzoic acid) that induce the formation of 

detectable product at 425 nm [65] and fluorescent substrates (NBD) coupled to 

phospholipids that are used to quantitively and qualitatively survey the PLA2s activity 

isolated from snake venom [23]. 

Indirectly, the approach used consists in the potentiometric assay of the fatty acids released 

after the enzymatic hydrolysis of the phospholipids, through the quantification with standard 

alkaline solution [66]. Moreover, fatty acids released by the enzymatic degradation can be 

quantified through the alteration of the optical density of the pH indicator solution, such as 

phenol red [67], brilliant yellow [68] and bromothymol blue [69]. Another indirect method to 

assay PLA2 activity present in samples consists in the detection of hemolysis induced by 

lysophospholipids derived from phospholipids submitted to enzymatic digestion. This can be 

done through the quantification of hemoglobin present in solution or through the visualization 

of hemolytic halo in agarose matrix with immobilized red blood cells.  

4.1. In vivo assay of the myotoxic activity 

Mice is used for the in vivo assay of the myotoxic activity. Swiss males weighing between 18 

g and 22 g, kept in controlled environment (12 h in the light and 12 h in the dark), with food 

and water ad libitum up to the moment of use. PBS solubilized sample and control (PBS) are 

filtered through 44 µm pores immediately prior to use. Reagents for CK activity dosage are 

prepared and used according to manufacturer’s instructions. 

A Sample (50 µL) or control (50 µL) will be injected in mice gastrocnemic muscle using 

adequate device in order to guarantee a precise volume control. After a time lap (3 and/or 6 

h), blood sample is collected in heparinized tubes and centrifuged to separate plasma. CK 
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concentration is determined according to manufacturer’s instructions and expressed in U/L, 

where one unit corresponds to the production of 1 mmol of NADH per minute [26,70-72]. 

4.2. In vitro myotoxic activity assay 

In order to assay myotoxic in vitro activity, myoblast lineage cells are used, such as murine 

skeletal muscle C2C12 myoblasts (ATCC CRL-1772) as described by Lomonte et al. [73], 

cultivated in modified Dubelco Eagle medium, supplemented with 1% bovine fetal serum. 

PBS solubilized sample, negative control (PBS) and positive control (Triton X-100) should be 

filtered through 22 µm pore filters immediately prior to use. Reagents for LDH activity 

dosage are prepared and used according to manufacturer’s instructions. 

In 96 well plate, 2X105 cells/150 µL are set, sample and/or control (50 µL) are incubated in 

humid atmosphere at 37 °C and 5% CO2 for a 3 hour period. Afterwards, collect supernatant 

aliquot and quantify LDH activity released by cells with cytoplasmic membrane integrity 

compromised, according to manufacturer’s instructions and expressed in U/I, where one 

unit corresponds to the production of 1 mmol of lactate per minute. 

5. Phospholipasic activity 

5.1. 4N3OBA Substrate enzymatic hydrolysis 

Phospholipase A2 activity can be measured according to the technique described by Holzer 

and Mackessy [65], modified for 96 wells plate [74]. 

Prepare aliquots of 100 µL of 4N3OBA 0.1% solution in acetonitrile and lyophilize. Keep the 

aliquots at -20° C until ready to use. The color reagent is prepared solubilizing the contents of 

one aliquot of 4N3OBA in 1ml of reagent containing Tris 10 mM, CaCl2 10 mM, NaCl 100 mM, 

and pH 8.0. For the test in micro plates, add 180 µL of color reagent and 20 µL of sample or 

water (blank), incubate the mixture at 37 °C for 5 minutes, measuring the optical density at 425 

nm and 600 nm (to correct sample turbidity) at 30 second intervals. The activity will be 

expressed according to the equation (1) where 1 unit of phospholipase activity corresponds to 

the production of 1 µmol of 4-nitro-3-hydroxy-benzoic acid per minute. 

 
( )

2PLA  activity mol �  min 1� g 1   

OD425nm OD 600nm / min  x 0.07862 umol / OD425nm  /  1 / protein 1 / g

µ µ

µ

 − − = 
   −   

 (1) 

5.2. Enzymatic hydrolysis of fluorescent substrates (NBD) 

The phospholipase activity can also be assayed with the used of chromogenic substrates, 

using acyl-NBD reagents: NBD-PC (Phosphatidylcholine), NBDPG (phosphatidylglycerol), 

NBD-PE (phosphatidylethanolamine) or NBD-PA (phosphatidic acid). A solution of 

fluorescent lipids should be previously prepared in a 1 mg/ml concentration in chloroform. 

100 µL aliquots are distributed and then dried under nitrogen flow. The dried lipid will be 

solubilized in 1 ml of NaCl 0.15 M and sonicated until the obtention of a limpid solution. For 
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the test, the lipids should be diluted in a solution containing Tris-HCl 50 mM, CaCl2 1 mM 

pH 7.5. Initially, incubate the solution at 37 °C and, after 2 minutes, make an initial reading, 

configuring the equipment for excitation at 460 nm and emission at 534 nm. Following, 

apply the sample and make a second reading after 12 minutes. The change in fluorescence 

intensity is converted to nanomoles of product per minute (nmoles/min) using a calibration 

curve, prepared by hydrolyzing completely a substrate solution through sodium hydroxide 

treatment. The fluorescence intensity unit was converted to nmoles/min [33]. 

5.3. Potentiometric titration of fatty acids 

The phospholipase activity can be assayed by potentiometric titration as described by de 

Haas [75], using as substrate an egg yolk emulsion in the presence of sodium deoxycholate 

0.03 M and CaCl2 0.6 M. Fatty acids released enzymatically are titrated with a standard 

solution of NaOH 0.1 N at pH 8.0 at room temperature. The phospholipase activity is 

generally done with different concentrations of toxin, and calculated per amount of 

microequivalents of alkali consumed per minute, by mg of protein. One unit of 

phospholipase activity can be defined as the quantity of enzyme that releases 1 µmol of fatty 

acid per minute, in the reaction conditions. 

5.4. Phenol red 

The spectrophotometric detections of phenol red solution, induced by the increase of free 

fatty acids concentration can also be used to assay the phospholipase activity in samples, as 

described by Radvanyi [67]. 

In order to use this technique, prepare the reagent solution containing Phosphatidylcholine 

0.25% (w/v) TritonX-100 0.4% (v/v), phenol chloride 32 mM. In a thermostatic cuvette at 

37 °C, add 1mL of reagent solution and 10 µL of sample. After stabilization for 20 seconds, 

determine the optical density measuring at 558 nm for 3 minutes, in kinetic intervals of 15 

seconds. One unit of phospholipase can be defined as the quantity of enzyme necessary to 

convert 0.001 UA 558 nm per minute. 

5.5. Indirect hemolysis 

In this test, phospholipids (from egg yolk, soy lecithin or other sources) are used as 

substrates, with the production of fatty acid and corresponding lysophospholipids. 

These lysophospholipids have membrane activity over red blood cells, producing hemolysis 

that can be detected through the quantification of hemoglobin present in solution or through 

a hemolysis halo present in agarose gel containing intact red blood cells [76]. 

For the test, collect blood in a heparinized tube, wash the red blood cells with PBS, 

centrifuging at 800 xg for 5 minutes and prepare the suspension at 3%. Prepare solution 

containing phosphate buffer 20 mM, sodium chloride 100 mM and CaCl2 10 mM, 

erythrocyte suspension 3% (1:30 v/v) and egg yolk solution 0.1% (1:30 v/v). Add 10 µL of 

sample or PBS (control 0%) or Triton X-100 0.1% (control 100%) and incubate at 37 °C for 30 
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minutes. Then, centrifuge, collect the supernatant and determine the optical density at 405 

nm, using PBS as blank. The results will be expressed in % of hemolysis compared with the 

positive control. 

Hemoglobin dosage present in solution with the use of the Drabkin reagent (potassium 

ferrocyanide in buffered environment) [77] can be done by comparing the optical density of 

the samples with the standard curve made with the hemoglobin cyanide solution, according 

to manufacturer instructions. 

To assay the hemolytic activity in agarose gel, carefully heat the suspension containing 

agarose 2% in PBS until complete fusion. After partial cooling (45 °C), add an equal volume 

of PBS containing CaCl2 0.02 M; egg yolk suspension (1:30 m/v), erythrocytes washed in PBS 

(1:30 m/v), pouring over Petri plate until the formation of a layer approximately 2 mm thick. 

After solidification of the gel, orifices of uniform diameter (0.2 cm diameter) to apply the 

sample are made. The gel is incubated for 12 hours, at 37 °C and humid environment. The 

formation of a translucid halo around the gel application point is indicative of 

phospholipase activity, contrasting with the rest of the gel which remains with a reddish 

tone due to the presence of integral red blood cells retained in the gel net. 

Abbreviations 

PLA2s: Phospholipases A2 

sPLA2: secreted PLA2  

cPLA2 : cytosolic PLA2 

iPLA2: Ca2+ independent PLA2  

PAF-AH: acetyl-hydrolases from platelet activating factors and liposomal 

Mr: relative mass 

PAF: platelet activating factors 

svPLA2s: phospholipase A2 found in snake venoms 
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MW: Molecular weight 

RP-HPLC: reverse-phase chromatography  

DEAE-Sepharose: Dietylaminoetyl Sepharose  

tEnd cells: endothelial cells 

CNBr: cyanogen bromide  

PBS: phosphate buffer saline 

IEF: isoelectric focusing 

2DE: bi-dimensional electrophoresis  
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pIs: isoelectric points 

DTT: Dithiothreitol  

TBP: Tributyl phosphine  

ESI: Electrospray Ionization 
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MS: Mass Spectrometry 

CK-MM: Creatine Kinase - skeletal muscle tissue  

CK-MB: Creatine Kinase – cardiac 

CK-BB: Creatine Kinase - brain  

CK: Creatine Kinase 

LDH: lactate dehydrogenase 

NBD: N-4-Nitrobenzo-2-Oxa-1,3-Diazole 

NBD-PC: N-4-Nitrobenzo-2-Oxa-1,3-Diazole Phosphatidylcholine 

NBD-PG: N-4-Nitrobenzo-2-Oxa-1,3-Diazole 

NBD-PE: N-4-Nitrobenzo-2-Oxa-1,3-Diazole phosphatidylglycerol 

NBD-PA: N-4-Nitrobenzo-2-Oxa-1,3-Diazole Phosphatidic acid 
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