
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322418457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 0

Parallel Genetic Programming on

Graphics Processing Units

Douglas A. Augusto, Heder S. Bernardino and Helio J.C. Barbosa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48364

1. Introduction

In program inference, the evaluation of how well a candidate solution solves a certain task
is usually a computationally intensive procedure. Most of the time, the evaluation involves
either submitting the program to a simulation process or testing its behavior on many input
arguments; both situations may turn out to be very time-consuming. Things get worse when
the optimization algorithm needs to evaluate a population of programs for several iterations,
which is the case of genetic programming.

Genetic programming (GP) is well-known for being a computationally demanding technique,
which is a consequence of its ambitious goal: to automatically generate computer
programs—in an arbitrary language—using virtually no domain knowledge. For instance,
evolving a classifier, a program that takes a set of attributes and predicts the class they belong
to, may be significantly costly depending on the size of the training dataset, that is, the amount
of data needed to estimate the prediction accuracy of a single candidate classifier.

Fortunately, GP is an inherently parallel paradigm, making it possible to easily exploit any
amount of available computational units, no matter whether they are just a few or many
thousands. Also, it usually does not matter whether the underlying hardware architecture
can process simultaneously instructions and data (“MIMD”) or only data (“SIMD”).1 Basically,
GP exhibits three levels of parallelism: (i) population-level parallelism, when many populations
evolve simultaneously; (ii) program-level parallelism, when programs are evaluated in parallel;
and finally (iii) data-level parallelism, in which individual training points for a single program
are evaluated simultaneously.

Until recently, the only way to leverage the parallelism of GP in order to tackle complex
problems was to run it on large high-performance computational installations, which are
normally a privilege of a select group of researchers. Although the multi-core era has emerged
and popularized the parallel machines, the architectural change that is probably going to

1 MIMD stands for Multiple Instructions Multiple Data whereas SIMD means Single Instruction Multiple Data.

©2012 Augusto et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 5

2 Will-be-set-by-IN-TECH

revolutionize the applicability of GP started about a decade ago when the GPUs began to
acquire general-purpose programmability. Modern GPUs have an astonishing theoretical
computational power, and are capable of behaving much like a conventional multi-core CPU
processor in terms of programmability. However, there are some intrinsic limitations and
patterns of workload that may cause huge negative impact on the resulting performance if
not properly addressed. Hence, this paper aims at presenting and discussing efficient ways
of implementing GP’s evaluation phase, at the program- and data-level, so as to achieve the
maximum throughput on a GPU.

The remaining of this chapter is organized as follows. The next Section, 2, will give an
overview of the GPU architecture followed by a brief description of the open computing
language, which is the open standard framework for heterogeneous programming, including
CPUs and GPUs. Section 3 presents the development history of GP in the pursuit of getting
the most out of the GPU architecture. Then, in Section 4, three fundamental parallelization
strategies at the program- and data-level will be detailed and their algorithms presented
in a pseudo-OpenCL form. Finally, Section 5 concludes the chapter and points out some
interesting directions of future work.

2. GPU programming

The origin of graphics processing units dates back to a long time ago, when they were
built exclusively to execute graphics operations, mainly to process images’ pixels, such
as calculating each individual pixel color, applying filters, and the like. In video or
gaming processing, for instance, the task is to process batches of pixels within a short
time-frame—such operation is also known as frame rendering—in order to display smooth and
fluid images to the spectator or player.

Pixel operations tend to be very independent among them, in other words, each individual
pixel can be processed at the same time as another one, leading to what is known as data
parallelism or SIMD. Although making the hardware less general, designing an architecture
targeted at some specific type of workload, like data parallelism, may result in a very efficient
processor. This is one main reason why GPUs have an excellent performance with respect to
power consumption, price, and density. Another major reason behind such a performance is
attributed to the remarkable growing of the game industry in the last years and the fact that
computer games have become more and more complex, pressing forward the development of
GPUs while making them ubiquitous.

It turned out that at some point the development of GPUs was advancing so well and the
architecture was progressively getting more ability to execute a wider range of sophisticated
instructions, that eventually it earned the status of a general-purpose processor—although
still an essentially data parallel architecture. That point was the beginning of the exploitation
of the graphics processing unit as a parallel accelerator for a much broader range of
applications besides video and gaming processing.

2.1. GPU architecture

The key design philosophy responsible for the great GPU’s efficiency is the maximization
of the number of transistors dedicated to actual computing—i.e., arithmetic and logic units
(ALU)—which are packed as many small and relatively simple processors [26]. This is

96 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 3

rather different from the modern multi-core CPU architecture, which has large and complex
cores, reserving a considerable area of the processor die for other functional units, such as
control units (out-of-order execution, branch prediction, speculative execution, etc.) and cache
memory [21].

This design difference reflects the different purpose of those architectures. While the GPU
is optimized to handle data-parallel workloads with regular memory accesses, the CPU is
designed to be more generic and thus must manage with reasonable performance a larger
variety of workloads, including MIMD parallelism, divergent branches and irregular memory
accesses. There is also another important conceptual difference between them. Much of
the extra CPU complexity is devoted to reduce the latency in executing a single task, which
classifies the architecture as latency-oriented [14]. Conversely, instead of executing single tasks
as fast as possible, GPUs are throughput-oriented architectures, which means that they are
designed to optimize the throughput, that is, the amount of completed tasks per unit of time.

2.2. Open Computing Language – OpenCL

The Open Computing Language, or simply OpenCL, is an open specification for
heterogeneous computing released by the Khronos Group2 in 2008 [25]. It resembles the
NVIDIA CUDA3 platform [31], but can be considered as a superset of the latter; they basically
differ in the following points. OpenCL (i) is an open specification that is managed by a set
of distinct representatives from industry, software development, academia and so forth; (ii)
is meant to be implemented by any compute device vendor, whether they produce CPUs,
GPUs, hybrid processors, or other accelerators such as digital signal processors (DSP) and
field-programmable gate arrays (FPGA); and (iii) is portable across architectures, meaning
that a parallel code written in OpenCL is guaranteed to correctly run on every other supported
device.4

2.2.1. Hardware model

In order to achieve code portability, OpenCL employs an abstracted device architecture that
standardizes a device’s processing units and memory scopes. All supported OpenCL devices
must expose this minimum set of capabilities, although they may have different capacities
and internal hardware implementation. Illustrated in Figure 1 is an OpenCL general device
abstraction. The terms SPMD, SIMD and PC are mostly GPU-specific, though; they could be
safely ignored on behalf of code portability, but understanding them is important to write
efficient code for this architecture, as will become clear later on.

An OpenCL device has one or more compute units (CU), and there is at least one processing
element (PE) per compute unit, which actually performs the computation. Such layers are
meant (i) to encourage better partitioning of the problem towards fine-grained granularity
and low communication, hence increasing the scalability to fully leverage a large number of
CUs when available; and (ii) to potentially support more restricted compute architectures, by

2 http://www.khronos.org/opencl
3 CUDA is an acronym for Compute Unified Device Architecture, the NVIDIA’s toolkit for GP-GPU programming.
4 It is worthy to note that OpenCL only guarantees functional portability, i.e., there is no guarantee that the same code

will perform equally well across different architectures (performance portability), since some low-level optimizations
might fit a particular architecture better than others.

97Parallel Genetic Programming on Graphics Processing Units

4 Will-be-set-by-IN-TECH

Figure 1. Abstraction of a modern GPU architecture

not strictly enforcing parallelism among CUs while still ensuring that the device is capable of
doing synchronism, which can occur among PEs within each CU [15].

Figure 1 shows four scopes of memory, namely, global, constant, local, and private memories.
The global memory is the device’s main memory, the biggest but also the slowest of the four
in terms of bandwidth and latency, specially for irregular accesses. The constant memory is
a small and slightly optimized memory for read-only accesses. OpenCL provides two really
fast memories: local and private. Both are very small; the main difference between them
is the fact that the former is shared among all the PEs within a CU—thus very useful for
communication—and the latter is even smaller and reserved for each PE.

Most of modern GPUs are capable of performing not only SIMD parallelism, but also what is
referred to as SPMD parallelism (literally Single Program Multiple Data), which is the ability to
simultaneously execute different instructions of the same program on many data. This feature is
closely related to the capability of the architecture in maintaining a record of multiple different
instructions within a program being executed which is done by program counter (PC) registers.
Nowadays GPUs can usually guarantee that at least among compute units there exists SPMD
parallelism, in other words, different CUs can execute different instructions in parallel. There
may exist SPMD parallelism within CUs also, but they occur among blocks of PEs.5 For the
sake of simplicity, the remaining of this chapter will ignore this possibility and assume that
all PEs within a CU can only execute one instruction at a time (SIMD parallelism), sharing
a single PC register. A strategy of parallelization described in Section 4.4 will show how
the SPMD parallelism can be exploited in order to produce one of the most efficient parallel
algorithms for genetic programming on GPUs.

2.2.2. Software model

OpenCL specifies two code spaces: the host and kernel code. The former holds any
user-defined code, and is also responsible for initializing the OpenCL platform, managing
the device’s memory (buffer allocation and data transfer), defining the problem’s parallel

5 Those blocks are known as warps [32] or wavefronts [1].

98 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 5

partitioning, submitting commands, and coordinating executions. The latter, the kernel code,
is the actual parallel code that is executed by a compute device.

An OpenCL kernel is similar to a C function6. Due to architectural differences across devices,
it has some restrictions, such as prohibiting recursion, but also adds some extensions, like
vector data types and operators, and is intended to be executed in parallel by each processing
element, usually with each instance working on a separate subset of the problem. A kernel
instance is known as work-item whereas a group of work-items is called a work-group.

Work-items within a work-group are executed on a unique compute unit, therefore, according
to the OpenCL specification, they can share information and synchronize. Determining how
work-items are divided into work-groups is a critical phase when decomposing a problem; a
bad division may lead to inefficient use of the compute device. Hence, an important part of
the parallel modeling concerns defining what is known as n-dimensional computation domain.
This turns out to be the definition of the global size, which is the total amount of work-items,
and the local size, the number of work-items within a work-group, or simply the work-groups’
size.

In summary, when parallelizing the GP’s evaluation phase, the two most important modeling
aspects are the kernel code and the n-dimensional computation domain. Section 4 will present
these definitions for each parallelization strategy.

3. Genetic programming on GPU: A bit of history

It is natural to begin the history of GP on GPUs referring to the first improvements obtained
by parallelization of a GA on programmable graphics hardware. The first work along this line
seems to be [41], which has proposed a genetic algorithm in which crossover, mutation, and
fitness evaluation were performed on graphic cards achieving speedups up to 17.1 for large
population sizes.

Other GA parallelization on GPUs was proposed in [39] which followed their own ideas
explored in [40] for an evolutionary programming technique (called FEP). The proposal, called
Hybrid GA, or shortly HGA, was evaluated using 5 test-functions, and CPU-GPU as well as
HGA-FEP comparisons were made. It was observed that their GA on GPU was more effective
and efficient than their previous parallel FEP.

Similarly to [41], [24] performed crossover, mutation, and fitness evaluation on GPU to solve
the problem of packing many granular textures into a large one, which helps modelers in
freely building virtual scenes without caring for efficient usage of texture memory. Although
the implementation on CPU performed faster in the cases where the number of textures was
very small (compact search space), the performance of the implementation on GPU is almost
two times faster when compared to execution on CPU.

The well-known satisfiability problem, or shortly SAT, is solved on graphic hardware in
[30], where a cellular genetic algorithm was adopted. The algorithm was developed using
NVIDIA’s C for Graphics (Cg) programming toolkit and achieved a speedup of approximately
5. However, the author reports some problems in the implementation process, like the
nonexistence of a pseudo-random number generator and limitations in the texture’s size.

6 The OpenCL kernel’s language is derived from the C language.

99Parallel Genetic Programming on Graphics Processing Units

6 Will-be-set-by-IN-TECH

Due the growing use of graphics cards in the scientific community, in general, and
particularly in the evolutionary computation field, as described earlier, the exploration of this
high-performing solution in genetic programming was inevitable. Ebner et al. published
the first work exploring the GPU capacity in GP [11]. Although a high level language was
used in that case (Cg), the GPU was only used to generate the images from the candidate
programs (vertex and pixel shaders). Then the created images are presented to the user for his
evaluation.

However, it was in 2007 that the extension of the technique of general purpose computing
using graphics cards in GP was more extensively explored [2, 9, 17, 18]. Two general purpose
computation toolkits for GPUs were preferred in these works: while [2, 9] implemented their
GP using Cg, Harding and Banzhaf [17, 18] chose Microsoft’s Accelerator, a .Net’s library
which provides access to the GPU via DirectX’s interface.

The automatic construction of tree-structural image transformation on GPU was proposed in
[2], where the speedup of GP was explored in different parallel architectures (master-slave and
island), as well as on single and multiple GPUs (up to 4). When compared with its sequential
version, the proposed approach obtained a speedup of 94.5 with one GPU and its performance
increased almost linearly by adding GPUs.

Symbolic regression, fisher iris dataset classification, and 11-way multiplexer problems
composed the computational experiments in [9]. The results demonstrated that although
there was little improvement for small numbers of fitness cases, considerable gains could be
obtained (up to around 10 times) when this number becomes much larger.

The classification between two spirals, the classification of proteins, and a symbolic regression
problem were used in [17, 18] to evaluate their Cartesian GP on GPU. In both works, each
GP individual is compiled, transferred to GPU, and executed. Some benchmarks were also
performed in [18] to evaluate floating point as well as binary operations. The rules of a
cellular automaton with the von Neumann neighborhood and used to simulate the diffusion
of chemicals were generated by means of Cartesian GP in [17]. The best obtained speedup in
these works was 34.63.

Following the same idea of compiling the candidate solutions, [16] uses a Cartesian GP on
GPU to remove noise in images. Different types of noise were artificially introduced into a
set of figures and performance analyses concluded that this sort of parallelism is indicated for
larger images.

A simple instruction multiple data interpreter was developed using RapidMind and
presented in [28], where a performance of one Giga GP operations per second was observed
in the computational experiments. In contrast to [16–18] where the candidate programs were
compiled to execute on GPUs, [28] showed a way of interpreting the trees. While the previous
presented approach requires that programs are large and run many times to compensate the
cost of compilation and transference to the GPU, the interpretable proposal of [28] seems to
be more consistent because it achieved speed ups of more than an order of magnitude in the
Mackey-Glass time series and protein prediction problems, even for small programs and few
test cases.

The same solution of interpreting the candidate programs was used in [27], but a predictor
was evolved in this case. Only the objective function evaluation was performed on GPU, but
this step represents, in that study, about 85% of the total run time.

100 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 7

Another study exploring the GPU capacity in GP is presented in [29]. RapidMind is used
to implement a GP solution to solve a cancer prediction problem from a dataset containing
a million inputs. A population of 5 million programs evolves executing about 500 million
GP operations per second. The author found a 7.6 speed up during the computational
experiments, but their discussion indicates that the increment in the performance was limited
by the access to the 768 Mb of the training data (the device used had 512Mb).

Since these first works were published, improving GP performance by using GP-GPU
becomes a new research field. Even the performance of GP on graphic devices of video game
consoles was analyzed [36–38], but PC implementations of GP have demonstrated to be faster
and more robust. However, it was with the current high level programming languages [4, 34],
namely NVIDIA’s CUDA and OpenCL, that GP implementations using GP becomes popular,
specially in much larger/real world applications. Also, TidePowerd’s GPU.NET was studied
for speed up Cartesian GP [19].

Genetic programming is used in [10] to search, guided by user interaction, in the space of
possible computer vision programs, where a real-time performance is obtained by using GPU
for image processing operations. The objective was evolving detectors capable of extracting
sub-images indicated by the user in multiple frames of a video sequence.

An implementation of GP to be executed in a cluster composed by PCs equipped with GPUs
was presented in [20]. In that work, program compilation, data, and fitness execution are
spread over the cluster, improving the efficiency of GP when the problem contains a very
large dataset. The strategy used is to compile (C code into NVIDIA CUDA programs) and
to execute the population of candidate individuals in parallel. The GP, developed in GASS’s
CUDA.NET, was executed in Microsoft Windows (during the tests) and Gentoo Linux (final
deployment), demonstrating the flexibility of that solution. That parallel GP was capable of
executing up to 3.44 (classification problem of network intrusion) and 12.74 (image processing
problem) Giga GP operations per second.

The computational time of the fitness calculation phase was reduced in [7, 8] by using CUDA.
The computational experiments included ten datasets, which were selected from well-known
repositories in the literature, and three GP variants for classification problems, in which
the main difference between them is the criterion of evaluation. Their proposed approach
demonstrated good performance, achieving a speedup of up to 820.18 when compared with
their own Java implementation, as well as a speedup of up to 34.02 when compared with
BioHEL [13].

Although with much less articles published in the GP field, OpenCL deserves to be
highlighted because, in addition of being non-proprietary, it allows for heterogeneous
computing. In fact, up to now only [4] presents the development of GP using OpenCL,
where the performance of both types of devices (CPU and GPU) was evaluated over the same
implementation. Moreover, [4] discusses different parallelism strategies and GPU was up to
126 times faster than CPU in the computational experiments.

The parallelism of GP techniques on GPU is not restricted only to linear, tree, and graph
(Cartesian) representations. The improvement in performance of other kinds of GP, such as
Grammatical Evolution [33], is just beginning to be explored. However, notice that no papers
were found concerning the application of Gene Expression Programming [12] on GPUs. Some
complementary information is available in [3, 6].

101Parallel Genetic Programming on Graphics Processing Units

8 Will-be-set-by-IN-TECH

4. Parallelization strategies

As mentioned in Section 2.2, there are two distinct code spaces in OpenCL, the host and kernel.
The steps of the host code necessary to create the environment for the parallel evaluation
phase are summarized as follows [4]:7

1. OpenCL initialization. This step concerns identifying which OpenCL implementation
(platform) and compute devices are available. There may exist multiple devices on the
system. In this case one may opt to use a single device or, alternatively, all of them, where
then a further partitioning of the problem will be required. Training data points, programs
or even whole populations could be distributed among the devices.

2. Calculating the n-dimensional computation domain. How the workload is decomposed
for parallel processing is of fundamental importance. Strictly speaking, this phase only
determines the global and local sizes in a one-dimensional space, which is enough to
represent the domain of training data points or programs. However, in conjunction with
a kernel, which implements a certain strategy of parallelization, the type of parallelism (at
data and/or program level) and workload distribution are precisely defined.

3. Memory allocation and transfer. In order to speedup data accesses, some content
are allocated/transferred directly to the compute device’s memory and kept there, thus
avoiding as much as possible the relatively narrow bandwidth between the GPU and
the computer’s main memory. Three memory buffers are required to be allocated on the
device’s global memory in order to hold the training data points, population of programs,
and error vector. Usually, the training data points are transferred only once, just before
the beginning of the execution, remaining then unchanged until the end. The population
of programs and error vector, however, are dynamic entities and so they need to be
transferred at each generation.

4. Kernel building. This phase selects the kernel with respect to a strategy of parallelization
and builds it. Since the exact specification of the target device is usually not known in
advance, the default OpenCL behavior is to compile the kernel just-in-time. Although
this procedure introduces some overhead, the benefit of having more information about
the device—and therefore being able to generate better optimized kernel object—usually
outweighs the compilation overhead.

5. GP’s evolutionary loop. Since this chapter focuses on accelerating the evaluation phase of
genetic programming by parallelizing it, the iterative evolutionary cycle itself is assumed
to be performed sequentially, being so defined in the host space instead of as an OpenCL
kernel. 8 The main iterative evolutionary steps are:

(a) Population transfer. Changes are introduced to programs by the evolutionary process
via genetic operators, e.g. crossover and mutation, creating a new set of derived
programs. As a result, a population transfer needs to be performed from host to device
at each generation.

7 This chapter will not detail the host code, since it is not relevant to the understanding of the parallel strategies. Given
that, and considering that the algorithms are presented in a pseudo-OpenCL form, the reader is advised to consult the
appropriate OpenCL literature in order to learn about its peculiarities and fill the implementation gaps.

8 However, bear in mind that a full parallelization, i.e. both evaluation and evolution, is feasible under OpenCL. That
could be implemented, for instance, in such a way that a multi-core CPU device would perform the evolution in
parallel while one or more GPUs would evaluate programs.

102 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 9

(b) Kernel execution. Whenever a new population arrives on the compute device, a kernel
is launched in order to evaluate (in parallel) the new programs with respect to the
training data points. For any non-trivial problem, this step is the most computationally
intensive one.

(c) Error retrieval. Finally, after all programs’ errors have been accumulated, this vector is
transferred back to the host in order to guide the evolutionary process in selecting the
set of parents that will breed the next generation.

Regarding the kernel code, it can be designed to evaluate programs in different parallel ways:
(i) training points are processed in parallel but programs sequentially; or (ii) the converse,
programs are executed in parallel but training points are processed sequentially; or finally (iii)
a mixture of these two, where both programs and training points are processed in parallel.

Which way is the best will depend essentially on a combination of the characteristics of
the problem and some parameters of the GP algorithm. These strategies are described and
discussed in Sections 4.2, 4.3 and 4.4.

4.1. Program interpreter

The standard manner to estimate the fitness of a GP candidate program is to execute it,
commonly on varying input arguments, and observe how well it solves the task at hand
by comparing its behavior with the expected one. To this end, the program can be compiled
just before the execution, generating an intermediate object code, or be directly interpreted
without generating intermediate objects. Both variations have pros and cons. Compiling
introduces overhead, however, it may be advantageous when the evaluation of a program
is highly demanding. On the other hand, interpretation is usually slower, but avoids the
compilation cost for each program. Moreover, interpretation is easy to accomplish and, more
importantly, is much more flexible. Such flexibility allows, for example, to emulate a MIMD
execution model on a SIMD or SPMD architecture [23]. This is possible because what a
data-parallel device actually executes are many instances of the same interpreter. Programs, as
has always been the case with training points, become data or, in other words, arguments for
the interpreter.

A program interpreter is presented in Algorithm Interpreter. It is assumed that the program to
be executed is represented as a prefix linear tree [5], since a linear representation is very efficient
to be operated on, specially on the GPU architecture. An example of such program is:

+ sin x 3.14

which denotes the infix expression sin(x) + 3.14.

The program interpretation operates on a single training data point at a time. The current
point is given by the argument n, and Xn ∈ ℜd is a d-dimensional array representing the n-th
variables (training point) of the problem.

The command INDEX extracts the class of the current operator (op), which can be a function,
constant or variable. The value of a constant is obtained by the VALUE command; for variables,
this command returns the variable’s index in order to get its corresponding value in Xn.

103Parallel Genetic Programming on Graphics Processing Units

10 Will-be-set-by-IN-TECH

Function Interpreter(program, n)

for op ← programsize − 1 to 0 do
switch INDEX(program[op]) do

case ADD:
PUSH(POP+ POP);

case SUB:
PUSH(POP− POP);

case MUL:
PUSH(POP× POP);

case DIV:
PUSH(POP÷ POP);

case IF-THEN-ELSE:
if POP then

PUSH(POP);
else

POP; PUSH(POP);

...

case CONSTANT:
PUSH(VALUE(program[op]));

otherwise
PUSH(Xn[VALUE(program[op])]);

return POP;

The interpreter is stack-based; whenever an operand shows up, like a constant or variable,
its value is pushed onto the stack via the PUSH command. Conversely, an operator obtains
its operands’ values on the stack by means of the POP command, which removes the most
recently stacked values. Then, the value of the resulting operation on its operands is pushed
back onto the stack so as to make it available to a parent operator.

As will be seen in the subsequent sections, whatever the parallel strategy, the interpreter will
act as a central component of the kernels, doing the hard work. The kernels will basically set
up how the interpreter will be distributed among processing elements and which program
and training point it will operate on at a given time.

4.2. Data-level Parallelism – DP

The idea behind the data-level parallelism (DP) strategy is to distribute the training data
points among the processing elements of a compute device. This is probably the simplest and
most natural way of parallelizing GP’s evaluation phase when the execution of a program on
many independent training points is required.9 Despite its obviousness, DP is an efficient

9 However, sometimes it is not possible to trivially decompose the evaluation phase. For instance, an evaluation may
involve submitting the program through a simulator. In this case one can try to parallelize the simulator itself or,
alternatively, opt to use a program- or population-level kind of parallelism.

104 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 11

strategy, specially when there are a large number of training data points—which is very
common in complex problems. Moreover, given that this strategy leads to a data-parallel
SIMD execution model, it fits well on a wide range of parallel architectures. Figure 2 shows
graphically how the training data points are distributed among the PEs.10

Figure 2. Illustration of the data-level parallelism (DP).

As already mentioned, to precisely define a parallelization strategy in OpenCL, two things
must be set up: the n-dimensional domain, more specifically the global and local sizes, and
the kernel itself. For the data-level parallelism, it is natural to assign the global computation
domain to the training data points domain as a one-to-one correspondence; that is, simply

globalsize = datasetsize, (1)

where dataset size is the number of the training data points. OpenCL lets the programmer to
choose whether he or she wants to explicitly define the local size, i.e. how many work-items
will be put in a work-group. The exact definition of the local size is only really needed when
the corresponding kernel assumes a particular work-group division, which is not the case for
DP. Therefore, no local size is explicitly defined for DP, letting then the OpenCL runtime to
decide on any configuration it thinks is the best.

Algorithm 1 presents in a pseudo-OpenCL language the DP’s kernel. As with any OpenCL
kernel, there will be launched globalsize instances of it on the compute device.11 Hence, there
is one work-item per domain element, with each one identified by its global or local position
through the OpenCL commands get_global_id and get_local_id, respectively. This
enables a work-item to select what portion of the compute domain it will operate on, based
on its absolute or relative position.

For the DP’s kernel, the globalid index is used to choose which training data point will be
processed, in other words, each work-item will be in charge of a specific point. The for
loop iterates sequentially over each program of the population (the function NthProgram

returns the p-th program), that is, every work-item will execute the same program at a given
time. Then, the interpreter (Section 4.1) is called to execute the current program, but each
work-item will provide a different index, which corresponds to the training data point it took

10 To simplify, in Figures 2, 4 and 5 it is presumed that the number of PEs (or CUs) coincides with the number of training
data points (or programs), but in practice this is rarely the case.

11 It is worthy to notice that the actual amount of work-items executed in parallel by the OpenCL runtime will depend
on the device’s capabilities, mainly on the number of processing elements.

105Parallel Genetic Programming on Graphics Processing Units

12 Will-be-set-by-IN-TECH

Algorithm 1: GPU DP’s OpenCL kernel

globalid ← get_global_id();

for p ← 0 to populationsize − 1 do

program ← NthProgram(p);

error ← |Interpreter(program, globalid)− Y[globalid]|;

E[p] ← ErrorReduction(0, . . . , globalsize − 1);

responsibility for. Once interpreted, the output returned by the program is then compared
with the expected one for that point, whose value is stored in array Y. This results in a
prediction error; however, the overall error is what is meaningful to estimate the fitness of
a program.

Note however that the errors are spread among the work-items, because each work-item has
processed a single point and has computed its own error independently. This calls for what
is known in the parallel computing literature as the reduction operation [22]. The naive way
of doing that is to sequentially cycle over each element and accumulate their values; in our
case it would iterate from work-item indexed by 0 to globalsize − 1 and put the total value in
E[p], the final error relative to the p-th program. There is however a clever and parallel way of
doing reduction, as exemplified in Figure 3, which decreases the complexity of this step from
O(N) to just O(log2N) and still assures a nice coalesced memory access suited for the GPU
architecture [1, 32].12

Figure 3. O(log2 N) parallel reduction with sequential addressing.

4.3. Program-level Parallelism – PP

One serious drawback of the data-level parallelism strategy is that when there are few training
data points the compute device may probably be underutilized. Today’s high-end GPUs have
thousands of processing elements, and this number has increased at each new hardware
generation. In addition, to achieve optimal performance on GPUs, multiple work-items
should be launched for each processing element. This helps, for instance, to hide memory

12 This chapter aims at just conveying the idea of the parallel reduction, and so it will not get into the algorithmic details
on how reduction is actually implemented. The reader is referred to the given references for details.

106 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 13

access latencies while reading from or writing to the device’s global memory [1, 32]. Therefore,
to optimally utilize a high-end GPU under the DP strategy, one should prefer those problems
having tens of thousands of training data points. Unfortunately, there are many real-world
problems out there for which no such amount of data is available.

Another limitation of the DP strategy is that sometimes there is no easy way to decompose
the evaluation of a program into independent entities, like data points. Many program
evaluations that need a simulator, for example, fall into this category, where a parallel
implementation of the simulator is not feasible to accomplish.

An attempt to overcome the DP limitations, particularly what concerns the desire of a
substantially large amount of training data points, is schematically shown in Figure 4. This
parallelization strategy is here referred to as program-level parallelism (PP), meaning that
programs are executed in parallel, each program per PE [4, 35]. Assuming that there are
enough programs to be evaluated, even a few training data points should keep the GPU fully
occupied.

Figure 4. Illustration of the program-level parallelism (PP).

In PP, while programs are interpreted in parallel, the training data points within each PE
are processed sequentially. This suggests a computation domain based on the number of
programs, in other words, the global size can be defined as:

globalsize = populationsize (2)

As with DP, PP does not need to have control of the number of work-items within a
work-group, thus the local size can be left untouched.

A pseudo-OpenCL code for the PP kernel is given in Algorithm 2. It resembles the DP’s
algorithm, but in PP what is being parallelized are the programs instead of the training data
points. Hence, each work-item takes a different program and interpret it iteratively over all
points. A positive side effect of this inverse logic is that, since the whole evaluation of a
program is now done in a single work-item, all the partial prediction errors are promptly
available locally. Put differently, in PP a final reduction step is not required.

4.4. Program- and Data-level Parallelism – PDP

Unfortunately, PP solves the DP’s necessity of large training datasets but introduces two other
problems: (i) to avoid underutilization of the GPU a large population of programs should now

107Parallel Genetic Programming on Graphics Processing Units

14 Will-be-set-by-IN-TECH

Algorithm 2: GPU PP’s OpenCL kernel

globalid ← get_global_id();
program ← NthProgram(globalid);

error ← 0.0;
for n ← 0 to datasetsize − 1 do

error ← error + |Interpreter(program, n)− Y[n]|;

E[globalid] ← error;

be employed; and, more critically, (ii) the PP’s execution model is not suited for an inherently
data-parallel architecture like GPUs.

While (i) can be dealt with by simply specifying a large population as a parameter choice of
a genetic programming algorithm, the issue pointed out in (ii) cannot be solved for the PP
strategy.

The problem lies on the fact that, as mentioned in Section 2, GPUs are mostly a SIMD
architecture, specially among processing elements within a compute unit. Roughly speaking,
whenever two (or more) different instructions try to be executed at the same time, a hardware
conflict occurs and then these instructions are performed sequentially, one at a time. In
the related literature, this phenomenon is often referred to as divergence. Since in PP each
PE interprets a different program, the degree of divergence is the highest possible: at a
given moment each work-item’s interpreter is potentially interpreting a different primitive.
Therefore, in practice, the programs within a CU will most of the time be evaluated
sequentially, seriously degrading the performance.

However, observing the fact that modern GPUs are capable of simultaneously executing
different instructions at the level of compute units, i.e. the SPMD execution model, one could
devise a parallelization strategy that would take advantage of this fact. Such strategy exists,
and it is known here as program- and data-level parallelism, or simply PDP [4, 35]. Its general
idea is illustrated in Figure 5. In PDP, a single program is evaluated per compute unit—this

Figure 5. Illustration of the program- and data-level parallelism (PDP).

prevents the just mentioned problem of divergence—but within each CU all the training data
points are processed in parallel. Therefore, there are two levels of parallelism: a program-level
parallelism among the compute units, and a data-level parallelism on the processing elements.

108 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 15

Indeed, PDP can be seen as a mixture of the DP and PP strategies. But curiously, PDP avoids
all the drawbacks associated with the other two strategies: (i) once there are enough data
to saturate just a single CU, smaller datasets can be used at no performance loss; (ii) large
populations are not required either, since the number of CUs on current high-end GPUs is in
the order of tens; and (iii) there is no divergence with respect to program interpretation.13

In order to achieve both levels of parallelism, a fine-tuned control over the computation
domain is required; more precisely, both local and global sizes must be properly defined.

Since a work-group should process all training data points for a single program and there is a
population of programs to be evaluated, one would imagine that setting localsize as datasetsize

and globalsize as populationsize × datasetsize would suffice. This is conceptually correct, but an
important detail makes the implementation not as straightforward as one would expect. The
OpenCL specification allows any compute device to declare an upper bound regarding the
number of work-items within a work-group. This is not arbitrary. The existence of a limit on
the number of work-items per work-group is justified by the fact that there exists a relation
between the maximum number of work-items and the device’s capabilities, with the latter
restricting the former. Put differently, an unlimited number of work-items per work-group
would not be viable, therefore a limit, which is provided by the hardware vendor, must be
taken into account.

With the aforementioned in mind, the local size can finally be set to

localsize =

{

datasetsize if datasetsize < localmax_size

localmax_size otherwise
, (3)

which limits the number of work-items per work-group to the maximum supported, given by
the variable localmax_size, when the number of training data points exceeds it. This implies that
when such a limit takes place, a single work-item will be in charge of more than one training
data point, that is, the work granularity is increased. As for the global size, it can be easily
defined as

globalsize = populationsize × localsize, (4)

meaning that the set of work-items defined above should be replicated as many times as the
number of programs to be evaluated.

Finally, algorithm 3 shows the OpenCL kernel for the PDP strategy. Compared to the other
two kernels (Algorithms 1 and 2), it comes as no surprise its greater complexity, as this kernel
is a combination of the other two and still has to cope with the fact that a single instance,
i.e. a work-item, can process an arbitrary number of training data points. The command
get_group_id, which returns the work-group’s index of the current work-item, has the
purpose of indexing the program that is going to be evaluated by the entire group. The for
loop is closely related to the local size (Equation 3), and acts as a way of iterating over multiple
training data points if the work-item (indexed locally by localid) is in charge of many of them;
when the dataset size is less or equal to the local size, only one iteration will be performed.
Then, an index calculation is done in order to get the index (n) of the current training data

13 Notice, though, that divergence might still occur if two (or more) training data points can cause the interpreter to take
different paths for the same program. For instance, if the conditional if-then-else primitive is used, a data point could
cause an interpreter’s instance to take the then path while other data could make another instance to take the else path.

109Parallel Genetic Programming on Graphics Processing Units

16 Will-be-set-by-IN-TECH

Algorithm 3: GPU PDP’s OpenCL kernel

localid ← get_local_id();
groupid ← get_group_id();
program ← NthProgram(groupid);

error ← 0.0;
for i ← 0 to ⌈datasetsize/localsize� − 1 do

n ← i × localsize + localid;
if n < datasetsize then

error ← error + |Interpreter(program, n)− Y[n]|;

E[groupid] ← ErrorReduction(0, . . . , localsize − 1);

point to be processed.14 Due to the fact that the dataset size may not be evenly divisible
by the local size, a range check is performed to guarantee that no out-of-range access will
occur. Finally, since the prediction errors for a given program will be spread among the local
work-items at the end of the execution, an error reduction operation takes place.

5. Conclusions

This chapter has presented different strategies to accelerate the execution of a genetic
programming algorithm by parallelizing its costly evaluation phase on the GPU architecture,
a high-performance processor which is also energy efficient and affordable.

Out of the three studied strategies, two of them are particularly well-suited to be implemented
on the GPU architecture, namely: (i) data-level parallelism (DP), which is very simple and
remarkably efficient for large datasets; and (ii) program- and data-level parallelism (PDP),
which is not as simple as DP, but exhibits the same degree of efficiency for large datasets and
has the advantage of being efficient for small datasets as well.

Up to date, only a few large and real-world problems have been solved by GP with the help of
the massive parallelism of GPUs. This suggests that the potential of GP is yet under-explored,
indicating that the next big step concerning GP on GPUs may be its application to those
challenging problems. In several domains, such as in bio-informatics, the amount of data
is growing quickly, making it progressively difficult for specialists to manually infer models
and the like. Heterogeneous computing, combining the computational power of different
devices, as well as the possibility of programming uniformly for any architecture and vendor,
is also an interesting research direction to boost the performance of GP. Although offering
both advantages, OpenCL is still fairly unexplored in the field of evolutionary computation.

Finally, although optimization techniques have not been thoroughly discussed in this chapter,
this is certainly an important subject. Thus, the reader is invited to consult the related material
found in [4], and also general GPU optimizations techniques from the respective literature.

Acknowledgements

The authors would like to thank the support provided by CNPq (grants 308317/2009-2 and
300192/2012-6) and FAPERJ (grant E-26/102.025/2009).

14 The careful reader will note that this index calculation leads to an efficient coalesced memory access pattern [1, 32].

110 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 17

Author details

Douglas A. Augusto and Heder S. Bernardino
Laboratório Nacional de Computação Científica (LNCC/MCTI), Rio de Janeiro, Brazil

Helio J. C. Barbosa
Laboratório Nacional de Computação Científica (LNCC/MCTI), Rio de Janeiro, Brazil
Federal University of Juiz de Fora (UFJF), Computer Science Dept., Minas Gerais, Brazil

6. References

[1] Advanced Micro Devices [2010]. AMD Accelerated Parallel Processing Programming Guide
- OpenCL.

[2] Ando, J. & Nagao, T. [2007]. Fast evolutionary image processing using multi-gpus, Proc.
of the International Conference on Systems, Man and Cybernetics, pp. 2927 –2932.

[3] Arenas, M. G., Mora, A. M., Romero, G. & Castillo, P. A. [2011]. Gpu computation in
bioinspired algorithms: a review, Proc. of the international conference on Artificial neural
networks conference on Advances in computational intelligence, Springer-Verlag, pp. 433–440.

[4] Augusto, D. A. & Barbosa, H. J. [2012]. Accelerated parallel genetic programming tree
evaluation with opencl, Journal of Parallel and Distributed Computing (0): –.
URL: http://www.sciencedirect.com/science/article/pii/S074373151200024X

[5] Augusto, D. A. & Barbosa, H. J. C. [2000]. Symbolic regression via genetic programming,
Proceedings of the VI Brazilian Symposium on Neural Networks, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 173–178.

[6] Banzhaf, W., Harding, S., Langdon, W. B. & Wilson, G. [2009]. Accelerating genetic
programming through graphics processing units., Genetic Programming Theory and
Practice VI, pp. 1–19.
URL: http://dx.doi.org/10.1007/978-0-387-87623-8_15

[7] Cano, A., Zafra, A. & Ventura, S. [2010]. Solving classification problems using genetic
programming algorithms on gpus, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6077 LNAI(PART
2): 17–26.

[8] Cano, A., Zafra, A. & Ventura, S. [2012]. Speeding up the evaluation phase of gp
classification algorithms on gpus, Soft Computing 16(2): 187–202.

[9] Chitty, D. M. [2007]. A data parallel approach to genetic programming using
programmable graphics hardware, in D. Thierens, H.-G. Beyer, J. Bongard, J. Branke,
J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller,
J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle, R. A.
Watson & I. Wegener (eds), GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, Vol. 2, ACM Press, London, pp. 1566–1573.
URL: http://www.cs.bham.ac.uk/ wbl/biblio/gecco2007/docs/p1566.pdf

[10] Ebner, M. [2009]. A real-time evolutionary object recognition system, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 5481 LNCS: 268–279. cited By (since 1996) 1.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-67650697120&partnerID=
40&md5=1a9de902eb5649a01e3e87c222a79ee3

111Parallel Genetic Programming on Graphics Processing Units

18 Will-be-set-by-IN-TECH

[11] Ebner, M., Reinhardt, M. & Albert, J. [2005]. Evolution of vertex and pixel shaders,
Proceedings of the European Conference on Genetic Programming Genetic Programming –
EuroGP, Vol. 3447 of LNCS, Springer Berlin / Heidelberg, pp. 142–142.

[12] Ferreira, C. [2006]. Gene Expression Programming: Mathematical Modeling by an Artificial
Intelligence, 2 edn, Springer.

[13] Franco, M. A., Krasnogor, N. & Bacardit, J. [2010]. Speeding up the evaluation of
evolutionary learning systems using gpgpus, Proceedings of the 12th annual conference
on Genetic and evolutionary computation, GECCO ’10, ACM, New York, NY, USA,
pp. 1039–1046.
URL: http://doi.acm.org/10.1145/1830483.1830672

[14] Garland, M. & Kirk, D. B. [2010]. Understanding throughput-oriented architectures,
Commun. ACM 53: 58–66.

[15] Gaster, B., Kaeli, D., Howes, L., Mistry, P. & Schaa, D. [2011]. Heterogeneous Computing
With OpenCL, Elsevier Science.
URL: http://books.google.com.br/books?id=qUJVU8RH3jEC

[16] Harding, S. [2008]. Evolution of image filters on graphics processor units using cartesian
genetic programming, pp. 1921–1928. cited By (since 1996) 3.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-55749093400&partnerID=40&md5
=fddf39574ff1025ad80adf204ccb451f

[17] Harding, S. & Banzhaf, W. [2007a]. Fast genetic programming and artificial
developmental systems on gpus, Proc. of the International Symposium on High Performance
Computing Systems and Applications, p. 2.

[18] Harding, S. & Banzhaf, W. [2007b]. Fast genetic programming on GPUs, Proc. of the
European Conference on Genetic Programming – EuroGP, Vol. 4445 of LNCS, Springer,
Valencia, Spain, pp. 90–101.

[19] Harding, S. & Banzhaf, W. [2011]. Implementing cartesian genetic programming
classifiers on graphics processing units using gpu.net, Proceedings of the Conference
Companion on Genetic and evolutionary computation – GECCO, ACM, pp. 463–470.

[20] Harding, S. L. & Banzhaf, W. [2009]. Distributed genetic programming on GPUs
using CUDA, Workshop on Parallel Architectures and Bioinspired Algorithms, Universidad
Complutense de Madrid, Raleigh, NC, USA, pp. 1–10.

[21] Hennessy, J. & Patterson, D. [2011]. Computer Architecture: A Quantitative Approach, The
Morgan Kaufmann Series in Computer Architecture and Design, Elsevier Science.
URL: http://books.google.com.br/books?id=v3-1hVwHnHwC

[22] Hillis, W. D. & Steele, Jr., G. L. [1986]. Data parallel algorithms, Commun. ACM
29: 1170–1183.

[23] Juille, H. & Pollack, J. B. [1996]. Massively parallel genetic programming, in P. J. Angeline
& K. E. Kinnear, Jr. (eds), Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chapter 17, pp. 339–358.

[24] Kaul, K. & Bohn, C.-A. [2006]. A genetic texture packing algorithm on a graphical
processing unit, Proceedings of the International Conference on Computer Graphics and
Artificial Intelligence.

[25] Khronos OpenCL Working Group [2011]. The OpenCL Specification, version 1.2.
URL: http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

112 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 19

[26] Kirk, D. & Hwu, W. [2010]. Programming Massively Parallel Processors: A Hands-On
Approach, Applications of GPU Computing Series, Morgan Kaufmann Publishers.
URL: http://books.google.com.br/books?id=qW1mncii_6EC

[27] Langdon, W. [2008]. Evolving genechip correlation predictors on parallel graphics
hardware, pp. 4151–4156. cited By (since 1996) 0.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-55749103342&partnerID=40&md5
=028c81cb3bb1b8380f2f816b8e50b1f4

[28] Langdon, W. & Banzhaf, W. [2008]. A SIMD interpreter for genetic programming on GPU
graphics cards, Genetic Programming, pp. 73–85.

[29] Langdon, W. & Harrison, A. [2008]. Gp on spmd parallel graphics hardware for mega
bioinformatics data mining, Soft Computing 12(12): 1169–1183. cited By (since 1996) 13.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-49049115131&partnerID=
40&md5=4d332814a77dc0233bed7ff3184a6ccb

[30] Luo, Z. & Liu, H. [2006]. Cellular genetic algorithms and local search for 3-sat problem
on graphic hardware, Proc. of the Congress on Evolutionary Computation – CEC, pp. 2988
–2992.

[31] NVIDIA Corporation [2007]. NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide.
URL: http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming
_Guide_1.0.pdf

[32] NVIDIA Corporation [2010]. OpenCL Best Practices Guide.
[33] Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J. & Jaros, J. [2011]. Acceleration of

grammatical evolution using graphics processing units: Computational intelligence on
consumer games and graphics hardware, pp. 431–438. cited By (since 1996) 0.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-80051950282&partnerID=40&md5
=46bb1910d0121a948a804f8aa62308eb

[34] Robilliard, D., Marion-Poty, V. & Fonlupt, C. [2008]. Population parallel gp on the g80
gpu, Artificial Intelligence and Lecture Notes in Bioinformatics 4971: 98–109.

[35] Robilliard, D., Marion, V. & Fonlupt, C. [2009]. High performance genetic programming
on gpu, Proceedings of the 2009 workshop on Bio-inspired algorithms for distributed systems,
BADS ’09, ACM, New York, NY, USA, pp. 85–94.

[36] Wilson, G. & Banzhaf, W. [2008]. Linear genetic programming gpgpu on microsoft’s
xbox 360, 2008 IEEE Congress on Evolutionary Computation, CEC 2008, pp. 378–385. cited
By (since 1996) 4.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-55749108355&partnerID=40&md5
=304d6784cd00eac6e253229092ba7788

[37] Wilson, G. & Banzhaf, W. [2009]. Deployment of cpu and gpu-based genetic
programming on heterogeneous devices, Proceedings of the Conference Companion
on Genetic and Evolutionary Computation Conference, Late Breaking Papers, ACM,
pp. 2531–2538.

[38] Wilson, G. & Banzhaf, W. [2010]. Deployment of parallel linear genetic programming
using gpus on pc and video game console platforms, Genetic Programming and Evolvable
Machines 11(2): 147–184. cited By (since 1996) 2.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-77954814128&partnerID=40&md5
=8e8091dedc7d49dfccc20e0f569af0ce

113Parallel Genetic Programming on Graphics Processing Units

20 Will-be-set-by-IN-TECH

[39] Wong, M.-L. & Wong, T.-T. [2006]. Parallel hybrid genetic algorithms on consumer-level
graphics hardware, Proc. of the Congress on Evolutionary Computation, pp. 2973 –2980.

[40] Wong, M., Wong, T. & Fok, K. [2005]. Parallel evolutionary algorithms on graphics
processing unit, Evolutionary Computation, 2005. The 2005 IEEE Congress on, Vol. 3,
pp. 2286–2293 Vol. 3.

[41] Yu, Q., Chen, C. & Pan, Z. [2005]. Parallel genetic algorithms on programmable
graphics hardware, Proc. of the international conference on Advances in Natural Computation,
Springer-Verlag Berlin, pp. 1051–1059.

114 Genetic Programming – New Approaches and Successful Applications

