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1. Introduction 

With the advent of computers a wide range of mathematical and numerical models have 

been developed with the intent of predicting or approximating parts of hydrologic cycle. 

Prior to the advent of conceptual or process based models, physical hydraulic models, 

which are reduced scale representations of large hydraulic systems, were used commonly in 

water resources engineering. Fast development in the computational systems and numerical 

solutions of complex differential equations enabled development of conceptual models to 

represent physical systems in almost all arenas of life including hydrological and water 

resources systems. Thus, in the last two decades large number of mathematical models was 

developed to represent different processes in the hydrological cycle. Hydrological models 

can be broadly classified in to three.  

1. Physical models 

2. Conceptual models 

3. Statistical / Black box models 

Physical models are reduced scale representations of the actual hydrological system and the 

responses obtained from these models are up-scaled to estimate the responses of the real 

system. Conceptual models are based on different individual processes or components of a 

hydrological process. For example, in modelling the watershed response to a storm event a 

conceptual model make use of different equations to compute different components like 

subsurface flow, evapo-transpiration,   channel flow, groundwater flow, surface run off etc. 

The third type of modelling involves using mathematical and statistical techniques to fit a 

model to a data set which then relates the dependent variable to the independent variables. 

This type of modelling includes regression models, response matrix, transfer functions, 

neural networks, support vector machine etc. The most widely used “black box” type 

modelling approach in hydrology and water resources literature is neural networks. Genetic 
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programming is a potential tool to develop simple and efficient functional relationship 

between hydrological variables. In spite of the wide range of possible applications in 

hydrology and water resources, GP has not been widely reported in the hydrology and 

water resources literature.  The focus of this chapter is to discuss the potential applicability 

of genetic programming to develop simple and computationally efficient hydrological 

models, in light of a few studies reported in the recent years. The key points discussed are as 

follows; 

1. GP’s ability to develop simple models with interpretability to overcome the curse of 

“black box” nature of data intensive models. 

2. Lesser number of parameters used in GP models as compared to parallel neural 

network architectures. 

3. GP’s ability to parsimoniously identify the significance of the modelling inputs. 

1.1. Genetic programming as a modelling tool 

Genetic programming belongs to and is one of the latest members in the family of 

evolutionary computation. Evolutionary computation refers to the group of 

computational techniques which are inspired by and emulate the natural process of 

evolution which resulted in the formation of  the entire variety of organisms present on 

earth. Just as the way evolution and natural selection has resulted in the formation of 

organisms that are competent and best suitable inhabitants to live in any natural 

environment, the principle has been applied in computational science to evolve solutions 

to complex engineering problems which are subject to random and chaotic environments 

similar to the circumstances in which natural evolution has occurred. Evolutionary 

computation forms the basic principle behind the evolutionary algorithms like genetic 

algorithm (GA), genetic programming (GP), Evolutionary programming, evolution 

strategy, differential evolution. Evolutionary algorithms, widely used in mathematical 

optimization, are in general based on the application of evolutionary principles like 

selection, cross-over and mutation to a “population” of candidate solutions over a 

number of generations to find the optimal solutions to an engineering problem. Genetic 

algorithm is, for example, a widely used optimization techniques using these principles 

as the basic “operators” of the algorithm. Genetic programming [1] is similar to genetic 

algorithm in this aspect that it uses these genetic operators selection, cross-over and 

mutation in its algorithms. However, the uniqueness of genetic programming is that it 

performs these operators over symbolic expression or formulae or programs rather than 

over numbers which represent the candidate solutions. Thus, in genetic programming 

the candidate solutions are symbolic expressions or formulae. In a modelling framework 

these symbolic expressions or formulae or programs are candidate models to simulate a 

physical phenomenon. The parse tree notations of two parent and offspring genetic 

programs are shown in figure 1. Thus the optimal formula that is evolved by genetic 

programming can be used as a best fit model for predicting the physical phenomenon 

under consideration.  
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Figure 1. Symbolic representation of parent and offspring genetic programs 

In figure 1, two parent programs to model a physical phenomenon are shown. After testing 

these programs for their modelling performance, they are operated by cross-over operator. 

That is, parts of the programs are crossed over at the dashed locations to generate the 

offspring programs. Also, mutation is illustrated by arbitrarily changing the parameter 2 to 

6.   

In the last decade a few studies in the broad area of hydrology have utilized genetic 

programming based models for making hydrological predictions. The utility of GP in 

developing rainfall-runoff models, which are highly non-linear models was addressed in [2] 

They combined the use of GP based models with other conceptual models in deriving useful 

hydro-climatic models.  It was concluded that GP was able to develop more robust models 

in that the functional relationships between different model inputs could be easily identified 

thus resulting in more transparency of the “black box” type of modelling. Another study  [3] 

applied genetic programming and artificial neural networks in hydrology to model the 

effect of rain on the runoff flow in an urban basin. This study also illustrated the possibility 

of including the physical basis of the problem in the GP based model. Another research in 

this direction [4] compared three different artificial intelligence techniques viz, neural 

networks, adaptive neuro-fuzzy inference system (ANFIS), and genetic programming for 

discharge routing of a river in Turkey. The study revealed that GP displayed a better edge 

over the other two modelling approaches in all the statistics compared like the mean 

absolute error (MAE), mean squared relative error (MSRE) and correlation coefficient.  Kisi 

et al (2010) [5] developed a wavelet gene expression programming (WGEP) for forecasting 

daily precipitation and compared it with wavelet neuro-fuzzy models (WNF). The results 
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showed that WGEP models are effective in forecasting daily precipitation with better 

performance over WNF models. Selle [6] utilized genetic programming to systematically 

develop alternative model structures with different complexity levels for hydrological 

modelling with the objective of testing whether GP can be used to identify the dominant 

processes within the hydrological system. Models were developed for predicting the deep 

percolation responses under surface irrigated pastures to different soil types, water table 

depths and water ponding times during surface irrigation. The dominant process in the 

model prediction as determined from the models generated using genetic programming was 

found to be comparable to those determined using conceptual models. Thus it was 

concluded that Genetic programming can be used to evaluate the structure of hydrological 

models. A common aspect of GP based modelling that all these studies reported is the fact 

that the GP modelling resulted in fairly simpler models which could be easily interpreted 

for the physical significance of the input variables in making a prediction. Jyothiprakash and 

Magar (2012) [12] performed a comparative study of reservoir inflow models developed 

using ANN, ANFIS and linear GP for lumped and distributed data. The study reported 

superior performance of GP models over ANN and ANFIS models. 

2. Simple and interpretable hydrological models using genetic 

programming 

The major drawback of all the data driven modelling approaches is the black box nature of 

these models, i.e., the user cannot easily identify what is happening in model which 

computes the outputs corresponding to the inputs supplied to the model. One of the key 

advantages of genetic programming as a modelling tool is its ability to develop simple 

hydrological models. The simplicity of the models is close associated with their 

interpretability. The simpler the models are the better they can be interpreted. This in turn 

helps in assessing the contributions of different members of the predictor set or inputs in 

making a particular prediction. Selle and Muttil (2011) utilized this capability of GP to test 

the structure of hydrological models to predict deep percolation response in surface 

irrigated pastures. Data obtained using lysimeter experiments were used to develop simple 

models using genetic programming. The developed models were simple and interpretable 

which helped in identifying the dominant processes involved in the deep percolation 

process. Often the developed models could be expressed as simple algebraic equations. The 

dominant processes identified compared well with the same as used in conceptual models. 

The study also investigated the recurrence of the models developed using GP in multiple 

runs and found out that they were consistently coming up with the same model for a given 

level of complexity of the model. However, the study also reported that as the level of 

complexity increases recurrence of the generated model were affected and the physical 

interpretability of the models decreases and hence careful understanding of the complexity 

of the system is to be considered before a level of complexity is chosen for the GP models. 

This however, illustrates that carefully developed GP models remain mathematically simple 

and are readily interpretable to the extent that the dominant processes which influence the 
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prediction could be readily identified from the model structure.  When carefully 

implemented models can throw light into and identify the key physical processes 

contributing to the phenomenon predicted and hence the development of the model. This is 

an important feature lacking from many of the data mining based prediction models 

resulting from which these modelling approaches are often earmarked as “black-box” 

models. “Black-box” nature of the prediction models often result in the limited use of such 

models for practical predictive  applications.  

2.1. Model complexity of GP and neural networks – Comparative study  

The authors had conducted a study [7] to evaluate the complexity of predictive models 

developed using Genetic programming in comparison with models developed using 

neural networks. The models based on GP and neural network were developed as 

potential surrogate models to a complex numerical groundwater flow and transport 

model.  The saltwater intrusion levels at monitoring locations resulting due to the 

excitation of the aquifer by pumping from a number of groundwater pumping wells were 

modelled by using GP and neural networks. The pumping rates at these groundwater 

well locations for three different stress periods were the inputs or independent variables 

for the model. The resulting salinity levels at the monitoring locations were the dependent 

variables or outputs.  

The GP and ANN based surrogate models were trained based on the training and validation 

data generated using a three dimensional coupled flow and transport simulation model 

FEMWATER. The GP models were developed using a software Discipulus, which uses a 

linear genetic programming algorithm. The ANN surrogate models were developed using a 

feed forward back propagation algorithm implemented in the software neuroshell. The 

input data considered were the pumping rates at eleven well locations over three different 

time periods, constituting 33 input variables. Since pumping at each location can take any 

real value between the prescribed minimum and maximum these input variables constitute 

a 33 dimensional continuous space, each dimension representative of a pumping rate at a 

particular location in a particular stress period. Hence efficient training of the GP and ANN 

models required carefully chosen input data which is representative of the entire input 

space. Latin hypercube sampling was performed to choose uniformly distributed input 

samples from the 33 dimensional input space. An input sample is a vector of 33 values of 

pumping rate at 11 well locations during three stress periods. The salinity level at each 

observation location is the dependent variable or output. The values of the outputs required 

for training the GP and ANN models were generated by running the FEMWATER model. 

The numerical simulation model was run numerous times to generate the output data set 

corresponding to each input vector. The input-output data set generated following this 

procedure was divided into two sets with three quarters of the data in one set and the rest in 

the other. The larger set was used for training GP and ANN models and the smaller one was 

used for validating the models. The members of the training and validation sets for both GP 

and ANN were chosen randomly.  
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The ANN used in the study was trained in the supervised training mode using   a back 

propagation algorithm. The objective function considered for both the GP and ANN training 

was minimization of the total root mean square error (RMSE) of the prediction. The 

prediction error was calculated as the difference between the model (GP or ANN) predicted 

values and the actual from the numerical model generated data set.   

The input-hidden-output layer architecture for the ANN model was optimized by trial and 

error. Both GP and ANN models had 33 input variables and 3 outputs. The number of 

hidden neurons in the ANN model was determined by adding 1  hidden neuron during 

each trial. A sigmoid transfer function and a learning rate of 0.1 were used. In developing 

the model the back propagation algorithm modifies the connection weights connecting the 

input-hidden and output neurons by an amount proportional to the prediction error in each 

iteration and repeats this procedure numerous times till the prediction errors are minimized 

to a pre-specified level. Thus for any given model architecture (model structure) the neural 

network model optimizes the connection weights to accomplish satisfactory model 

predictions. Where as the genetic programming modelling approach is different in that it 

evolves the optimal model architecture and their respective parameters in achieving 

satisfactory predictions.  

The GP models developed used a population size of 500, mutation and cross over 

frequencies of respectively 95 and 50 percent. The number of generations were not specified 

a priory, instead the evolutionary process was stopped when the fitness function was less 

than a critical value. In order to achieve the simplest models, the mathematical operators 

where initially kept a minimum and then further operators were added into the functional 

set. In this manner, initially addition and subtraction were alone added in this set and later 

the operators multiplication, arithmetic and data transfer were added into the set.  

The predictive performance of the GP and ANN models on an independent set of data were 

found to be satisfactory in terms of the correlation coefficient and minimized RMSE. Figure 

2 and 3 respectively shows the ANN and GP predictions of salinity levels at three 

monitoring locations corresponding to the their corresponding values from the numerical 

simulation model A dissection of the GP and ANN models were performed to evaluate the 

model complexity.  The modelling framework of the GP models essentially has a functional 

set and a terminal set. The functional set comprises of the mathematical operations like 

addition, subtraction, division, multiplication, trigonometric functions etc. The terminal set 

of GP comprises of the model parameters which are also optimized simultaneously as the 

model structure is optimized. In our study the developed GP models used a maximum 

terminal set size of 30. i.e., satisfactory model predictions could be achieved with only 30 

parameters for the GP model. 

The functional operators essentially develop the structure of the GP models by operating on 

the input variables. In the GP modelling framework this model structure is not pre-specified 

unlike the ANN models. Instead, the model structure is evolved in the course of model 

development by testing numerous different model structures. This approach definitely 

provides scope for the development of improved model structures as against the ANN 
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method. In the ANN approach where comparatively only a few models are tested in the trial 

and error approach which does not implement an organized search for better model 

architectures. The only components that are optimized during the development of the ANN 

model are the connection weights. Thus the model structure is rigid and is retained as 

determined by the trial and error procedure. This gives lesser flexibility in adapting the 

model structure with respect to the process being modelled. In our study it was found that 

while GP models required only 30 parameters in developing the model the number of 

connection weights in the ANN models was 1224. This is a metric of the simplicity of the GP 

models as against the ANN models. From figures 2 and 3 it is observed that despite the 

simplicity of the model and much lesser number of parameters used GP predictions are very 

similar to the ANN model predictions. For each hidden neuron added into the ANN 

architecture the number of connection weights increases by a number equal to the total 

number of inputs and outputs. Hence there is a geometric increase in the number of 

connection weights with increase in the number of hidden neurons in ANN architecture.   

The comparison of the number of parameters in itself testifies the ability of the genetic 

programming framework to develop simpler models. The impact of the number of 

parameters on the model is on the uncertainty of the predictions made using the model. The 

more the number of parameters, the more uncertainty in them and hence this uncertainty 

propagates into the predictions made.  

3. Parsimonious selection of input variables 

Another key feature of the genetic programming based modelling approach is the ability of 

genetic programming to identify the relative importance of the independent variables 

chosen as the modelling inputs. Many often in hydrological applications it is uncertain 

which variables are important to be included as inputs in modelling a physical 

phenomenon. Similarly time series models are used quite often in predicting or forecasting 

hydrological variables. For example the river stages measured on a few consecutive days 

can be used to forecast the river stage for the following days. In doing so the number of past 

days’ flow to be included as inputs into the time series model depends on the size and shape 

of the catchment and many similar parameters. Most often rigorous statistical tests like auto-

correlation studies are conducted to determine whether an independent variable is 

significant to be included in the model development or not. Once included most often it is 

not possible to eliminate from most of the modelling frameworks because of the earlier 

mentioned rigidity of the model structure. For example, in neural networks an insignificant 

model input should be ideally assigned zero connection weights to the output. However, 

these connection weights most often don’t assume the zero value but converge to very small 

values near zero. This results in the insignificant variable being influencing the predictions 

made by a small amount. These results in uncertainties in the predictions made.  

The evolutionary process of determining the optimum model structure helps GP to identify 

and eliminate insignificant variables from the model development. The authors conducted a 

study dissecting the neural network and GP models developed in the same study described 
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above to evaluate the parsimony in the selection of inputs for model development. GP 

evolves the best model structure and parameters by testing millions of alternate model 

structures. The relative importance of the each independent variable in the model 

development was computed by the recurrence of each independent variable in the best 30 

models developed by GP. Thus, if an input appears in all the 30 models its impact factor is 1 

and if one independent variable appears in none of the best 30 models its impact factor is 0.  

 

Figure 2. Salinity predictions at three locations by the ANN models 

To determine the significance of the inputs in the neural network model a connection 

weights method was used [7]. In this method the significance of each input is computed as a 

function of the connection weights which connects it to the output through the hidden layer. 

The formulae used in [7] were used to compute this; 

1. First step in this approach was to compute the product of the input-hidden layer and 

hidden output layer weights. The, divide this by the sum of products of absolute values 

of the input-hidden and hidden output layer weights of all input neurons. This is given 

by 
ih

Q  in (2) 
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2. Divide the sum of the 
ih

Q  for each hidden neuron by the sum for each hidden neuron 

of the sum for each input neuron of
ih

Q , for each i. The relative importance of all output 

weights attributable to the given input variable is then obtained. The relative 

importance is then mapped to a 0-1 scale with the most important variables assuming a 

value of 1. A RI value of 0 indicates an insignificant variable. 
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In this manner, the significance of each independent variable (input) to the model was 

quantified in a 0-1 range as impact factor and relative importance respectively for GP and 

ANN models. These values for GP and ANN models are plotted in figures 4,5 and 6.  

 

 

 

 
 

 

 

Figure 3. Salinity predictions at three locations by the ANN models 
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Figure 4. Impact factors of input variables in predicting Salinity at location 1. 

 

Figure 5. Impact factors of input variables in predicting Salinity at location 2. 

From these figures it can be observed that all the variables considered has a non-zero impact 

in the developed ANN models. Whereas, GP is able to assign zero impact factor to those 

inputs which are not significant and thus able to eliminate them from the model. This helps 

in developing simpler models and reducing the predictive uncertainty. In figure 4 it can be 

seen that GP identified 13 inputs with zero impact factor. This implies that the pumping 

values corresponding to these inputs have negligible effect on the salinity levels at the 

observation location. Thus 13 out of the 33 inputs considered are eliminated from the GP 

models resulting in much simpler models compared to the ANN models where all the 33 

inputs take part in predicting the salinity even though some of them are having very less 

impact on the predictions made. The ability of GP to eliminate insignificant variables is 

because of the evolutionary nature of model structure optimization. By performing cross-

over, mutation and selection of candidate models over a number of generations GP is able to 

derive the optimum model structure with the most important input variables which are 
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relevant to the model prediction. This inturn help in developing simpler models with fewer 

uncertainties in the model prediction.  

 

Figure 6. Impact factors of input variables in predicting Salinity at location 3. 

4. Multiple predictive model structures using GP 

The advent of GP as a modelling tool has paved the way for researches exploring the 

possibility of multiple optimal models for predicting hydrological processes. Genetic 

programming, in its evolutionary approach to derive optimal model structures and 

parameters, tests millions of model structures which can mimic the physical process 

under consideration. Researches have found that multiple models can be identified using 

GP which are considerably different in model structures but able to make consistently 

good predictions. Parasuraman and Elshorbagy [8] developed genetic programming 

based models for predicting the evapo-transporation. In doing so, multiple optimal GP 

models were trained and tested and they were applied to quantify the uncertainty in 

those models. Another study by the authors [9] developed ensemble surrogate models for 

predicting the aquifer responses to pumping in terms of salinity levels at observation 

locations. An ensemble of surrogate models based on GP was developed and the 

ensemble was used to get model predictions with improved reliability levels. The variance 

of the model predictions were used as the measure of uncertainty in the modelling 

process.  

5. GP as surrogate model for simulation-optimization 

A very important application of data intensive modelling approaches is to develop 

surrogate models to computationally complex numerical simulation models. As detailed 

elsewhere in this article, the authors have utilized GP in developing potential surrogates to a 

complex density dependent groundwater flow and transport simulation model. The 

potential utility of the surrogates is to replace the numerical simulation model in simulation-

optimization frameworks. Simulation-optimization models are used to derive optimal 

management decisions using optimization algorithms in which a  numerical simulation 
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models is run to predict the outcome of implementing the alternative management options. 

For example, the authors developed simulation-optimization models to develop optimal 

management decisions for coastal aquifers. The optimal pumping from the coastal aquifer 

can be decided only by considering the impact of any alternative pumping strategy on 

saltwater intrusion. For this the numerical simulation model needs to be integrated with the 

optimization algorithm and the impact of each candidate pumping strategy is predicted by 

using the simulation model iteratively. This involve a lot of computational burden as 

thousands of  numerical model runs are required before an optimal pumping strategy is 

identified.  

GP was used  a surrogate model within the optimization algorithm as a substitute of the 

numerical simulation model in our study (Sreekanth and Datta, 2010). Previous studies 

have used artificial neural networks as surrogate models to replace groundwater 

numerical simulation models. Emily et a1 (2005) used genetic programming based 

surrogate models for groundwater pollution source identification. In our study (Sreekanth 

and Datta, 2010), it was found that genetic programming could be used as a superior 

surrogate model in such application with  definite advantages. The study intended to 

develop optimal pumping strategies for coastal aquifers in which the total pumping could 

be maximized and at the same time limiting the saltwater intrusion at pre-specified limits. 

In doing so, the effect of pumping on the salinity levels was predicted using trained and 

tested GP models. The GP models were externally coupled to a genetic algorithm based 

optimization model to derive the optimal management strategies. The results of the GP 

based simulation-optimization was then compared to the results obtained using an ANN-

based simulation-optimization model. The ability of GP in parsimoniously identifying the 

model inputs helped in reducing the dimension of the decision space in which modelling 

and optimization was carried out. The smaller dimension of the modelling space helped 

in reducing the training and testing required to develop the surrogate models.  The study 

identified that GP has potential applicability in developing surrogate models with 

potential application in simulation-optimization methodology to solve environmental 

management problems.   

6. Conclusion 

The aim of this chapter is to introduce genetic programming as a potential modelling tool 

for hydrology and water resources applications. Genetic programming belongs to the broad 

class of evolutionary computational tools developed in recent years. Compared to the vast 

number of data mining and artificial intelligence applications in hydrology and water 

resources, the application of GP has been limited in spite of its potential applicability in a 

wide range of modelling applications. This chapter illustrates a few applications of GP as a 

modelling tool in the broad area of water resources modelling and management.  The 

studies have found GP to be a useful tool for such applications with some advantages over 

other artificial intelligence techniques. The major findings reported in this chapter are 

enumerated as follows; 
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1. Genetic programming is able to develop simple models for developing the time series 

forecast models. When compared to the complex architecture of neural networks the GP 

models are simpler and easy to analyse. This is particularly relevant in developing 

transparent models for predicting natural phenomena. Complex neural network 

architectures make ANN model more or less “black-box” in nature, where as simpler 

GP models makes it easy to analyse the physical significance of each input in the model 

development.  

2. In GP modeling, the optimum model architecture is evolved by GP after testing, most 

often, millions of alternate model structures and parameters as against the trial and 

error approach being followed by other artificial intelligence modeling approaches like 

neural networks. This helps in converging to global optimal solutions in minimizing the 

error criteria used for model development. Thus GP is able to develop global optimum 

models for predicting/forecasting hydrological processes and time series. 

3. Genetic programming has the capability of parsimoniously selecting the variables for 

model development from the potential inputs. This helps to prevent redundancy in 

model development in terms of unnecessary inputs and parameters. In course of the 

model development GP determines the significance of each input in the model 

development in an efficient way so that the totally insignificant inputs are eliminated 

from the model. As shown in the results approaches like neural network models are 

also able to identify the relative significance of the inputs, they are less efficient in 

achieving this because of the rigidity of the model structure and connection weights.  

These key advantages of GP modeling are illustrated using realistic example in the broad 

area of hydrology and groundwater management for time series model development and 

conclusions are drawn which establishes the potential of genetic programming as a 

modeling and prediction tool for hydrology and water resources application. 
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