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1. Introduction 

The World Health Organization (WHO) estimates that 84 million people will die of  

cancer between 2005-2015 [1]. According using the WHO mortality database it has been 

estimated the total number of cancer deaths in the European Union (EU) and in 2012 is 

predicted to be 1283101, of which 717398 men and 565703 women [2]. The most common 

types of cancer that will be diagnosed are lung (C33-C34), intestine (colon and rectum; C18-

C21) and prostate (C61) for men, and breast (C50), intestine (C18-C21) and lung (C33-C34) 

for women. 

Cancer is a group of diseases which cause an abnormal and uncontrolled cell  

division coupled with malignant behavior such as invasion and metastasis [3]. A tumor 

malignant is a neoplasm characterized by a failure in the regulation of tissue growth. The 

abnormal proliferation of tissues is caused by mutations of genes (oncogenes that promote 

cell growth and reproduction, and tumor suppressor genes that inhibit cell division and 

survival). Typically, changes in many genes are required to transform a normal cell into a 

cancer cell. 

It is necessary to improve our knowledge of cancer physiopathology for effective cancer 

therapy, which will allow discover new anti-cancer drugs and develop novel biomedical 

technologies. The benefits of traditional chemotherapy are limited by the toxicity associated 

with anticancer drugs in healthy tissues. The common features of cancer and healthy cells 

make it difficult to achieve pharmacoselectivity of drugs at the target site.  

The development of drug delivery systems that are able to modify the biodistribution, tissue 

uptake and pharmacokinetics of therapeutic agents is considered the great importance in 

biomedical research and the pharmaceutical industry. Controlled release in drug delivery 

can significance enhance the therapeutic effect of a drug. A constant concentration of a drug 

over an extended period of time keeping the drug concentration within the optimum range, 



 

Recent Advances in Novel Drug Carrier Systems  242 

or a pulsatile drug release in response to an environmental change, can be achieved with 

controlled drug delivery systems [4]. In these type of systems, the drug is protected from 

degradation following administration, the delivery system can be administered close to the 

tumoral cells, the drug is released with a specific patron and the action of the drug on 

tumoral cells can be direct. 

Nanotechnology, refers to the understanding and control of matter at dimensions  

between approximately 1 and 100 nanometers in at least one dimension. Nanomaterials 

have a large surface area to volume ratio and their biological and physicochemical 

properties, such as friction and interaction with other molecules, are distinct  

from equivalent materials at a larger scale. These new properties open opportunities in a 

wide variety of areas of technology, ranging from intelligent nanoscale materials to 

medicine and biology, where first nanotechnology applications have demonstrated  

an enormous potential [5]. Thus, the term nanomedicine has been taking shape and has 

been defined as the applications of nanotechnology for treatment, diagnosis, monitoring 

and control of biological systems by the National Institutes of Health [6]. Nanomedicine 

attempts to use sophisticated approaches to either kill specific cells or repair them one  

cell at a time, offering new possibilities towards the development of personalized 

medicine [7] focused on certain diseases which are currently being investigated, especially 

cancer. 

One of the most important and hopeful tools employed in nanomedicine are nanoparticles 

(NPs), which are solid, colloidal particles consisting of macromolecular substances that 

are being developed to: improve drug bioavailability, abrogate treatment-induced drug 

resistance, and reduce nonspecific toxicity in the field of medicine. Depending on the 

method of preparation NPs can be constructed to possess different properties and release 

characteristics for the best delivery or encapsulation of the therapeutic agent [8]. In all 

these types, drugs can be absorbed onto the surface, entrapped inside, or dissolved within 

the matrix of the NPs [9]. One advantage of NPs is their ability to overcome various 

biological barriers and to localize into the target tissue. The first generation of NPs 

comprises passive delivery systems that, in case of cancer, reach the tumor through the 

fenestrations in the adjacent neovasculature [10]. The unique mechanism of driving 

systems to the tumor site is the nanometer size of particles, not specific recognition of the 

tumor or neovascular targets.  

In order to optimize the therapeutic index of antitumor drugs, decreasing their toxicity  

to normal tissues, a second generation of nanosystems includes additional functionalities 

that allow for molecular recognition of the target tissue or for active or triggered release  

of the payload at the disease site. Thus, the presence of reactive pendant groups in  

NPs make easy their vectorization forward specific cell motif by binding of ligands. These 

include various ligands [11-13] that bind to specific target cell surface markers  

or surfacemarkers expressed in the disease microenvironment. Responsive systems,  

such as pH-sensitive polymers, are also included in this category. Hence, over the past 
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years, efforts have been focused on the development of nanomedicines such as NPs, 

liposomes, micelles or dendrimers for the specific delivery of anticancer drugs to tumor 

tissues [14].  

2. Physiological characteristics of solid tumors 

Tumors are characterized by poorly differentiated, highly chaotic arrangement of vessel 

which have endothelial cell-cell junctions and discontinuous basement membrane. 

Angiogenesis is not only a prerequisite for the transformation from a small, often dormant 

cluster of cancer cells to a solid tumor, but is also required for the spread of tumor. 

Microvascular network is absolutely essential for the development of solid tumors. Once a 

tumor cell cluster, whether in its initial stage as a primary tumor or in later stages when 

forming metastases, induces an angiogenic switch, its vasculature and microenvironment 

changes dramatically, and abnormal cellular organization, vessel structure, and physiology 

function develops (Figure 1). Angiogenesis is defined as the formation of new blood vessels 

from existing ones. For solid tumors of 1-2 mm3, oxygen and nutrients can reach the center 

of the tumor by simple diffusion. Because of their non-functional or non-existent 

vasculature, non-angiogenic tumors are highly dependent on their microenvironment of 

oxygen and the supply nutrients. When tumor reaches 2 mm3, a state of cellular hypoxia 

begins, initiating angiogenesis.  

Angiogenesis is regulated by a fine balance of activators and inhibitors [15]. The vascular 

endothelial grown factor (VEGF), also called vascular permeability factor (VPF), plays an 

important role in regulating the process of tumor angiogenesis. VEGF has been shown to 

stimulate the proliferation, migration and invasion of endothelial by interacting with a 

family of tyrosine kinase receptor expressed on vascular endothelium. VEGF is also known 

to have the ability to enhance the permeability of microvessels, favoring the rapid and 

reversible increases in extravasation of plasma protein in tissue [16]. In the angiogenesis 

process, different phases can be distinguished: Dilation of existing vessels, endothelial cell 

activation, migration and proliferation, hyperpermeability of postcapillary venules and 

vessel destabilization, basement membrane degradation by proteases such as matrix 

metalloproteases, cathepsines, urokinase and plasmin, endothelial cell migration, vessel 

formation and angiogenic remodeling [17]. 

The new tumor vessels formed during angiogenesis differ markedly from those of normal 

tissues and the neovasculatures is characterized by an irregular shape, high density, and 

heterogeneity, and also have different oxygenation, perfusion, pH and metabolic states. 

The abnormal vascular architecture plays a mayor role for an EPR (Enhanced 

Permeability and Retention) effect [18]. Extensive angiogenesis and hypervasculature, 

lack of smooth-muscle layer, pericytes, defective vascular architecture: fenestrations, no 

constant blood flow and direction, inefficient lymphatic drainage that leads to enhanced 

retention in the interstitium of tumor and slow venous return that leads to accumulation 

from the interstitium of tumor. 
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Physiological changes in blood flow within the tumors and in transport properties of tumor 

vessels are consequences of these vascular abnormalities. The osmotic pressure in tumors is 

high [19]. The interstitial compartment of tumors is significantly different to that of normal 

tissues. Primarily, as a result of vessel leakiness and hyperpermeability with a concomitant 

bulk flow of free fluid into the interstitial space that cannot be removed effectively due to a 

lack of functional lymphatics, due to cancer cells compress lymphatic vessels causing their 

collapsed. The lymphatic network transports interstitial fluid and immune cells out of 

normal tissue and is essential for immune function and maintenance of fluid balance in 

tissue interstitium. In tumor cells the vessels are compressed by solid stresses. The function 

of lymphatic vessels depends on their localization, when they are at the periphery of the 

tumor or the periphery tumor interface possesses functionality, while those within the 

tumor are functionality defective. VEGF factors (VEGF-C and VEGF-D) and their 

corresponding receptors have been identified as specific lymphangiogenesis factors in 

several tumors, and have been implicated in increased lymphatic metastases in numerous 

tumors [20].  

 

Figure 1. Differences between healthy and tumor tissues. A) Healthy tissue is characterized by a good 

flow in blood vessel. These vessels are supported by pericytes with a good physiological organization 

and structure. They provide adequate amounts of glucose and oxygen to normal cells. Collagen fibres, 

fibroblasts and macrophages are present in the extracellular matrix. Lymph vessels are present and 

allow the elimination of waste products. B) Tumoral tissue is characterized by vascular disorganization, 

with fenestrations and discontinuous basement membrane, that promotes the metastasis of abnormal 

cells to other tissues, inadequate supply of nutrients and poor lymphatic network that does not drain 

properly increasing the amount of waste products in these tissues and also increasing the protons 

concentration which decrease the physiological pH. Components of extracellular matrix (collagen fibres, 

fibroblasts and macrophages) in this type of tumor tissue are also increased 
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Leaky tumor vasculature and dysfunctional lymphatics in tumor interstitium result in 

undesirable accumulation of vascular contents in the tumor leading to interstitial 

hypertension [19]. In normal tissues the interstitial fluid pressure (IFP) is approximately 0 

mm Hg, and the pressure in the capillary is around 1-3 mmHg, this gradient facilitates the 

transport of macromolecules. In tumor tissues the pressure gradient is contrary, 

consequently, interstitial hypertension results in reduce convection across the walls of 

tumor blood vessels. IFP tends to be higher at the center of solid tumors, diminishing 

toward the periphery, creating a mass flow movement of fluid away from the central region 

of tumor. The microvasculature pressure in tumors is also one to two orders of magnitude 

higher than in normal tissues.  

Abnormal tumor vasculature reduces blood flow and limit delivery of oxygen throughout 

the tumor resulting in regions of hypoxia. There are different types of hypoxia: 

inadequate perfusion (ischemia), increased diffusion distance (chronic hypoxia), anemia 

and hypoxemia [20]. The hypoxic condition initiates signaling events that trigger  

the upregulation of multiple pro-angiogenic factors in the tumor lesion, another 

consequence, the lack of oxygen promotes an anaerobic metabolism of tumor cells and an 

extracellular acidosis in tumor tissues, primarily due to excessive production of lactic acid 

and CO2 [20].  

So, while the intracellular pH of cells within healthy tissues and tumors is similar, tumors 

exhibit a lower extracellular pH than normal tissues. Accordingly, although tumor  

pH may vary according to the tumor area, average extracellular tumor pH is between 6.0 

and 7.0, whereas in normal tissues and blood the extracellular pH is around 7.4 [21-22]. 

Low pH and low pO2 are intimately linked and a variety of insights now support their 

roles in the progression of tumor from in situ to invasive cancer [23]. The low extracellular 

tumor pH mostly arises from the high glycolysis rate in hypoxic cancer cells. However, 

ATP hydrolysis, glutaminolysis, and ketogenesis also contribute to this extracellular 

acidic pH.  

Therefore, due to the cancer cell presents differences compared to normal cell including 

vascular abnormalities, interstitial pressure, oxygenation, pH, metabolic states, and 

abnormal lymphatics, a preferential accumulation of encapsulated drug at desired sites can 

be obtained either by passive or active targeting. 

3. Targeted drug delivery nanoparticles 

Targeted NP therapeutics have shown great potential for cancer therapy, as they provide 

enhanced efficacy and reduced side effects [24]. NP drug delivery can be either an active or 

passive process. Passive delivery refers to NP transport through leaky tumor capillary 

fenestrations into the tumor interstitium and cells by passive diffusion or convection [25]. 

Selective accumulation of NP and drug then occurs by the already mentioned characteristics 

of the tumor microenvironment (Figure 2).  



 

Recent Advances in Novel Drug Carrier Systems  246 

 

 

 
 

Figure 2. NPs are more able to reach tumor cells through passive targeting due to the characteristics of 

tumor tissue (vascular disorganization, fenestrations, discontinuous basement membrane, etc.). In 

normal tissues the lower amount of nanoparticles that able to reach it are removed by lymph vessels 

while, in tumor tissues, lymphatic network is too damaged to perform its function promoting the 

accumulation of nanoparticles in the tissue. The functionalized nanoparticles are internalized not only 

by passive targeting but also by active targeting. This active targeting is more effective in the tumor 

tissue due to tumor cells overexpress some receptors that allow them a better uptake of functionalized 

nanoparticles. 

Active targeting involves drug delivery to a specific site based on molecular recognition. 

One such approach is to couple a ligand, such monoclonal antibodies, lectins, aptamers, 

folate, and peptides, to a NP so that the ligand can interact with its receptor at the target 

cell site (Figure 2). Depending on the type of ligand-receptor interaction, the rate of 

cellular internalization would differ. This is an important factor as rates of internalization 

could affect the accumulation of NP in tumor sites. The use of a targeting moiety also 

facilitates cellular uptake of the drug by receptor mediated endocytosis, which is an active 

process requiring a significantly lower concentration gradient across the plasma 

membrane than simple endocytosis. Thus there is plenty of room to improvise these 

systems to address the above-mentioned issues and different groups are working to 

improve the targeting properties of NPs and for the development of targeted therapeutics 

[26]. In table 1 are shown various nanocarriers evaluated to deliver therapeutic agents into 

cancer cells.  
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Ligand Nanosystem Drug Cell/tumor model Reference 

AS1411 DNA apt 
nucleolin /liposomes cisplatin MCF-7 [27] 

PEG-PLGA NPs PTX C6 glioma cells [28] 

Sgc8c apt SWNTs Dau 

acute lymphoblastic 

leukemia T-cells 

(Molt-4). 

[29] 

Thrombin apt Mesoporous silica NP Dtxl HeLA cells [30] 

EGF SWNTs Cisplatin HNSCC [31] 

antiHER-2 ab: 

Trastuzamab 
PLGA/MMT NPs PTX breast cancer [32] 

Tf 

PLA-PEG NPs PTX 
BT4C rat glioma 

model 
[33] 

PLGA–NPs PTX 

C6 glioma cells 

PC3 Prostate cancer 

cell 

[34] 

G4 PAMAM dendrimers Dox, C6 glioma cells [35] 

FA 

G5 PAMAM dendrimers MTX 
human KB tumor 

xenografts 
[36] 

PEG liposomes Dox KB cells [37] 

NIPA-NPAM-2AAECM
5-FU, 

TMX 

T47D cells, HeLa 

cells 
[38] 

cRGD PEG-PTMC micellar NPs PTX U87 MG cells [39] 

Antiαv integrin ab HSA NPs Dox Melanoma cells [40] 

Table 1. Examples of nanocarriers used for active targeted drug delivery 

3.1. Aptamers 

Originally discovered in 1990, aptamers are short nucleic-acid-based single stranded ligands 

(DNA, RNA, oligonucleotide), whose size could vary from 20 to 80 nucleotides [27,41], that, 

through intramolecular interactions, fold into unique tertiary conformations capable of 

binding to target proteins with high affinity (KD=10 pmol/l to 10 µmol/l) and specificity. This 

property makes them an attractive class of targeting molecules as they are also 

nonimmunogenic and exhibit remarkable stability. Aptamers can tolerate a moderate 

change in temperature, pH (4-9), and ionic strength, and can be processed with organic 

solvents without a lost of activity [13]. Aptamers are chemically synthesized and they 

possess additional advantages over natural antibodies [42] including a smaller size, and 

single-chain variable fragment antibodies what allows for more efficient penetration into 

biological compartments [43] and due to which they accumulate quickly within the tumor 

tissue. It is possible to chemically modify aptamers to facilitate covalent conjugation to 

nanomaterials, for example, with 50 or 30 amino or thiol groups. These properties in 

aptamers enable them to withstand the common production conditions encountered during 

NP preparation. However, due to this small size, aptamers can be cleared quickly by the 
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kidneys. To delay their clearance, polyethylene glycol (PEG) or cholesterol can be added to 

aptamer NPs [44-45]. Aptamers that are internalized by cells can be used to study 

internalization pathways or used as drug targeting agents [24].  

Traditionally, a number of compounds were assayed to isolate a ligand for the production of 

aptamers. However, development of a technique called ‘in vitro selection’ or Systematic 

Evolution of Ligands by Exponential Enrichment (SELEX) has allowed the rapid and 

selective production of aptamers. Briefly, the SELEX method starts with a random library of 

1013–1016 single-stranded DNA or RNA and uses an iterative process that specifically 

amplifies sequences that have high binding affinity to the target molecules [46-47]. Although 

many complex forms of SELEX exist, there are two basic forms of SELEX (Cell-SELEX and 

Automated SELEX) [41]. 

Aptamers can be designed as targeting ligands, and can differentiate diseased cells from 

healthy cells, thus enabling the selective delivery of therapeutic compounds to target cells 

[41,47]. A large number of aptamers have been raised against cancer-associated antigens 

such us AS1411 aptamer for targeting nucleolin protein, which is highly expressed in the 

membrane of cancer cells [48-49], aptamers CPG 7909 and IMO 2055, that target Toll-like 

receptor 9 (TLR9), which is expressed by certain immune cells, TD05 aptamer, which was 

selected for the Burkitt’s lymphoma Ramos cell line [47], Sgc8c aptamer which targets 

leukemia biomarker protein tyrosine kinase-7 (PTK7) [46,50] and can recognize target 

leukemia cells, DNA aptamers to leukemic lymphoid (CEM) cells [46], and 

fruoropyrimidine RNA aptamers which target Prostate-specific membrane antigen (PSMA) 

[51] for targeting prostate cancer. And also another aptamers against antigens such as 

pigpen [52] for targeting the tumor microvasculature, or mucin 1 (MUC1) [53] for targeting 

various epithelial neoplasms that upregulate MUC1, whose expression has been associated 

with carcinomas. 

Aptamer-functionalized NPs have also been widely used for cancer cell specific drug 

delivery. Aptamers that were conjugated to NPs resulted in increased targeting and more 

efficient therapeutics, as well as more selective diagnostics. For instance, it has been 

synthesized NPs of poly(D,L-lactide-coglycolyde) [PLGA] and PEG triblock copolymer 

using aptamers as a targeting ligand for PSMA and Docetaxel (Dtxl)-encapsulated 

demonstrated that they bind and are taken up by LNCaP prostate ephitelial cells resulting in 

a significantly enhanced in vitro cellular toxicity as compared with nontargeted NP [24]. In 

the same way A10 aptamer is being explored for the targeted delivery of several anticancer 

agents, by including paclitaxel (PTX) and cisplatin in NPs [51,54]. Guo and coworkers 

conjugated DNA aptamers to a PEG-PLGA NP as a novel drug delivery system capable of 

targeting cancer cells and endothelia cells in angiogenic blood vessels [28]. In the tested C6 

glioma cells, aptamer-nucleolin specific binding resulted in the cellular association of NPs 

and thereby enhanced the cytotoxicity of the PTX delivery. They suggested the potential of 

utilizing Ap-PTX-NP as therapeutic drug delivery platform for gliomas treatment [28].  

Besides organic NPs, inorganic systems of Au-Ag nanorods (NRs) were synthesized to serve 

as a platform for binding several aptamer molecules. Thus, Au-Ag NRs have been 
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conjugated with multiple anti-PTK7 aptamers, such as scg8 aptamer, for targeted cancer 

photothermal therapy [48,55]. By using Au-Ag NRs that can be conjugated around 80 

aptamers, 26 times higher binding affinity was obtained compared to individual aptamer 

strands [48]. By functionalizing the surface of Au NPs with an RNA aptamer that binds to 

PSMA, NP–aptamer conjugates were used for targeted molecular computed tomography 

imaging and treatment of prostate cancer [56].Yin et al. reported a one-step method for the 

synthesis of DNA-aptamer templated fluorescent silver nanoclusters (AgNCs) [57]. The 

Sgc8c aptamer strands were immobilized onto AgNCs through cytosine-rich sequence, and 

the resulting Sgc8c-modified AgNCs showed specific targeting to CCRF-CEM cancer cell 

over control cells.  

In addition to their ability to recognize a target molecule with high specificity, certain 

aptamers can also modulate the activities of proteins implicated in pathological conditions, 

making aptamers potentially useful as pharmaceutical agents. For instance, one of the most 

important success of aptamers so far has been the development of aptamers that are able to 

bind VEGF [58] such as Pegaptanib sodium aptamer (Macugen, Pfizer, and Eyetech). 

However, as aptamers are expensive to produce, it is more economical to use aptamers as 

targeting agents rather than as therapeutic agents. Another example is AS1411, that binds 

specifically to nucleolin, a bcl-2 mRNA binding protein involved in cell proliferation, which 

is found on the surface of many cancer cells. Once bound, the AS1411 aptamer is taken into 

the cancer cell, where it causes death by apoptosis [47,59].  

Furthermore, antidotes for anticancer agent toxicities are of interest to regulate drug activity. 

Thus, aptamers can also be prepared as antidotes for anticancer drugs to modulate 

anticancer effects. In this way, cDNA aptamer was recently designed for inhibiting cisplatin 

activity. The multifunctional carrier system consisted of cisplatin as the anticancer agent, 

which was encapsulated within a liposomal system and conjugated to AS1411-derived 

aptamer. In the absence of cDNA, the targeted NP showed cell-specific targeting and an 

improved cytotoxicity. When de cDNA aptamer was administered, it inhibited the cytotoxic 

activity of cisplatin. However, the interval between the administration of cDNA and NP 

seemed to be critical [11,27]. 

3.2. Human epidermal receptor 

The Human epidermal receptor (HER)-family tyrosine kinases play a central role in the 

proliferation, differentiation, and development of cells as they are known to mediate a cell 

signaling pathway for growth and proliferation in response to the binding of the growth 

factor ligand [60]. The family consists of four members: epidermal growth factor receptor 

(EGFR or HER1), HER2 (also known as ERBB2 or HER-2/neu), HER3 and HER4. Each of 

these receptors has an extracellular region, a single transmembrane region, and a 

cytoplasmic sequence containing a tyrosine kinase domain and a C-terminal tail [61]. 

EGFR has six known endogenous ligands: EGF, transforming growth factor-α (TGF-α), 

amphiregulin, betacellulin, heparin-binding EGF (HB-EGF), and epiregulin [60]. Using any 

of these ligands as targeting moieties offers a method for targeting the EGFR; especially 
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TGF-α and EGF as are the most commonly detected in humans. Ligand binding to EGFR 

results in activation of intracellular signaling cascades in cancer cell proliferation, apoptosis, 

migration, sensitivity to chemoradiation therapy, and tumor angiogenesis, and the complex 

is internalized for destruction and recycling [12, 62-63]. Over one-third of all solid tumors 

have been shown to express EGFR, and in many of these tumors, EGFR expression 

characterizes a more advanced disease stage [60]. The presence of EGFR corresponds 

directly to the metastatic capabilities in various types of cancer, such as colorectal [12]. 

Among the wide range of tumors that overexpress EGFR are breast, lung, colorectal, 

pancreatic cancers [63], glioblastomas [64], and brain cancers [65].  

Hence EGF target delivery systems have been used in cancer molecular imaging diagnosis 

and therapy [63]. Thus, cisplatin and EGF were attached to single-wall carbon nanotubes 

(SWNTs) to target squamous cancer cells HNSCC which overexpress EGFR. Through Qdot 

luminescence and confocal microscopy, it was shown that SWNT–Qdot–EGF bioconjugates 

was rapidly internalized into the cancer cells, and HNSCC cells were selectively killed in 

vitro, while tumor growth was regressed in vivo [31]. A current cancer treatment that 

targets EGFR is the monoclonal antibody Cetuximab, which targets the extracellular domain 

of EGFR and small-molecule inhibitors of tyrosine kinase activity [66]. One study showed 

that boronated immunoliposomes with conjugated Fab′ fragments of Cetuximab mAb 

delivered ~8 times more boron to EGFRpositive cells (F98EGFR) than non-targeted IgG 

immunoliposomes [67].  

With regard to HER2, among tumor biomarkers the HER2 membrane receptor is one of the 

most promising targets for immunotherapy. The surface accessibility, the high level of 

expression in certain primary and metastatic tumors and the internalization of these 

antigens via receptor-mediated endocytosis [68] promote preferential intracellular 

accumulation of drug nanocarriers [69]. The gene encoding HER2 protein is present in 

normal cells as a single copy and is expressed at low levels in many normal epithelial cells. 

Amplified HER2 gene and its over-expressed protein product are found in many types of 

cancers, including breast, ovary, lung, pancreas [63,70], stomach and renal. The 

overexpression of HER2antigens (c-erbB-2, neu) in 20–30% of breast and ovarian cancers is 

correlated with a high occurrence of metastasis and angiogenesis processes, as well as with a 

poor prognosis [71]. The ligand binding to the extracellular domain of HERB2 causes the 

dimerization of the receptor and in this way the activation of many intracellular signaling 

proteins and physiological pathways, such as the mitogen-activated protein kinases (MAPK) 

pathway, phospahtidylinositol 3-kinase/AKT/mTOR pathway, and Src tyrosine kinase [61]. 

Thus, antibodies and antibody fragments, consisting of only the Fab binding regions, against 

the HER2 receptor are common examples of receptor targets. These antibodies generally 

exhibit strong interactions with corresponding receptors, with dissociation constants in the 

nanomolar range. The advantages of the antibody fragments is that they are smaller, and do 

not contain the Fc region of the antibody which can induce immunogenicity and antigenicity 

[72]. Antibody-labeled NP is one of the most coveted modes of active targeting of NPs. 

Blocking the activity of the upregulated receptor by binding it with a ligand, such as 
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monoclonal antibody (mAb) represented on the nanovector, would ensure arrest of the 

signalling pathway(s).  

Anti-Her2 mAbs (trastuzumab; Herceptin®), a humanized mAb designed to specifically 

antagonize HER2 function, was approved in 1998 for metastatic breast cancer 

overexpressing HER2 antigens [70]. Hence Herceptin® is used as a targeting moiety for 

various NP systems. For instance, incorporation of anti-HER2 antibodies onto the surfaces of 

PEGylated liposomes has indeed shown greater efficiency for drug delivery compared to 

non-targeted PEG-liposomes [73] and significantly higher intracellular accumulation was 

observed with targeted liposomes in xenografts of the HER2 overexpressing BT-474 tumors 

compared to MCF-7 tumors [69]. It has also been used PTX-loaded anti-HER2 

immunonanoparticles (NPs-PTX-HER) which were prepared by the covalent coupling of 

humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin®) to PTX-loaded 

poly (DL-lactic acid) NPs (NPs-PTX) for the active targeting of tumor cells that overexpress 

HER2 receptors [71]. NPs-PTX were thiolated and conjugated to activated anti-HER2 mAbs 

to obtain immunonanoparticles. The immunoreactivity and the in vitro efficacy of NPs-PTX-

HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens and it was 

demonstrated the greater cytotoxic effect of NPs-PTX-HER compared to other PTX 

formulations. Lyu and coworkers [74] used a single-chain Fv antibody (scFv23) targeting 

HER-2/neu to deliver tumor necrosis factor (TNF) to TNF-resistant pancreatic cancer cells 

and compared the cell responses to TNF alone, scFv23/TNF, herceptin, and combinations of 

scFv23/TNF with various chemotherapeutic agents including 5-Fluorouracil (5-FU), 

cisplatin, doxorubicin (Dox), gemcitabine, and etoposide. Their results indicated that 

delivery of TNF to HER2/neu-expressing pancreatic cancer cells using HER2/neu as a 

targeting molecule may be an effective therapy for pancreatic cancer especially when 

utilized in combination with 5-FU. 

3.3. Transferrin receptor 

Transferrin (Tf) (Mw=80 kDa) is the fourth most abundant serum nonheme iron-binding 

glycoprotein. It is synthesized by the liver and secreted to plasma, where it binds to 

endogeneous iron, forming the iron-transferrin chelate which is an important physiological 

source of iron for cells in the body. It helps to transport iron to proliferating cells [75], which 

is required as a cofactor for DNA synthesis [76], and it also plays a pivotal role in the 

transportation of iron for the synthesis of hemoglobin. Based on these facts, Tf can be 

potentially utilized as a cell marker for tumor detection. 

Normally at a cell, Tf offloads the iron onto a transferrin receptor (TfR). The natural ligand 

for TfR, Tf, binds to its receptor with a dissociation constant of around 40nM. TfR, also 

known as CD71, is a dimeric transmembrane glycoprotein (180 kDa) [77]. The receptor for 

Tf, referred to as TfR1, is ubiquitously expressed at low levels in most normal human 

tissues. A second member of the TfR family is TfR2, a protein that is homologous to TfR1 

but whose expression is largely restricted to hepatocytes [76]. This receptor is an attractive 

molecule for the targeted therapy of cancer since it is upregulated on the surface of many 
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cancer types and is efficiently internalized. Serving as the main port of entry for iron bound 

Tf into cells, TfR1 is a type-II receptor that resides on the cell membrane and cycles into 

acidic endosomes into the cell in a clathrin/dynamin dependent manner [78]. The low pH 

environment triggers dissociation of the iron and the iron-poor Tf is released out of the cell 

for recycling. As cancer cells rapidly proliferate, the TfR is overexpressed in the surface of 

malignant cells due to the increased requirement of iron [12]. In this sense, many studies 

have indicated that the expression level of TfR on tumor cells is much higher than that on 

normal cells [79], such as the surface of cerebral endothelium and brain tumor cells [80], 

breast cancer, prostate cancer, and squamous cell carcinomas [63]. This enhanced TfR 

expression, at levels correlating with the grade of malignancy [81], can be exploited for 

actively delivering anticancer agents specifically to tumor tissues. This receptor can be 

targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) 

to block the natural function of the receptor leading directly to cancer cell death [78]. 

A wide variety of therapeutic agents have been used for TfR-targeted cancer therapy. They 

include chemotherapeutic drugs, bacterial toxins, plant toxins, DNA, oligonucleotides, short 

inhibitory RNA (siRNA), and enzymes. Vast types of anti-cancer drugs that have been 

delivered into cancer cells employing a variety of receptor binding molecules including the 

use of its natural ligand Tf, anti-TfR antibodies, or TfR-binding peptides alone or in 

combination with carrier molecules including NPs and viruses [78].  

With regard to NPs, Tf has a number of properties that allow it to be successfully 

incorporated as a targeting ligand in NP systems, such as its stability over a wide pH range 

(3.5-11) and that has shown to be unaffected by repeated freeze-thaw cycles; hence, it can be 

subjected to processing conditions commonly encountered during NP preparation [11]. 

Furthermore, Tf is available in recombinant version (Optiferrin) [82] and, as a human 

protein, has low immunogenicity [83]. Normally, Tf can be conjugated to NPs less than 100 

nm in size to obtain an enhanced cytotoxic activity. If the NPs are greater than 100 nm, it 

may lead to poor accumulation of these NPs in the tumor cells, which results in moderate 

anticancer activity. To overcome this issue, the actively targeted system can be directly 

administered into the tumor tissue by intratumoral injection [84]. 

Tf-conjugated NPs have been explored in a number of studies for the delivery of anticancer 

agents. Thus, gold NPs were conjugated with Tf molecules for targeting, imaging and 

therapy of breast cancer cells (Hs578T, ATCC), showing that, the Tf–TfR-mediated cellular 

uptake of gold NPs is six times of that in the absence of this interaction [85].  

It has also been [86] prepared PTX loaded NPs with shells formed of the biodegradable 

polymer, PLGA, conjugated to Tf via epoxy linkages. The Tf-conjugated NPs demonstrated 

greater cellular uptake and reduced exocytosis, yielding greater antiproliferative activity 

and more sustained effects compared to the free drug or unconjugated NPs. In a similar 

way, particulate nanodrugs consisting of PLGA loaded with PTX were conjugated to Tf 

(PTX–NPs–Tf) using an epoxy compound (Denacol-EX-521) [84]. These PTX–NPs–Tf 

showed a 70% in vitro inhibition of proliferation in human prostate cancer PC3 cells, while 

at the same concentration the NPs without ligand exhibited 25% inhibition, and PTX in 
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solution resulted in a 35% [84]. Tf-conjugated lipid-coated PLGA NPs carrying the 

aromatase inhibitor, 7α-(4´-amino)phenylthio-1,4-androstadiene-3,17-dione (7α-APTADD), 

were synthesized and evaluated for aromatase inhibition efficiency in SKBR-3 breast cancer 

cells. PLGA NPs loaded with the 7α-APTADD were significantly more effective preventing 

proliferation of the human breast cancer cell line SK-BR-3 than non-targeted NPs. These 

results suggested that the aromatase inhibition activity of the Tf-NPs was enhanced relative 

to that of the non-targeted NPs, which was attributable to TfR mediated uptake [87] 

Gan and coworkers observed that Tf-conjugated poly(lactide)-D-α-tocopheryl polyethylene 

glycol succinate diblock copolymer NPs loaded with Dtxl could be more efficient eliciting 

cytotoxicity against C6 glioma cells than other nontargeted formulations [88]. 

Transferrin–PEG–adamantane (Tf-PEG-AD) conjugates synthesized for NP modification 

have been used to target malignant tumors including Ewing's sarcoma [89-90]. Thus, several 

Tf-NPs have been successfully entered into clinical trials. CALA-01 [91] is one of the first 

clinically successful transferrin-conjugated nanoparticulate system. This system consists of a 

duplex of synthetic nonchemically modified siRNA, which self-assembles to a cationic 

copolymer containing cyclodextrin, AD-PEG as a stabilizing agent, and AD-PEG-Tf as the 

targeting moiety. After administration, the nanocomplex provides siRNA protection from 

nucleases in the serum, minimizes erythrocyte aggregation, and reduces complement 

fixation. At the tumor site, the Tf binds to the tumor cell TfR, which leads to preferential 

uptake of the complex within the tumor cell. In the cell, the polymer unpacks from the small 

interfering RNA allowing it to interfere with RNA resulting in reduced tumor growth [92].  

Hydroxycamptothecin (HCPT)-loaded stealth niosomes(NS) modified with transferrin (Tf-

PEG-NS) were prepared with poly(methoxy-polyethylene glycol cyanoacrylate-co-hexadecyl 

cyanoacrylate) (MePEG-PHDCA) as surface modification material [93]. Tf-PEG-NS 

demonstrated the strongest cytotoxicity to three carcinomatous cell lines (KB, K562 and S180 

cells), the greatest intracellular uptake especially in nuclei, the highest drug concentration and 

largest area under the intratumoral HCPT concentration curve, as well as the most powerful 

anti-tumor activity compared with other niosomes. More reciently Tf modified stealth NPs (Tf-

PEG-NP) encapsulating PEG-HCPT conjugate were prepared and was studied the possibility 

of combination of the functions of passive and active targeting by Tf-PEG-NP, as well as 

sustained drug release in tumor by PEGylated drug for most efficient tumor targeting and 

anti-tumor effects enhancement. The advantages of such system included prolonging drug 

residence time in circulation and increasing EPR effect by the sterically stabilising action of 

PEG-PHDCA NPs, active targeting function of transferrin by transferring receptor-mediated 

endocytosis, and sustained releasing drug in tumor by PEGylation of the drug. The prepared 

Tf-PEG-NP showed more sustained in vitro release profile. The pharmacokinetic and 

biodistribution studies found that Tf-PEG-NP demonstrated the longest retention time in 

blood, the highest tumor accumulation, as well as the most powerful anti-tumor activity with 

the inhibition rate up to 93% against S180 tumor in mice [94]. 

A pH-sensitive dual-targeting drug carrier (G4-Dox-PEG-Tf-TMX) was synthesized with Tf 

conjugated on the exterior and Tamoxifen (TMX) in the interior of the fourth generation (G4) 

Poly(amido amine))(PAMAM) dendrimers for enhancing the blood brain barrier (BBB) [35]. 
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The pH-triggered Dox release was 32% at pH 4.5 and 6% at pH 7.4, indicating a comparatively 

fast drug release at weak acidic condition and stable state of the carrier at physiological 

environment. MDR proteins, such as P-glycoprotein (P-gp), MRP4 (ABCC4), and breast cancer 

resistance protein (BCRP), are over expressed on the BBB and glioma cells, thus causing the 

block of overcoming the BBB and low uptake of drugs by the tumor cells [95]. The in vitro 

assay of the drug transport across the BBB model showed that G4-Dox-PEG-Tf-TMX exhibited 

higher BBB transportation ability. The carrier was internalized into C6 glioma cells upon 

crossing the BBB model by the coactions of TfR-mediated endocytosis and the inhibition effect 

of TMX to the drug efflux transports. Moreover, it also displayed the in vitro accumulation of 

DOX in the avascular C6 glioma spheroids made the tumor volume effectively reduced. 

But, besides of its natural ligand, Tf, it have also been used other ligands conjugated to NPs. 

Thus, antibodies and antibody fragments against the TfR are common examples of receptor 

targets [72]. Among these are the mAbs A24 [96], Rat anti-murine TfR RI7 217 and YE1/9.9, 

Murine anti-human TfR Antibody HB21(also known as 5E9), Antibody 454A12, Antibody 

B3/25, Antibody OKT9, R17217 and OX26 mAb [95,97-99].  

For instance the R17217, a rat IgG2a antibody against the mouse TfR which binds to this 

receptor on mouse cells [99], and the OX26, a murine Ab to the rat TfR, which is used for the 

delivery of peptides across the BBB [100], have been used in NP systems. Hence, it has been 

developed human serum albumin (HSA) NPs to which Tf was coupled, and was evaluated 

the potential of these NPs to deliver drugs across the BBB and, in addition, the possibility of 

achieving similar results by the coupling of the above-mentioned mAbs against the TfR 

receptor to the NPs was investigated. The analgesic Loperamide was chosen as the model 

drug since it does not cross the BBB [101]. HSA NPs coupled to Tf or TfR-mAb are enabling 

a significant loperamide transport across the BBB into the brain. The loperamide-loaded, Tf- 

or TfR-mAb-coupled HSA NPs achieved strong antinociceptive effects, whereas IgG2a-

modified HSA NPs were not able to transport this drug across the BBB [80]. Therefore, these 

novel NPs with attached Tf or TfR-mAb represent very useful carriers for the transport of 

drugs into the brain. It have also been used fluorescein labeled Chitosan (CS) nanospheres 

conjugated with PEG obtained with the PRINT (Particle Replication In Non-wetting 

Templates) technology that were bioconjugated either with the OKT9 murine anti-human 

TfR antibody (NPs–OKT9) or with human Tf (NPs–hTf) [102]. In both cases greater than 80% 

uptake was observed in several human tumor cell lines (HeLa, Ramos, H460, SKOV-3, 

HepG2, and LNCaP) compared to bovine Tf conjugated NPs (NPs–bTf) or control IgG1 

(NPs–IgG1). The targeting efficiency was dependent on nanocarrier concentration, ligand 

density, dosing time, and level of cell surface receptor expression. For these cells a strong 

correlation was found between the viability and the amount of ligand (OKT-9 or hTf) that 

can be conjugated to the surface of the NPs, with lower cell viability associated with higher 

percentage of ligand conjugate, suggesting that the polyvalency of the moiety targeting TfR 

plays a role in the toxicity in some malignancies [102]. 

3.4. Folate receptor 

Folic acid (FA) or folate, a member of the B complex group of vitamins with small-molecular 

weight (441 Da), is required by eukaryotic cells as is an important co-factor in one-carbon 
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transfer reactions for biosynthesis of nucleotide bases (purines and pyrimidines) and plays a 

key role in DNA and RNA synthesis, epigenetic processes, cellular proliferation, and 

survival [103-104]. Since folic acid is required for essential cell function, the cargo attached 

the ligand is retained within an endocytic vesicle or released into the cytoplasm. FA 

conjugates have the ability to deliver a variety of drugs or imaging agents to pathological 

cells without causing harm to normal tissues. Furthermore FA targeting is an interesting 

approach for cancer therapy because it offers several advantages over the use of monoclonal 

antibodies. Thus, FA is known to be stable, inexpensive, non-toxic, non-immunogenic, easy 

to conjugate to carriers [105], and FA-conjugated drugs or NPs are rapidly internalized via 

receptor-mediated endocytosis. 

Distinct transporters mediate cellular FA uptake. Among them, the FA transporter named as 

the folate receptor (FR) [9]. Three FR isoforms (FR-α, FR-β and FR-γ) have been identified in 

human tissues and tumors. FA can be internalized in cells by a low-affinity (KD of 

approximately 1-5 μmol/l) membrane-spanning protein, which transports reduced FAs 

directly into the cytosol or it can be endocytosed by a high-affinity glycoprotein (KD of 

approximately 100 pmol/l). FR, often referred to as the high affinity folate-binding protein, is a 

38 kDa cell surface glycosyl-phophatidylinositol (GPI)-anchored glycopeptides that 

characteristically binds folic acid and transports it by a nonclassical endocytic mechanism 

[106]. The receptor-mediated uptake of FA conjugates proceeds through a series of distinct 

steps [107]. The process begins with the conjugate binding to FRs on the cell surface. The 

plasma membrane then invaginates and eventually forms a distinct intracellular compartment. 

The endocytic vesicles become acidified, and then lysozymes are activated allowing the FR to 

release the FA conjugates. The membrane-bound FRs recycle back to the cell surface, allowing 

them to mediate the delivery of additional FA conjugates. Concurrently, the FA conjugates 

released from FRs escape the endosome, resulting in drug deposition in the cytoplasm. 

Functional FRs are largely localized to the apical surfaces of polarized epithelia [105]. Normal 

tissues express insignificant level of FR-α and low level of FR-β (such as liver), and FR-γ is 

only found in haematopoietic cells. However, FR-α and FR-β are vastly overexpressed in 

many human tumors such as uterus, colon, lung, prostate, ovaries, mammary glands, nose, 

throat and brain [11,107-108] which makes it a rational target for drug delivery to tumor 

tissues. At the tumor site, FA has a very high affinity for tumor cell surface FR and the 

complex is rapidly internalized into tumor cells (3x105 FA molecules/h) [109]. Studies have 

shown a significant correlation between FR-α expression and the grade and differentiation 

status of the tumor, thus poorly differentiated and aggressive tumors express high levels of 

FR-α [110]. However, immunochemistry studies have shown the overexpression of FA 

receptors in normal tissues like placenta and kidneys [13]. 

A wide range of chemical conjugates of FA, antifolate drugs, and immunological agents 

have been used for developing therapeutic and imaging agents for various diseases. Thus, it 

is not surprising that FA targeted NPs have shown to be effective in a number of tumors. A 

range of polymers with an improved biocompatibility have been used for the development 

of FR-targeted NPs [11]. In a typical FR-targeted NP, the anticancer agent is encapsulated in 

a stabilizing polymer and the FA is conjugated on the surface of the polymer. PEG is often 

used as a polymer in a FR-targeted nanoparticulate system to enhance its circulation time 
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and also to improve the association of the targeted NP with the tumor cells [111]. The 

surface density and length of PEG chains should be optimal to maintain the system 

targeting and stealth properties [72]. The mole fraction of FA added to a NP system is also 

thought to affect the cytotoxic capability of the system. It is presumed that higher ligand 

content would give an enhanced targeting ability. However, when excessive FA molecules 

are present on the surface of the NPs, they can self-assemble to form dimers, trimers or 

tubular quartets, which cannot interact with FR (only one molecule of FA can bind to FR) 

[112]. FA-PEG-liposome loaded with Dox showed a 45-fold higher uptake in FR-rich KB 

cells compared to nontargeted liposomal-doxorubicin and 86-fold greater cytotoxicity. In 

mice bearing KB cell tumor xenografts, treatment with FA-targeted liposomal Dox produced 

a 31% inhibition of tumor growth [37].  

Similar to PEG, PLGA NPs can be coated with FA to target the FR to further enhance 

accumulation of these NPs into tumor cells [113]. Copolymeric nanohydrogels based on N-

isopropylacrylamide (NIPA), N-(pyridin-4-ylmethyl)acrylamide (NPAM) and tert-butyl-2-

acrylamidoethyl carbamate (2AAECM), as well as FA-conjugate copolymeric nanogels, were 

synthesized and evaluated for antitumor therapy by loading them with TMX and 5-FU. 

Nanohydrogels were assayed as TMX and 5-FU delivery systems in vitro. Cell culture 

experiments were performed using MCF7, T47D and HeLa cells which have different degrees 

of FR expression. FA-targeted nanohydrogels showed a larger uptake into T47D and HeLa 

cells due to the fact that these cells are FR-positive. Furthermore, TMX-loaded and 5-FU-

loaded nanohydrogels showed effective elimination of carcinoma cells [38]. Loaded with the 

same drugs, it have also been synthesized FA-conjugate poly[(p-nitrophenyl acrylate)-co-(N-

isopropylacrylamide)] systems. TMX and 5-FU-loaded folate-systems present effective 

elimination of both MCF7 and HeLa cellular lines, and the presence of folate in the particles 

enhances their internalization, especially in HeLa cells [114-115]. 

A natural polymer (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHBHHX) was used 

as a base matrix for the production of a novel nanotherapeutic including antineoplastic 

agent, etoposide and attached FA as a ligand on the NPs. In the cytotoxicity tests, etoposide 

loaded and folic acid attached PHBHHX NPs were observed as more effective on HeLa cells 

than etoposide loaded PHBHHX NPs without attached folic acid. Furthermore the 

cytotoxicity of folic acid conjugated PHBHHX NPs to cancer cells was found to be much 

higher than that of normal fibroblast cells, demonstrating that the FA conjugated NPs has 

the ability to selectively target to cancer cells [116].  

CS NPs have also been conjugated to FA to target contrast dye to tumor tissues. The 

mucoadhesive property of CS provides sustained interaction with the target cells and the 

FR-mediated uptake leads to an enhanced imaging effect [117]. The cytotoxic activity of CS 

NP conjugated to FA has also been explored to show a higher cellular cytotoxicity due to 

enhanced uptake by receptor-mediated endocytosis complemented with a depot effect, 

which leads to sustained drug release providing grater apoptosis and enhanced cell cycle 

arrest [118]. An alginate-complexed FA CS NP has been reported for photodynamic early 

detection of colorectal carcinoma. These NPs are readily engulfed by the cancer cells 

through FR-mediated endocytosis, furthermore an improved release in the cellular lysosome 

was observed when they are loaded with 5-aminolevulinic acid (5-ALA) [119]. 
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In other system, FA was coupled with HSA NPs through carbodiimide reaction resulting in 

the formation of HSA-NPs spheres. The cellular binding and uptake was studied in normal 

foreskin fibroblasts (HFF), human neuroblastoma cells UKF-NB3, and in rat glioblastoma 

cell lines. An inceased NP uptake was observed in cancer cells, but not in normal HFFs [9]. 

3.5. Integrin 

Integrins are heterodimeric cell-surface receptors that consist of α- and β-subunits, such as 

integrins αvβ3 and αvβ5, and which are barely detectable or entirely absent from normal 

blood vessels but are abundantly expressed on tumor-associated endothelial cells [120-121]. 

Furthermore the αvβ3 integrin is important in the calcium-dependent signaling pathway 

leading to endothelial cell migration [122]. Endothelial cells undergoing angiogenesis 

experience at least three cellular alterations, including an increase in proliferation, increase 

in locomotion, and endothelial cell interaction with the ECM. These alterations are directly 

related to the adhesion processes of the αvβ3 integrin [122]. Thus, integrins represent 

potential pharmacological targets for antiangiogenic therapy. Several antibodies and 

peptides capable of functionally blocking the αvβ3 and αvβ5 integrins have been 

demonstrated to inhibit neovascularization in tumor-bearing mice. The targeting scheme for 

the αvβ3 integrin has centered upon the three amino acid sequence RGD. An important 

characteristic of the αvβ3 integrin is that it is intrinsically associated with VEGFR-2 signaling. 

Upon αvβ3 integrin binding to the components that harbor the RGD sequence, there is an 

upregulation of VEGF signaling in cell cultures. By blocking αvβ3 integrin binding, there 

would be a reduction in VEGF signaling, proving the use of αvβ3 blocking agents for anti-

angiogenesis [120]. Targeting the αvβ3 integrin with an active targeting NP system increases 

the effectiveness of anti-angiogenic treatments by the downregulation of VEGF. 

Park and coworkers [123] reported the development of self-assembled hydrogel NPs 

capable of imbibing a peptide sequence that specifically binds to αvβ3 integrin. The authors 

observed that NPs made of hydrophobically modified CS could release the peptide in a 

sustained manner, and showed that they might be useful for monitoring or destroying 

angiogenic vessels. Peptides that contain RGD domains can preferentially bind cells in 

tumor microvasculature that express the αvβ3 integrin [13]. However, RGD sequences also 

act as adhesive molecules and can non-specifically bind tissues that also express its integrin 

complement. Integrin receptors are also expressed on the cell membrane of macrophages 

[124] and it is shown that RGD bioconjugates aggregate in spleen and liver tissues due to 

macrophage clearance [125]. 

Using an RGD-targeted stealth system, NPs carrying Dox were found to accumulate faster 

and in higher concentrations in the liver and the spleen [126]. The ligands are incorporated 

as RGD-PEG-lipid conjugates, which indicates their extension from the NP surface as a 

consequence of the brush-like state. A report showed that short peptide-targeted NPs 

exhibited lower cell-bindings abilities when higher mol% of PEG2000 was included into the 

formulation [127-128]. As a sufficient PEG coating is essential for avoiding recognition by 

the RES, ligands should be extended away from NP surfaces, to avoid shielding by the 
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polymer chains. Another study reported the targeting and imaging of MDA-MB-231 human 

breast cancer cells using RGD peptide-labeled Fluorescent silica NPs (FSiNPs). The FSiNPs 

exhibited high target binding to αvβ3 integrin receptor (ABIR)-positive MDA-MB-231 breast 

cancer cells in vitro [129].  

Peptide-labeled NPs may also be used for targeted gene silencing. A study shows that RGD-

CS-NP is a highly selective delivery system for siRNA with the potential for broad 

applications in human disease [130]. Binding of RGD-CS-NP with αvβ3 integrin and 

antitumor efficacy were examined, resulted in significant inhibition of tumor growth 

compared with controls. The targeted RGD non-peptide mimetic coupled to NPs were 

coupled to cDNA encoding ATPμ-Raf tagged with the FLAG epitope [131] and were proven 

to cause tumor regression in M21-L melanomas. Peptides harboring RGD sequences have 

also shown high efficiencies in targeting SLK tumor endothelial cells derived from Kaposi's 

sarcoma. A cyclic RGD pentapeptide was conjugated to the surface of Dox-loaded micelles 

at different densities. A higher density of RGD sequences led to a higher level of cellular 

internalization of the micelles over the range of RGD densities. A 30-fold enhancement in 

micelle internalization was achieved with 76% RGD-functionalized Dox-loaded micelles as 

compared to the non-targeted micelles [132]. 

There are studies with other ligands. Thus, integrin-targeted C16Y peptide-modified 

liposomes (C16Y-L) were prepared to enhance the intracellular uptake of drugs and genes 

specifically into tumor tissues [133]. The C16Y peptide is a 12-amino acid modified C16 

synthetic peptide (DFKLFAVYIKYR-GGC), which is derived from the laminin γ1 chain, and 

binds to integrins αvβ3 and α5β1 [134]. The cellular uptake of C16Y-L by both endothelial 

cells and cancer cells was higher than uptake of the un-labeled and scramble peptide-

modified liposomes. Moreover, to evaluate whether the uptake depended on an integrin–

ligand interaction, they examined the inhibition of C16Y-L uptake using recombinant 

integrin αvβ3 and found that the cellular uptake of C16Y-L treated with αvβ3 integrin 

decreased. This result suggests that C16Y-L can selectively target cells that highly express 

integrin αvβ3.  

Finally, a new strategy is to use a multi-targeting NP systems. For instance, PTX-loaded NPs 

based on Herein, an hyperbranched amphiphilic poly[(amine-ester)-co-(D,L-lactide)]/1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer (HPAE-co-PLA/DPPE), which 

was modified with two targeting ligands, RGD and Tf were synthesized [135]. Thus, these 

dual-targeting NPs may achieve more accumulation and improved lethality of the PTX-

loaded NPs in tumors. Active tumors targeting can be achieved in two steps: the ligand 

RGD enhances the targeting migration and accumulation of NPs to the αvβ3 integrin-

expressing tumor vasculature and Tf then improves the cellular uptake of NPs by TfR-

expressing tumor cells. In addition, a heterobifunctional cross-linker, p-maleimidophenyl 

isocyanate (PMPI), used for hydroxyl to sulfhydryl coupling was introduced to the HPAE-

co-PLA/DPPE copolymer for the successful modification of targeting ligands [136-137]. 

Results showed the cytotoxicity and cellular uptake of PTX-loaded NPs against human 

cervical carcinoma (HeLa) cells for their tumor-targeting effects [135]. 
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4. Tumor cell targeting 

Cancer cells express different targets on their surface, some of them specific of each type of 

cancer. Active targeting of nanosystems for cancer treatment has been usually associated 

with a type of cancer and so with a specific target. 

While chemotherapy has been the standard of care for patients with different types of 

cancer, efforts have shifted toward evaluating novel targeted agents in an attempt to 

improve outcome. These targeted agents are directed towards key components in several 

signaling pathways. The potential of targeted therapies has stimulated the study of targeted 

nanocarriers that can allow synergistically act by binding and inhibiting cancer pathways 

while delivering therapeutic payloads. Tumor cell targeting involves many targets 

associated with the uncontrolled cell proliferation and the angiogenesis and others specifics 

for the different types of cancer (Table 2) 

 

CANCER TYPE TARGET AGENT REFERENCE 

Lung cancer 

(NSCLC) 

VEGFR 
Axitinib (Pfizer Inc., USA) [138] 

Cediranib (Recentin®, AstraZeneca plc, UK) [139] 

EGFR 

Cetuximab (Erbiux®, ImClone/Bristol-Myer 

Squibb, USA) 
[140] 

Erlotinib (Tarceva®, Genentech/Roche, 

Switzerland) 
[141] 

IGF-1R Figitumumab (CP-751871, Pfizer, USA) [142] 

Colorectal 

cancer 

VEGF-A 
Bevacizumab (Avastin®, Roche-Pharma AG, 

Germany) 
[143-145] 

EGFR 

Cetuximab (Erbiux®, ImClone/Bristol-Myer 

Squibb, USA) 
[146] 

Panitumumab (Amgen Inc; Thousand Oaks, 

USA) 
[147] 

Breast cancer 
HER2 

Transtuzumab (Herceptin®, Genentech) [148] 

Transtuzumab-DM1 (T-DM1; Genetech 

Inc/Roche) 
[149] 

Pertuzumab (Omnitarg®; Genentech/Roche) [150] 

PARP Olaparib (AZD2281; AstraZeneca) [151] 

Prostate cancer 

17-α-

hydroxylase

Abiraterone acetate (Zytiga, Cougar 

Biotechnology) 
[152] 

AR MDV3100 [153] 

EGFR 
Cetuximab (Erbiux®, ImClone/Bristol-Myer 

Squibb, USA) 
[154] 

HER2 Transtuzumab (Herceptin®, Genentech) [155] 

HER3 MM-121 (humanized antibody) [156] 

PSMA J591 (monoclonal antibody) [157] 

Table 2. Examples of targets for different types of cancer 
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4.1. Lung cancer 

Non-small cell lung cancer (NSCLC) involves signaling pathways that influence 

angiogenesis, tumorigenesis and tumor growth, and different targeted agents have been 

used towards vascular endothelial growth factor receptor (VEGFR), platelet-derived growth 

factor receptor (PDGFR), EGFR and insulin-like growth factor 1 receptor (IGF-1R) [158-159]. 

Furthermore, there is an increasing interest in using combinations of targeted agents to 

inhibit more than one pathway. 

Among agents that target VEGFR in the treatment of advanced NSCLC, axitinib [138] has 

resulted to be a potent selective inhibitor of these types of receptors; also cediranib [139] has 

been assayed in combination with carboplatin and PTX in the treatment of this kind of 

cancer. 

Over-expression of EGFR has been associated with angiogenesis and poor prognosis in 

NSCLC [160]. Cetuximab (Erbiux®, ImClone/Bristol-Myer Squibb, USA) is a chimeric mAb 

that targets the EGFR pathway by binding to the extracellular domain of the receptor and in 

this way inhibiting the receptor-associated tyrosine kinase (TK) activity [140]. Furthermore, 

inhibitors of TK activity of EGFR have been used for targeting the receptor pathway. Small-

molecule, such as erlotinib (Tarceva®, Genentech/Roche, Switzerland) and gefitinib 

(Iressa®, AstraZeneca plc, UK), compete reversibly with ATP to bind to the intracellular 

catalytic domain of EGFR TK and, thus, inhibit EGFR autophosphorylation and downstream 

signaling [161]. 

IGF-1R is a key signaling pathway that leads to the growth and survival of tumor cells [162] 

and is commonly overexpressed in lung cancer cells. Figitumumab (CP-751,871, Pfizer, 

USA) is a fully human monoclonal antibody that is a specific and potent inhibitor of IGF-1R. 

In combination with carboplatin/PTX, figitumumab has shown to be a promising antitumor 

agent as first line treatment of NSCLC [142]. Several other anti-IGF-1R mAbs are being 

investigated in the treatment of advanced NSCLC, among them IMC-A12 (cixutumumab; 

fully human IgG1 monoclonal antibody), MK0646 (dalotizumab; a humanized IgG1 

monoclonal antibody) and R1507 (fully humanized monoclonal antibody) [163]. 

Lung cancer is a heterogeneous disease with multiple mutations, and it is unlikely that any 

single signaling pathway drives the oncogenic behaviour of all tumors. In fact, multilevel 

cross-stimulation among the targets of the new biological agents can contribute to the 

relative failure of some target therapies. In this way, combining targeted therapies is a 

promising research approach to the treatment of NSCL, and an exhaustive review has been 

recently published by Custodio and coworkers [163] 

4.2. Colorectal cancer 

The systemic treatment of metastatic colorectal cancer (mCRC) involves the use of active 

cytotoxic drugs and biological agents either in combination or as single agents. 

Initial chemotherapy of mCRC is based on using several cytotoxic regimens [164]. These 

clinical trials are based on the results of key phase III studies conducted over the past 
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decade. The IFL regimen [irinotecan (I), 5-FU and leucovorin (LV)] has been extensively 

used [143]. Furthermore, combination of oxaliplatin and 5-FU/LV (FOLFOX4) [165] has 

improved the overall survival of mCRC patients. 

A significant percentage of patients with CRC receive a biological agent targeting the 

vascular endothelial growth factor A (VEGF-A) or EGFR over their treatment course. The 

currently available anti-VEGF-A agent is bevacizumab (Avastin®, Roche-Pharma AG, 

Germany), a humanized mAb. Different key clinical trials incorporating bevacizumab have 

been carried out. In the AVF2107 trial [144] the combination of IFL and bevacizumab 

improved the progression-free survival and the overall survival. The trial of bevacizumab 

plus oxaliplatin-based chemotherapy (FOLFOX4) or plus capecitabine/oxaliplation (XELOX) 

[143,145] showed a significantly increase in the progression-free survival, mainly with 

XELOX. 

The anti-EGFR mAbs indicated for mCRC treatment are cetuximab (Erbiux®, 

ImClone/Bristol-Myer Squibb, USA; a chimeric monoclonal antibody) and panitumumab 

(Amgen Inc; Thousand Oaks, USA; a fully human monoclonal antibody). Both of them are 

efficacy in the treatment of patients whose mCRC tumors express wild-type KRAS. Different 

clinical trials combining anti-EGFR agents and chemotherapy have been carried out. Thus, 

mCRC therapy (wild-type KRAS patients) based on cetuximab and FOLFIRY (CRYSTAL 

trial) [146] showed a significantly improved progression-free survival and overall survival. 

In a similar way, the combination of panitumumab and FOLFOX4 (PRIME trial) had a very 

positive impact on survival parameters in wild-type KRAS patients [147]. 

4.3. Breast cancer 

Breast cancer is the most common cancer affecting females and one of the main causes of 

mortality of women. This disease shows a high heterogeneous nature in terms of genetic 

features, molecular profiles and clinical behaviour. The high mortality caused by breast 

cancer can be attributed to the development of metastatic breast cancer [166]. The discovery 

of “genetic signatures” in breast cancers can provide key insights into the mechanisms 

underlying tumorigenesis and can be proven useful for the design of targeted therapeutic 

approaches [167-168].  

The HER2 is over-expressed 15-30% of invasive breast carcinomas [167]. Extracellular 

domain of HER2 has been the target of several monoclonal antibodies created in order to 

inhibit the proliferation of human cancer cells. Transtuzumab, a recombinant humanized 

anti-HER2 monoclonal antibody was approved by the FDA for immunotherapy of women 

with metastatic HER2 over-expressing breast carcinoma. This antibody provokes cell cycle 

arrest during G1 phase [148]. Transtuzumab has been extensively used to target different 

drug-loaded nanocarriers to breast cancer cells [169-170].  

Many hormone receptor positive breast cancers are resistant to hormone therapies. Thus, 

clinical trials have been developed combining therapies with biological and targeted agents 

(anti EGFR and HER2) for the treatment of estrogen receptor (ER) positive breast cancer. 



 

Recent Advances in Novel Drug Carrier Systems  262 

Combination of geftinib, an EGFR TK inhibitor, with anastrozole [171] or TMX [172] has 

conducted to a light prolongation of progression-free survival of patients. Clinical trials 

based on combination of transtuzumab and letrozole (Femara), an oral non-steroidal 

aromatase inhibitor for the treatment of hormonally-responsive breast cancer, in patients 

with ER+/HER2+ metastatic breast cancer have demonstrated clinical benefit [173]. A large 

proportion of HER2+ cancers have developed resistance to HER2-targeted therapeutics, 

including resistance of tumor cells to trastuzumab. Several agents have been developed to 

overcome resistance to this monoclonal antibody. The conjugation of maytansinoid DM1 

with transtuzumab has generated transtuzumab-DM1 (T-DM1; Genetech Inc/Roche), that is 

active on HER2 overexpressing breast cancer and also transtuzumab-refractory tumors 

[149]. Another innovative targeted agent, which belongs, to the class of HER2-dimerization 

inhibitors, is pertuzumab (Omnitarg; Genentech/Roche), a recombinant humanized 

monoclonal antibody. Pertuzumab is directed against the highly conserved dimerization 

domain of HER2 [150]. The efficacy of adding pertuzumab to trastuzumab plus Dtxl for the 

first-line treatment of HER2-positive metastatic breast cancer was demonstrated in the 

randomized, double-blind, multinational, phase III CLEOPATRA trial [174]. 

Basal like breast cancers are the result of specific mutations. DNA lesions such as single-

stand breaks (SSBs) and double-strand breaks (DSBs) are common in the normal cellular 

metabolism, and can be repaired by specific DNA repair mechanisms. In one of these DNA 

repair mechanisms, poly-(adenosine diphosphate ribose) polymerase 1 (PARP1) is an 

important key of the pathway. PARP1-inhibitors (PARP1-I) have been developed for the 

treatment of advanced breast cancer. Olaparib (AZD2281; AstraZeneca)), a PARP1-I has 

been evaluated in BRCA (a tumor suppressor protein) mutated patients [151]. Also iniparib 

(BSI 201; 4-iodo-3-nitrobenzamide; Sanofi-Aventis), an irreversible PARP1-I, is under study 

in patients with metastatic triple-negative breast cancer [175]. However, studies carried our 

by Liu and coworkers [176] shown that Iniparib nonselectively modifies cysteine-containing 

proteins in tumor cells, and the primary mechanism of action for iniparib is likely not via 

inhibition of PARP activity. 

4.4. Prostate cancer 

The current standard treatment of localized prostate cancer consists of prostatectomy and 

radiation therapy, sometimes supplemented with hormonal therapies to prevent 

testosterone production, which include anti-androgens and luteinizing hormone-releasing 

hormone (LH-RH) agonists. In locally advanced or widespread prostate cancer, the disease 

gradually transforms to a metastatic hormone-refractory state. Despite castrate levels of 

testosterone, the tumor will finally become independent of androgens resulting in death 

within a few years from diagnosis. In fact, the mortality rate of metastatic prostate cancer is 

extremely high. Thus, novel therapies [177-178] are on demand for the treatment of the 

malignant forms of prostate cancer that recur after initial therapies, including hormone 

refractory (HRPC) and castration resistant prostate cancer (CRCP). 

Different molecules have been assayed as androgen and androgen receptor inhibitors. In 

this way, abiraterone acetate (Zytiga, Cougar Biotechnology) in combination with 
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prednisone has been recently approved by FDA for the treatment of CRCP in men who have 

received prior Dtxl chemotherapy [152]. Arbiraterone inhibits 17-α-hydroxylase, an enzyme 

of the testosterone biosynthesis pathway, decreasing circulating levels of the hormone. This 

enzyme is expressed in testicular, adrenal and prostate tumors. Regarding of androgen 

receptor inhibitors (AR-I), MDV3100 is an oral androgen receptor antagonist [153], which 

irreversibly binds to this intracellular receptor and causes no transcription of the gen.  

The EGFR family (EGFR/HER) receptors have long been implicated in prostate cancer 

initiation and progression. EGFR is overexpressed in 18-37% prostate cancers [179], and a 

direct correlation of HER2 overexpression with the risk of death and recurrence in prostate 

cancer has been reported [180]. Thus, monoclonal antibodies have been studied as treatment 

options for prostate cancer. The efficacy of combining cetuximab with mitoxantrone plus 

prednisolone have been analyzed in a phase II clinical trial in men with CRCP after 

receiving Dtxl, but the time to progression and overall survival did not improve with the 

addition of cetuximab [154]. In order to evaluate whether dual inhibition of EGFR and HER2 

would prolong the effectiveness of androgen withdrawal therapy (AWT) treatment in 

prostate cancer, studies using EGFR inhibitors (erlotinib and AG1478) and HER2 inhibitors 

(trastuzumab and AG879) were realized [155]. Results indicate that dual EGFR/HER2 

inhibition, administered together with AWT, sensitize prostate cancer cells to apoptosis 

during AWT. In general, studies using inhibitors of EGFR/HER1 and HER2 show that these 

molecules fared poorly in prostate cancer clinical trials. 

Recent research suggests that another family member HER3 (ErbB3) abets emergence of the 

castration resistant phenotype. The prostate cancer, in comparison to the normal tissue, 

overexpresses HER3 protein, which indicate poor prognosis. Antibody-based therapy that 

prevents ligand binding to ErbB3 appears promising and fully-humanized antibodies that 

inhibit ligand-induced phosphorylation of HER3 (ErbB3) are currently in early development 

[181]. HER3's signaling functions depend upon ligand binding to its extracellular domain 

and inhibitors are generated to disrupt this interaction. A recently-characterized, HER3-

specific humanized antibody MM-121 blocked ligand-dependent HER3 activation induced 

by the HER1, HER2 or MET receptors [156]. 

The IGF-R signaling pathway plays a role in prostate cancer. In fact, an increase risk of 

prostate cancer has been directly correlated with the circulating IGF-1 (one ligand of the 

IGF-R) levels [182]. An inhibitor de the IGF pathway is the anti-IGF-R mAb cixutumumab 

(IMC-A12; ImClone Systems), which was effective in both androgen-dependent and 

androgen-independent human prostate cancer in animal models [183]. 

PSMA has been identified as an ideal antigenic target in prostate cancer. PSMA is the most 

well-established, highly restricted prostate cancer cell surface antigen. It is expressed at high 

density on the cell membrane of all prostate cancers, and after antibody binding, the PSMA-

antibody complex is rapidly internalized along with any payload carried by the antibody. 

J591 is the first IgG mAb developed to target the extracellular domain of PSMA, and it has 

been deimmunized (humanized) to allow repeated dosing in patients. Three phase I studies 

have been carried out, two using the β-emitting radiometals yttrium 90 and lutetium 177 
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(177Lu), and a third using a cytotoxin (DM1) linked to J591 [157]. A phase II clinical trial 

(NCT00859781) to test the effectiveness of the radiolabel monoclonal antibody, 177Lu-J591 in 

combination with ketoconazole and hydrocortisone against prostate cancer is in progress. 

5. Conclusion 

The development of drug delivery systems that are able to modify the biodistribution, tissue 

uptake and pharmacokinetics of therapeutic agents is considered of great importance in 

biomedical research. Controlled release in drug delivery can significantly enhance the 

therapeutic effect of a drug. Among drug delivery systems, nanocarriers are the smallest 

devices for transport of drugs, and they comprises a variety of the type of nanoparticles 

developed for cancer, including liposomes, nanoshells, nanocapsules, dendrimers, polymer-

drug conjugates, polymeric nanogels and micelles, and polynucleotide nanoparticles. The 

attractive properties of nanomedicines include their ability of controlled release of drugs, 

the targeting of specific tissues and the biocompatibility. Because of their size, nanocarriers 

can be taken up, in many cases, very efficiently by cells, internalized and stored into 

cytoplasm or different organelles. Nanocarrier uptake into a cell depends on the cell-type, 

since some cells are more susceptible to include nonfunctionalized systems via their design. 

The unique attributes of tumors support extravasation of polymeric nanomedicines through 

large pores on the endotheliallayer and via the disordered neoplastic tissue architecture. 

Thus, nanoparticles target the tumor passively via the EPR effect if their size is smaller than 

100nm. Therefore, current research involves novel strategies to attach targeting ligands with 

high affinity for receptors overexpressed on tumors or ways to utilize the tumor´s own 

microenvironment as a stimulus for drug release. An active targeting strategy can improve 

the efficacy of the therapy and diminish side effects associated with drugs, since not all 

nanocarriers can overcome the cell membrane barrier without a targeting motif. 

Nanoparticle systems are able to target various portions of the tumor using specific 

targeting moieties and evade the problems associated with multi-drug resistance. Thus, to 

increase the delivery of a given drug to a specific target site, targeting ligands are 

conjugated to carriers. The presence of reactive pendant groups in nanogels make easy their 

vectorization forward specific cell motif by binding of ligands. Furthermore, it is an 

important fact that targeting ligands lead to macrophage recognition and faster clearance 

compared to the non-targeted nanoparticles. Various molecules, that include folates, 

transferrin, antibody and antibody fragments, peptides, aptamers, small molecules, and 

carbohydrates, have been used to target nanocarriers to specific receptors on tumoral cell 

surfaces. In many cases, ligand-targeted nanoparticles demonstrate better internalization by 

cancer cells and more effective intracellular drug delivery than other preparatios. The search 

for more molecular targets will advance the ability to improve delivery at the tumor level 

while decreasing toxicity to normal tissue. As a result, moieties-targeted drug-loaded 

nanoparticles, searching for new tumor targets, novel ligands, new strategies for targeting, 

and particle stabilization, are generally considered as promising candidates for cancer 

chemotherapy and we can expect their extensive clinical evaluation in the near future.  
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Nomenclature 

2AAECM: tert-butyl-2-acrylamidoethyl carbamate  

5-ALA: 5-aminolevulinic acid  

5-FU: 5-Fluorouracil  

7α-APTADD: 7α-(4´-amino)phenylthio-1,4-androstadiene-3,17-dione ) 

ABIR: αvβ3 integrin receptor  

AD: adamantane  

Apt: aptamer 

AR-I: androgen receptor inhibitor 

AWT: androgen withdrawal therapy  

BBB: blood brain barrier  

BCRP: breast cancer resistance protein  

CEM: leukemic lymphoid cells 

CRCP: castration resistant prostate cancer  

CS: Chitosan  

Dox: doxorubicin  

DSBs: double-strand breaks 

Dtxl: Docetaxel  

ECM: extracellular matrix 

EGF: epidermal growth factor  

EGFR (or HER1): epidermal growth factor receptor 1 

EPR: Enhanced Permeability and Retention 

ER: estrogen receptor  

EU: European Union 

FA: Folic acid or folate 

FDA: Food and Drug Administration 

FR: folate receptor  

FSiNPs: Fluorescent silica nanoparticles 

GPI: glycosyl-phophatidylinositol  

HB-EGF: heparin-binding epidermal growth factor 

HCPT: Hydroxycamptothecin  

HER: Human epidermal receptor  

HER2: epidermal growth factor receptor 2 

HER3: epidermal growth factor receptor 3 

HFF: Human foreskin fibroblasts 

HNSCC: Head and neck squamous cell carcinoma 

HPAE-co-PLA/DPPE: hyperbranched amphiphilic poly[(amine-ester)-co-(D,L-lactide)]/1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer  

HRPC: hormone refractory prostate cancer 

HSA: human serum albumin  

I: irinotecan 

IFL regimen: irinotecan + 5-FU + leucovorin  

IFP: interstitial fluid pressure 

IGF: insulin-like growth factor  
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IGF-1R: insulin-like growth factor 1 receptor  

LH-RH: luteinizing hormone-releasing hormone  

LV: leucovorin 

mAb: monoclonal antibody 

MAPK: mitogen-activated protein kinases  

mCRC: metastatic colorectal cancer  

MePEG-PHDCA: poly(methoxy-polyethylene glycol cyanoacrylate-co-hexadecyl cyanoacrylate)  

MTX: Methotrexate 

MUC1: mucin 1 

NCs: nanoclusters  

NIPA: N-isopropylacrylamide  

NPAM: N-(pyridin-4-ylmethyl)acrylamide  

NPs: nanoparticles 

NRs: nanorods 

NS: niosomes 

NSCLC: Non-small cell lung cancer 

PAMAM: Poly(amido amine) 

PARP1: poly-(adenosine diphosphate ribose) polymerase 1 

PARP1-I: poly-(adenosine diphosphate ribose) polymerase 1 -inhibitors 

PDGFR: platelet-derived growth factor receptor 

PEG: polyethylene glycol 

P-gp: P-glycoprotein  

PHBHHX: poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) 

PLGA: poly(D,L-lactide-coglycolyde)  

PMPI: p-maleimidophenyl isocyanate 

PRINT technology: Particle Replication In Non-wetting Templates technology 

PSMA: Prostate-specific membrane antigen  

PTK7: protein tyrosine kinase-7  

PTX: Paclitaxel 

RES: reticuloendothelial system 

RGD: tripeptide arginine–glycine–aspartic acid  

SELEX: Systematic Evolution of Ligands by Exponential Enrichment  

siRNA: short inhibitory RNA  

SSBs: single-stand breaks  

SWNTs: single-wall carbon nanotubes  

Tf: Transferrin  

TfR: Transferrin receptor  

TGF-α: transforming growth factor-α  

TK: tyrosine kinase 

TLR9: Toll-like receptor 9  

TMX: Tamoxifen  

TNF: tumor necrosis factor  

VEGF: vascular endothelial grown factor 

VEGFR: vascular endothelial grown factor receptor 
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VPF: vascular permeability factor  

WHO: World Health Organization 
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