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1. Introduction 

In today’s modern world, where new technologies are continually being introduced, 

transportation energy use is increasing rapidly. Fossil fuel, particularly petroleum fuel, is 

the major contributor to energy production[1]. Fossil fuel consumption is steadily rising as a 

result of population growth in addition to improvements in the standard of living. It can be 

seen from Figure 1 that the world’s population has been increasing steadily over the last 5 

decades, and this trend is expected to continue [2]. As a result, total energy consumption has 

grown by about 36% over the last 15 years [3]. Energy consumption is expected to increase 

further in the future, as the world’s population is expected to grow by 2 billion people in the 

next 30 years [2]. These energy trends can be seen in Figure 2. Increased energy demand 

requires increased fuel production, thus draining current fossil fuel reserve levels at a faster 

rate. In addition, about 60% of the world’s current oil reserves are in regions that are in 

frequent political turmoil [3]. This has resulted in fluctuating oil prices and supply 

disruptions. 

Rapidly depleting reserves of petroleum and decreasing air quality raise questions about the 

future. As world awareness about environmental protection increases so too does the search 

for alternatives to petroleum fuels [1]. 

Alternative fuels such as CNG, HCNG, LPG, LNG, bio-diesel, biogas, hydrogen, ethanol, 

methanol, di-methyl ether, producer gas, and P-series have been tried worldwide. The use 

of hydrogen as a future fuel for internal combustion (IC) engines is also being considered. 

However, several obstacles have to be overcome before the commercialization of hydrogen 

as an IC engine fuel for the automotive sector. Hydrogen and CNG blends (HCNG) may be 

considered as an automotive fuel without requiring  any major modification in the existing 

CNG engine and infrastructure [4]. 
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Figure 1. World population 1950-2050 [2]. 

 

 

Figure 2. Fossil fuel consumption from 1983 to 2008 with approximate current reserves-to-production 

ratios in remaining years [3]. 

Alternative fuels are derived from resources other than petroleum. The benefit of these fuels 

is that they emit less air pollutants compared to gasoline and most of them are more 

economically viable compared to oil and they are renewable [5]. Figure 3 shows the 

percentages of alternative fuels used according to total automotive fuel consumption in the 

world as a futuristic view. 
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Figure 3. Percentages of alternative fuels compared to total automotive fuel consumption in the world [6] 

2. Hydrogen specifications 

Hydrogen is acknowledged to offer great potential as an energy carrier for transport 

applications. A number of technologies can use hydrogen as an energy carrier, with the 

internal combustion engine being the most mature technology [7]. Currently, 96% of 

hydrogen is made from fossil fuels. Based on 2004 data, in the United States 90% is made 

from natural gas, with an efficiency of 72%. Only 4% of hydrogen is made from water via 

electrolysis. Currently, the vast majority of electricity comes from fossil fuels in plants that 

are 30% efficient and from electrolysis which means that electricity is run through water to 

separate the hydrogen and oxygen atoms. Using renewable energy is much more effective 

than using fossil fuel to produce hydrogen. Current wind turbines perform at 30-40% 

efficiency, producing hydrogen at an overall efficiency rate of 25%. The best solar cells 

available have an efficiency rate of 10%, leading to an overall efficiency rate of 7%. Algae can 

be used to produce hydrogen at an efficiency rate of about 0.1% (see Figure 4)[8].  

The use of hydrogen as an automotive fuel appears to promise a significant improvement in 

the performance of spark-ignition engines [9]. The self-ignition temperature of the 

hydrogen/air mixture is greater than that of other fuels and, therefore, hydrogen produces 

an antiknock quality of fuel. The high ignition temperature and low flame luminosity of 

hydrogen makes it a safer fuel than others, it is also non-toxic. Hydrogen is characterized by 

having the highest energy–mass coefficient of all chemical fuels and in terms of mass energy 

consumption it exceeds conventional gasoline fuel by about three times, and alcohol by five 

to six times [10]. Therefore, the results clearly establish that hydrogen fuel can increase the 

effective efficiency of an engine and reduce specific fuel consumption. A small amount of 

hydrogen mixed with air produces a combustible mixture, which can be burned in a 
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conventional spark-ignition engine at an equivalence ratio below the lean flammability limit 

of gasoline/air mixture. The resulting ultra lean combustion produces a low flame 

temperature and leads directly to lower heat transfer to the walls, higher engine efficiency 

and lower NOx exhaust emissions [11–13].  

 

Figure 4. Various processes for the production of hydrogen[8] 

The burning velocity of hydrogen/air mixture is about six times higher than that of 

gasoline/air mixtures. As the burning velocity rises, the actual indicator diagram is nearer to 

the ideal diagram and a higher thermodynamic efficiency is achieved [14,15]. Figure 5 plots 

the laminar burning velocities against the equivalence ratio for hydrogen–air mixtures at 

normal pressure and temperature (NTP)[7]. The solid symbols in Figure 5 denote stretch-

free burning velocities (or rather, burning velocities that were corrected to account for the 

effects of the flame stretch rate), as measured by Taylor [16], Vagelopoulos et al. [17], Kwon 

and Faeth [18] and Verhelst et al. [19]. The empty symbols denote other measurements that 

did not take stretch rate effects into account, as reported by Liu and MacFarlane [20], Milton 

and Keck [21], Iijima and Takeno [22] and Koroll et al. [23]. These experiments result in 

consistently higher burning velocities, with the difference increasing for leaner mixtures. 

Hydrogen is a clean fuel with no carbon emissions; the combustion of hydrogen produces 

only water and a reduced amount of nitrogen oxides. Conversely, combustion products 

from fossil fuels, such as CO, CO2, nitrogen oxides, or other air pollutants, cause health and 

environmental problems. Hydrogen will help reduce CO2 emissions as soon as it can be 

produced in a clean way either from fossil fuels, in combination with processes involving 

CO2 capture and storage technologies, or from renewable energy. These features make 

hydrogen a potentially excellent fuel to meet the ever increasingly stringent environmental 

controls regarding exhaust emissions from combustion devices, including the reduction of 

green house gas emissions [24–27].  
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Figure 5. Laminar burning velocities plotted against air-to-fuel equivalence ratio, for NTP hydrogen–air 

flames[7]. The experimentally derived correlations are from Liu and MacFarlane [20], Milton and Keck 

[21], Iijima and Takeno [22] and Koroll et al. [23]. Other experimental data are from Taylor [16], 

Vagelopoulos et al. [17], Kwon and Faeth [18] and Verhelst et al. [19]. 

3. Methane specifications 

Natural gas (CNG) is considered as an alternative vehicle fuel because of its economical and 

environmental advantages [28]. CNG, which is a clean fuel with methane as its major 

component, is considered to be one of the most favorable fuels for engines, and the 

utilization of CNG has been realized in spark-ignition engines. However, due to the slow 

burning velocity of CNG and its poor lean-burn capability, the CNG spark-ignition engine 

still has some disadvantages like low thermal efficiency, large cycle-by-cycle variation, and 

poor lean-burn capability, and these decrease engine power output and increase fuel 

consumption [29]. The advantages of CNG compared to petrol are as follows: unique 

combustion and suitable mixture formation; due to the high octane number of CNG, the 

engine operates smoothly with high compression ratios without knocking; CNG with lean 

burning quality leads to the lowering of exhaust emissions and fuel operating cost; CNG has 

a lower flame speed; and engine durability is very high. CNG is produced from gas wells or 

related to crude oil production. CNG is made up primarily of methane (CH4) but frequently 

contains trace amounts of ethane, propane, nitrogen, helium, carbon dioxide, hydrogen 

sulfide, and water vapor. Methane is the principal component of natural gas [30].  

CNG has many other advantages as well. It has a high octane number of 130, which enables 

an engine to operate with little knocking at a high compression ratio. In addition, gasoline 

and diesel engines can be easily converted into CNG engines without major structural 

changes [31]. Not only does the CNG engine have good thermal efficiency and high power, 
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but its combustion range is also broad. This is an advantage when striving for lean 

combustion resulting in low fuel consumption and less NOx production [32]. The CNG 

engine also yields very low levels of PM emissions when compared with other conventional 

engines. These facts are supported by an experimental study performed to explore the 

combustion and emission characteristics of both gasoline and CNG fuels using a converted 

spark-ignition engine [33]. In light of these advantages, the number of CNG vehicles is 

continuously growing, and old vehicles are being converted into CNG vehicles through 

engine modifications [34].  

4. Hydrogen-methane mixtures for internal combustion engines 

Traditionally, to improve the lean-burn capability and flame burning velocity of natural gas 

engines under lean-burn conditions, an increase in flow intensity is introduced in the 

cylinder, and this measure always increases the heat loss to the cylinder wall and increases 

the combustion temperature as well as the NOx emission [35]. One effective method to solve 

the problem of the slow burning velocity of natural gas is to mix natural gas with fuel that 

possesses fast burning velocity. Hydrogen is regarded as the best gaseous candidate for 

natural gas due to its very fast burning velocity, and this combination is expected to 

improve lean-burn characteristics and decrease engine emissions [36]. The hydrogen blends 

in CNG can range from 5 to 30% by volume. Hythane is a 15% blend of hydrogen in CNG 

by energy content, which was patented by Frank Lynch of Hydrogen Components Inc, USA 

[37]. A typical 20% blend of hydrogen by volume in CNG is 3% by mass or 7% by energy. 

An overall comparison of the properties of hydrogen, CNG, and  5 % HCNG blend by 

energy and gasoline is given in Table 1. It is to be noted that the properties of HCNG lie in 

between those of hydrogen and CNG [4]. 

 

Properties H2 CNG HCNG Gasoline 

Stoichiometric volume fraction in air,(vol %) 29.53 9.43 22.8 1.76 

Limits of flammability in air, (vol %) 4-75 5-15 5-35 1.0-7.6 

Auto ignition temp. K 858 813 825 501-744 

Flame temp in air K 2318 2148 2210 2470 

Maximum energy for ignition in air, mJ 0.02 0.29 0.21 0.24 

Burning velocity in NTP air, cm s-1 325 45 110 37-43 

Quenching gap in NTP air, cm 0.064 0.203 0.152 0.2 

Diffusivity in air cm2 s-1 0.63 0.2 0.31 0.08 

Percentage of thermal energy radiated 17-25 23-33 20-28 30-42 

Normalized flame emissivity 1.00 1.7 1.5 1.7 

Equivalence ratio 0.1-7.1 0.7-4 0.5-5.4 0.7-3.8 

Table 1. Overall comparison of properties of hydrogen, CNG, HCNG and gasoline[4]. 

Hydrogen also has a very low energy density per unit volume and as a result, the 

volumetric heating value of the HCNG mixture decreases (Table 2) as the proportion of 

hydrogen is increased in the mixture [38].  
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Properties CNG HCNG 10 HCNG 20 HCNG 30 

H2 [vol %] 0 10 20 30 

H2 [mass %] 0 1.21 2.69 4.52 

H2 [energy %] 0 3.09 6.68 10.94 

LHV [MJkg-1] 46.28 47.17 48.26 49.61 

LHV [MJNm-3] 37.16 34.50 31.85 29.20 

LHV stoichiometric mixture [MJNm-3] 3.376 3.368 3.359 3.349 

Table 2. Properties of CNG and HCNG blends with different hydrogen content [39] 

Many researchers have studied the effect of the addition of hydrogen to natural gas on 

performances and emissions in the past few years[40-65]. Blarigan and Keller investigated 

the port-injection engine fueled with natural gas–hydrogen mixtures [40]. Bauer and Forest 

conducted an experimental study on natural gas–hydrogen combustion in a CFR engine 

[41]. Wong and Karim analytically examined the effect of hydrogen enrichment and 

hydrogen addition on cyclic variations in homogeneously charged compression ignition 

engines. The results indicated that the addition of hydrogen can reduce cyclic variations 

while extending the operating region of the engine [42]. Karim et al. theoretically studied the 

addition of hydrogen on methane combustion characteristics at different spark timings. The 

theoretical results showed that the addition of hydrogen to natural gas could decrease the 

ignition delay and combustion duration at the same equivalence ratio. It indicated that the 

addition of hydrogen could increase the flame propagation speed, thus stabilizing the 

combustion process, especially the lean combustion process [43]. Ilbas et al. [44] 

experimentally studied the laminar burning velocities of hydrogen–air and hydrogen–

methane–air mixtures. They concluded that increasing the hydrogen percentage in the 

hydrogen–methane mixture brought about an increase in the resultant burning velocity and 

caused a widening of the flammability limit (Figure 6). 

 

Figure 6. Burning velocities and flame speed for different percentages of hydrogen in methane (φ = 1.0)[44]. 
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Shudo et al., analyzed the characteristics combustion and emission of a methane direct 

injection stratified charge engine premixed with hydrogen lean mixture [45]. Their results 

showed that the combustion system achieved higher thermal efficiency due to higher flame 

propagation velocity and lower exhaust emissions. An increase in the amount of premixed 

hydrogen stabilizes the combustion process to reduce HC and CO exhaust emission, and 

increases the degree of constant volume combustion and NOx exhaust emission. The 

increase in NOx emission can be maintained at a lower level with retarded ignition timing 

without reducing the improved thermal efficiency. Nagalingam et al. [46] investigated 

hydrogen enriched CNG (hythane). He noted that the power was reduced due to the lower 

volumetric heating value of hydrogen compared with methane. However, since the flame 

speed of hydrogen was significantly higher than that of CNG, less spark advance was 

required to produce maximum brake torque (MBT). Wallace and Cattelan experimentally 

studied natural gas and hydrogen mixtures in a combustion engine. The experiments were 

conducted by studying the emissions of an engine fueled with a mixture of natural gas and 

approximately 15% hydrogen by volume [47].  

Raman et al. [48] carried out an experimental study on SI engines fueled with HCNG blends 

from 0% to 30% of H2 in a V8 engine. The authors observed a reduction in NOx emissions 

using 15%-20% hydrogen blends with some increase in HC emissions as a result of ultra-

lean combustion. The experiments were performed using a Chevrolet Lumina, which has six 

cylinders, four stroke cycles, is water cooled, with a total engine cylinder volume of 3.135 l, 

bore of 89 mm, stroke of 84 mm and compression ratio of 8.8:1. In their study, the BSFC of 

an 85/15 CNG/H2 mixture was less than that of natural gas. The BSFC values decreased for 

both natural gas and the 85/15 CNG/H2 mixture while spark timing (BTDC) values 

increased. The BSHC of CNG was higher than that of the fuel mixture. However, the BSNOx 

emission values of the 85/15 CNG/H2 mixture were higher than that of CNG. If a catalytic 

converter is used, the BSNOx values are decreased drastically. Larsen and Wallace [49] 

conducted experimental tests on heavy-duty engines fueled by HCNG blends. The authors 

found that HCNG blends improve efficiency and reduce CO, CO2 and HC emissions.  

Collier et al. examined the untreated exhaust emissions of a hydrogen-enriched compressed 

natural gas (HCNG) production engine [50]. They used variable composition hydrogen/NG 

mixtures and drew the following conclusions: the addition of hydrogen increases NOx 

emission for a given equivalence ratio while it decreases total HC emissions which is in 

good agreement with Akansu’s results [51]. They also found that as the hydrogen 

percentage increases, the lean limit of combustion is significantly extended. Hoekstra et al. 

[52] observed a reduction in NOx for hydrogen percentages up to 30%, beyond this limit no 

improvement was observed. An important point was the higher flame speed and a 

consequent reduction of the spark advance angle to obtain the maximum brake torque, as 

already indicated by Nagalingam et al. [46]. Wang et al. investigated the combustion 

behavior of a direct injection engine operating on various fractions of NG–hydrogen blends 

[53]. The results showed that the brake effective thermal efficiency increased with the 

increase of hydrogen fraction at low and medium engine loads. The rapid combustion 

duration decreased, and the heat release rate and exhaust NOx increased with the increase of 

hydrogen fraction in the blends. Their study suggested that the optimum hydrogen 
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volumetric fraction in NG–hydrogen blends is around 20% to achieve a compromise in both 

engine performance and emissions. 

Ceper [54] studied different CH4/H2 mixtures experimentally and numerically. Her 

experimental study was performed with a four-stroke, four-cylinder, water cooled, Ford 1.8-

liter internal combustion engine. CH4/H2 (100/0, 90/10, 80/20, 70/30) gas fuel mixtures of 

fuels were tested at different engine speeds and excess air ratios. Kahraman et al. [55] 

experimentally researched the performance and exhaust emissions of a spark-ignition 

engine fueled with methane-hydrogen mixtures (100% CH4, 10% H2 + 90% CH4, 20% H2 + 

80% CH4, and 30% H2 + 70% CH4) at different engine speeds and different excessive air 

ratios. The results demonstrated that while the speed and excess air ratio increased, CO 

emission values decreased. Furthermore increasing the excess air ratio also decreased the 

maximum peak cylinder pressure. Çeper et al. [56] experimentally analyzed the 

performance and the pollutant emissions of a four-stroke spark-ignition engine operating on 

natural gas-hydrogen blends of 0%, 10%, 20% and 30% at full load and 65% load for 

different excess air ratios. The results showed that while the excess air ratio increased, CO 

and CO2 emission values decreased. In addition, increasing the excess air ratio led to a 

decrease in peak pressure values and by increasing the H2 amount, peak pressure values 

were close to TDC, and the brake thermal efficiency values increased.  

Sierens and Rossel [57] determined that the optimal HCNG composition to obtain low HC 

and NOx emissions should be varied with engine load. Huang et al. [58] conducted an 

experimental study for a direct-injection spark-ignition engine fueled with HCNG blends 

under various ignition timings and lean mixture conditions. The ignition timing is an 

important parameter for improving engine performance and combustion. Dimopoulos et al. 

[59] optimized a state of the art passenger car natural gas engine for hydrogen–natural gas 

mixtures and high exhaust gas recirculation (EGR) rates in the major part of the engine map. 

Increasing the hydrogen content of the fuel accelerated combustion leading to efficiency 

improvements. Well-to-wheel analysis revealed paths for the production of the fuel blends 

still having overall energy requirements slightly higher than a diesel benchmark vehicle but 

reducing overall green house gas emissions by 7%.  

Based on the results of an experimental test campaign carried out in ENEA labs, Ortenzi et 

al [60], aimed at identifying the potential of using blends of natural gas and hydrogen 

(HCNG) in existing ICE vehicles. The tested vehicle was an IVECO Daily CNG, originally 

fueled with natural gas and the tests were made on an ECE15 driving cycle to compare the 

emission levels of the original configuration (CNG) with the results obtained with different 

blends (percentage of hydrogen in the fuel) and control strategies (stoichiometric or lean 

burn).  Dulger investigated an 80% CNG and 20% H2 mixture burning SI engine numerically 

[61]. Swain et al. [62] and Yusuf [63] investigated the same mixture with a different engine. 

Yusuf used a Toyota 2TC type engine with the following specifications: year 1976 1:6 l, 1588 

cc, maximum HP 88 and maximum speed of 6000 rpm, bore 85 mm, stroke 70 mm, 

compression ratio of 9.0:1 and four cylinder engine. The engine was tested at 1,000 rpm, 
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using best efficiency spark advance and light loading conditions. When the  methane–

hydrogen mixture was compared to pure methane operation with the same equivalence 

ratios, the methane and hydrogen mixture increased BTE and NOx emissions while 

decreasing the best efficiency spark advantage, unburned HCs and CO. Moreover, the lean 

limit combustion of natural gas was reduced from 0.61 to 0.54. The lean limit of combustion 

was defined as an operation with at least 38% of the cycles not completing combustion. By 

hydrogen addition, the equivalence ratios could be reduced by about 15% without 

increasing combustion duration and ignition delay.  

Ma and Wang [64], experimentally investigated the extension of the lean operation limit 

through hydrogen addition in an SI engine which was conducted on a six-cylinder throttle 

body injection natural gas engine. Four levels of hydrogen enhancement were used for 

comparison purposes: 0%, 10%, 30% and 50% by volume. Their results showed that the 

engine’s lean operation limit could be extended through adding hydrogen and increasing 

load level (intake manifold pressure). The effect of engine speed on lean operation limit is 

smaller. At a low load level an increase in engine speed is beneficial in extending the lean 

operation limit but this is not true at high load level. The effects of engine speed are even 

weaker when the engine is switched to hydrogen enriched fuel. Spark timing also influences 

the lean operation limit and both over-retarded and over-advanced spark timing are not 

advisable. Road tests on urban transport buses were performed by Genovese et al. [65], 

comparing energy consumption and exhaust emissions for NG and HCNG blends with 

hydrogen content between 5% and 25% in volume. The authors found that average engine 

efficiency over the driving cycle increases with hydrogen content and NOx emissions were 

higher for blends with 20% and 25% of hydrogen, despite the lean relative air fuel ratios and 

delayed ignition timings adopted. Having reviewed the main experimental papers 

published in the past, we conclude that numerical analysis also plays a fundamental role in 

research activities, allowing a better design of the experimental tests in terms of cost savings 

and time reduction[66-70]. 

4.1. Emissions 

Air pollution is fast becoming a serious global problem arising from an increasing 

population and its subsequent demands. This has resulted in increased usage of hydrogen 

as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as 

one of the most promising fuels for the automotive sector. As the required hydrogen 

infrastructure and refueling stations do not currently meet demand, the widespread 

introduction of hydrogen vehicles is not feasible in the near future. One of the solutions for 

this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the 

unique combustion properties of hydrogen and at the same time reduce the demand for 

pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to 

common hydrocarbon fuels for internal combustion engine applications [71]. 

When experimental or simulation studies on reciprocating engines are carried out, much 

attention is paid to pollutant CO, HC and NOx emissions. Nevertheless, although CO2 is one 
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of the most important greenhouse gases, these emissions are not usually taken into account, 

and measurements and calculations of CO2 emissions are omitted from many studies [72]. 

Fuel costs and their relationship to equivalent CO2 emissions are represented in Figure 7 for 

several types of fuel ([73] and data from the authors). As observed, the global CO2 emissions 

associated with CNG and their costs are lower than those produced by gasoline or diesel. 

Hydrogen produces lower CO2 emissions than CNG, gasoline or diesel, but hydrogen 

always originates from renewable sources. Due to the high price of crude oil, in some cases 

the cost of H2 is lower than that of gasoline or diesel. In any case, these data have been 

prepared without taking into account the possible effects of an increase in demand or mass 

production [72]. 

 

Figure 7. Cost and CO2 emissions for several fuels [72]. 

All these performance parameters have a direct relationship with the exhaust emissions 

produced, often with contradictory effects. For instance, while higher compression ratios are 

favored in order to increase thermal efficiency, they also result in higher NOx emissions 

because of the resultant higher combustion chamber temperatures. This is also the case 

when running stoichiometric fuel-air mixtures, as seen in Figure 8 (which is applicable to 

gasoline engines, but the general trends are similar for natural gas engines as well). In 

addition, while the combustion of lean fuel-air mixtures (φ< 1) results in low NOx emissions 

(as seen from Fig. 7) this can also result in lower power output. However, running an engine 

on fuel-rich mixtures (φ> 1) is also undesirable and this results in high unburnt HC and CO 

emissions. Knock limits are also a factor when deciding ideal operating parameters. For 

instance if an engine is running too high a compression ratio, resistance to knock is lowered. 

This would require the need for spark retardation with respect to combustion TDC (which 

can affect thermal efficiency and therefore power output as well as exhaust emissions)[74]. 
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Figure 9 illustrates the BSNOx (g/kWh) values versus equivalence ratios from different 

studies [75]. As seen in this figure, according to studies, with increasing H2 percentage, 

BSNOx values increase or decrease. According to refs [62,49,57] and Bauer and Forest [41] 

(there is no data value in graphics), with increasing H2 percentage, the BSNOx values 

increase. However, in the experiments performed by Raman et al. [48], with increasing H2 

percentage, the BSNOx values decrease. Moreover, if the equivalence ratios decrease, the 

BSNOx values reach a low value. It is interesting to note that Hoekstra et al. [52], as well as 

Larsen and Wallace [49], obtained extremely low NOx emission.  

 

Figure 8. Typical NO, HC and CO trends with equivalence ratio in an SI engine, adapted from [74].  

Figure 10 shows the BSHC (g/kW h) values in different studies [75]. As seen in this figure, 

with increasing H2 percentage and equivalence ratio, the BSHC values decrease. If fuel is 

to be 100% H2 fuel, the BSHC value will be zero. We can say that BSHC values decrease as 

the amount of H2 increases. By increasing the equivalence ratios Swain et al.[62] obtained 

the highest BSHC values in these studies. The maximum value is about 64 g/kW h, for a 

20% H2 and 80% CH4 mixture with φ = 0.60. However, hydrocarbon emissions of 20% H2 

and 80% CH4 mixture are less than those of pure methane [62]. In this figure, the BSHC 

values of Ref. [49] are at their highest value. BSHC values increase with increasing engine 

load. 
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Figure 9. BSNOx (g/kWh) values of different studies versus equivalence ratios[75]. 

 

Figure 10. Brake specific hydrocarbons (BSHC g/kw h) values in different studies[75]. 
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Larsen and Wallace obtained 1.65 and 2:41 g/kW h CO values at 1500 rpm, and φ = 0.65 

equivalence ratio, using an 85/15 CNG/H2 and 100% CNG, respectively [49]. Yusuf 

measured all engine/fuel configurations performed similarly over normal operating ranges. 

An important variation occured with rich mixtures. In addition, the 80/20 CH4/H2 mixture 

showed a small but significant reduction in BSCO output [62,63]. Bauer and Forest’s 

experiments demonstrated that production of CO was highly dependent on combustion 

stoichiometry and less so on the engine. They obtained a general reduction in BSCO with 

the addition of hydrogen because of the reduction of carbon in the fuel. They added up to 

60% hydrogen by volume and found that BSCO decreased up to 20 g/kW h (60/40 CH4/H2) 

at φ=1.0. In the ultra lean region (φ<0.4), an increase in BSCO was noted, due to incomplete 

combustion combined with sharply dropping power [41]. Figure 11 shows the BSCO 

emission values of some studies[75]. As seen in this figure, a φ value between 0.65 and 0.8 

placed BSCO values at a dramatically low level. 

 

Figure 11. BSCO (g/kw h) values versus equivalence ratio in different studies[75]. 

Figure 12 gives the brake NOx, HC, CO and CO2 emission versus hydrogen fraction at 

various injection timings[76]. Brake NOx emission increases with increasing hydrogen 

fraction when the hydrogen fraction is less than 10%, and it decreases with the increase of 

hydrogen fraction when the hydrogen fraction is larger than 10% at various injection 

timings. The comprehensive effects of in-cylinder temperature, excess air ratio and 

combustion duration contribute to this. As excess air ratio in this experiment is larger than 
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1.0 and combustion duration is slightly decreased with increasing hydrogen fraction, the 

effect of cylinder gas temperature plays an important part, thus the trend of brake NOx 

emission is consistent with that of the maximum mean gas temperature. Brake HC emission 

decreases with the increase of hydrogen fraction. This is because the quench distance of the 

fuel blends is decreased and the lean flammability limit of the natural gas-hydrogen fuel 

blends is extended with hydrogen addition. Meanwhile, combustion is improved with the 

increase of hydrogen fraction, and this enhances the post-flame oxidation of the already 

formed HC. Furthermore, the C/H ratio decreases with increasing hydrogen fraction and this 

also contributes to the decrease of brake HC emission with the increase of hydrogen fraction. 

 

Figure 12. Brake NOx, HC, CO and CO2 emission versus hydrogen fractions. (a) Brake NOx emission 

versus hydrogen fractions. (b) Brake HC emission versus hydrogen fractions. (c) Brake CO emission 

versus hydrogen fractions. (d) Brake CO2 emission versus hydrogen fractions[76] 

Brake CO emission decreases with increasing hydrogen fraction. As overall excess air ratio 

in the cylinder increases with hydrogen addition, and CO is strongly related to the air-fuel 

ratio, the sufficiency of oxygen in the cylinder makes the CO emission low. Also, 

combustion is improved with the increase of hydrogen fraction, and this enhances the post-

flame oxidation of the already formed CO. Furthermore, the C/H ratio decreases with 
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increasing hydrogen fraction in the fuel blends and this also contributes to the decrease of 

brake CO emission with the increase of hydrogen fraction. Brake CO emission achieves its 

minimum value at a fuel-injection timing of 270 oCA BTDC. Brake CO2 emission decreases 

with the increase of hydrogen fraction. The decrease in the C/H ratio of the mixtures with 

the increase of hydrogen fraction is responsible for this. A low carbon fraction produces low 

CO2 concentration [76]. 

4.2. Cylinder pressure 

Figure 13 shows the cylinder pressure at engine speeds of 2000 and 3000 rpm for different 

values of H2 percentages (0, 3%, 5% and 8% in ref 77; 0, 10%, 20% and 30% in ref 54) and 

λ=1.0. For all cases, the cylinder pressure increased with the increase in the amount of H2. 

The maximum pressures for the 8% H2, 5% H2, 3%H2 and pure CNG occurred at 11, 12, 12.5, 

and a 13.5o crank angle ATDC respectively [77]. The maximum pressures for the 30% H2, 

20% H2, 10%H2 and pure CNG occurred at about 53, 48, 44, and a 36o crank angle ATDC 

respectively [54]. At an engine speed of 3000 rpm, the maximum cylinder pressures 

occurred at a 13.5o crank angle ATDC with their magnitudes being the highest of all values 

of H2 percentage [77]. In Ref [54], the maximum cylinder pressure occurred at a 30o crank 

angle ATDC. In Ref [77], the compression ratio of the engine was 14:1 and in ref [54] the 

compression ratio of the engine was 10:1. So the maximum cylinder pressure values were 

obtained at 8% H2 in both figures. For all the previous cases, the cylinder pressure increased 

with the increase in the amount of H2. The explanation for this phenomenon is mainly due 

to fact that the flame speed of hydrogen is faster than the flame speed of CNG. Therefore, 

burning CNG in the presence of a small amount of hydrogen will result in faster and more 

complete combustion. This will result in higher peak pressure closer to TDC and it will 

produce a higher effective pressure [77]. 

 

Figure 13. Cylinder pressure values versus the crank angle for different engine speeds and different H2 

fractions (solid ref [77] and dashed ref [54]) 

Figure 14 shows the in-cylinder pressure curve under various λ for different fuels: pure 

CNG, 30% HCNG, 55% HCNG[78]. From Figure 14(a), as the mixture is leaner, the 
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maximum in-cylinder pressure is smaller. Figure 14(b,c,d) shows further that the position of 

the maximum in-cylinder pressure is later before λ=1.5. On the other hand, when λ > 1.5, the 

maximum in-cylinder pressure is nearer the TDC. 

 

Figure 14. (a) Max cylinder pressure versus excess air ratio. (b) In-cylinder pressure for CNG. (c) In-

cylinder pressure for 30% hydrogen volumetric ratio. (d) In-cylinder pressure for 55% hydrogen 

volumetric ratio[78].   

 

Figure 15. Cylinder pressure versus crank angle for 2000 and 3000 rpm in different fuels[79]. 

(a) (b)
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Figure 15 shows cylinder pressure versus crank angle for 2000(a) and 3000(b) rpm 

respectively [79]. As shown in these figures, the timing of the maximum cylinder pressure 

fueled with natural gas is postponed compared with that fueled with gasoline, and it 

advances as hydrogen is added. 

4.3. Brake thermal efficiency 

Figure 16 depicts BTE versus equivalence ratio [75]. As seen in this figure, the BTE of a 20% 

H2 +80% CH4 mixture is higher than that of 100% CH4 [57,62]. Since only one cylinder was 

used in the experiment it is expected that efficiency be lower compared to an experiment 

using a four-cylinder engine. According to the experiments in Ref[41], the BTE values 

decreased, while the H2 percentage increased. The highest efficiency values were between 

0.7 and 0.9 equivalence ratios. According to the study in Ref. [55], the maximum efficiency 

was at about φ=0.75–0.8 for a 30%H2+70%CH4 mixture.. Also, effective efficiency had about a 

φ= 0.75–0.8 equivalence ratio [41,57,62]. 

 

Figure 16. Brake thermal efficiency versus equivalence ratio 

5. Conclusions and perspectives for further development 

The results in this study can be summarized as follows: 

• The ultimate goal of hydrogen economy is to displace fossil fuels with clean burning 

hydrogen and CNG is the best route to ensure the early introduction of hydrogen fuel 

into the energy sector. 
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• The lean-burn capability and flame burning velocity of the natural gas engine was 

improved by blending it with fast burning velocity fuel such as hydrogen. 

• HCNG engines are superior to CNG engines from a fuel economy, power, and torque 

point of view due to better combustion. 

• The addition of hydrogen to natural gas increases BMEP compared with that of natural 

gas combustion. This is due to the increased burning velocity of the mixture by 

hydrogen addition which shortens combustion duration and increases the cylinder gas 

temperature. 

• The HCNG engine improves power by 3 - 4 % and torque by about 2 - 3 % compared to 

the CNG engine. The HCNG engine operates on the leaner side than the CNG engine 

which reduces fuel consumption by about 4% compared to CNG engine. 

• The HCNG fuel reduces CO emissions and NOx emissions more than the neat CNG 

operation. Thus the blended HCNG fuel is more environmentally friendly. 

• Engine operating parameters have to be carefully chosen by the designer, taking into 

account their effect on engine performance and emission. 

• Any attempt to control emissions by operating the engine with leaner mixtures has to 

take into account the effect on other variables like power. 

• Compression ratio and equivalence ratio have a significant effect on both the 

performance and emission characteristics of the engine and have to be carefully 

designed to achieve the best engine performance characteristics. 

• Higher engine rotational speeds can be used in lean mixtures to increase the power 

output of an engine operating on hydrogen while maintaining high efficiency and pre-

ignition free operation. 

• The variation in spark timing with hydrogen is very effective in controlling the 

combustion process. 

• Higher compression ratios can be applied satisfactorily to increase power output and 

efficiency, mainly because of the relatively fast burning characteristics of hydrogen–air 

mixtures. 

• The addition of hydrogen to methane gives a good alternative fuel to hydrocarbon fuels 

as it gives good flame stability, wide flammable regions and relatively higher burning 

velocity. 

• NOx emission values generally increase with increasing hydrogen content. However, if 

a catalytic converter, an EGR system or lean-burn technique are used, NOx emission 

values can be reduced to extremely low levels. 

• HC, CO2 and CO emission values decrease with increasing hydrogen percentage. 

• The addition of H2 (up to 20-30% vol.) to NG may constitute an effective short-term 

solution for the green-house gases problem and at the same time to introduce H2 into 

the fuel market without requiring changes in current engine technology. 

• In conjunction with new and advanced technologies, hydrogen-methane mixture gases 

can provide a large part of the rapidly growing need for clean and affordable energy 

services in the world. 

Future research of the hydrogen enriched compressed natural gas fuel include continuous 

improvement on performance and emissions, especially to reduce the hydrocarbon 
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emissions (including methane if necessary) which are currently not heavily regulated but 

will probably be more closely regulated in the future. Although the exhaust emissions from 

hydrogen-enriched natural gas are already very low, further refinement must be done in 

order to further reduce emissions and to achieve Enhanced Environmentally Friendly 

Vehicle (EEV) standards. Therefore finding the optimal combination of hydrogen fraction, 

ignition timing and excess air ratio along with other parameters that can be optimized is 

certainly a large hurdle. It is not only a challenge to locate the ideal combination of 

hydrogen fraction, ignition timing, and excess air ratio, but it can also be a large challenge to 

control these parameters. This requires sufficient control system to be developed for the 

HCNG engine to maximize the performance simultaneously minimizing the exhaust 

emissions. Other potential improvements include the reduction of emissions which can be 

transpire with the addition of a catalytic converter or by implementing an exhaust gas 

recycle system, lastly there is potential for performance improvements with an increase in 

the compression ratio[80]. 

As a result, today are faced with environmental problems, tomorrow hydrogen will solve all 

environmental problems due to road transports: Natural gas-hydrogen blends may be a 

potential bridge from today to tomorrow. 

Abbreviations 

AFR  Air-fuel ratio  

ATDC  After top dead center 

BSCO  Brake specific carbon monoxide 

BSFC   Brake specific fuel consumption 

BSHC   Brake specific hydrocarbon 

BSNOx   Brake specific nitrogen oxide 

BTDC   Before top dead center 

BTE  Brake thermal efficiency 

CA   Crank angle (◦) 

CFR   Co-operative fuel research 

CI  Compression ignition engine 

CNG   Natural gas  

CO   Carbon monoxide 

CO2   Carbon dioxide 

ECE15   European driving cycle 

EGR   Exhaust gas recirculation 

ENEA   Italian national agency for new technologies 

HC    Hydrocarbon 

HCNG   Hydrogen-natural gas blend 

H2  Hydrogen 

IC    Internal combustion engines 

LNG   Liquid natural gas 

LPG   Liquid petroleum gas 
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MBT   Maximum brake torque 

NEDC   New European driving cycle 

NG   Natural gas 

NOx   Nitrogen oxides 

NTP   normal pressure and temperature 

rpm   Revolutions per minute 

SI  Spark-ignition engine 

TDC  Top dead center 

THC  Total unburned hydrocarbon 

uL  Laminar burning velocity 

WOT   Wide open throttle 

Greek symbols 

φ   Equivalence ratio 

λ   Excess air ratio 
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