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1. Introduction

Estimating various characteristics of an unknown groundwater pollutant source can
be formulated as an optimization problem using linked simulation-optimization.
Meta-heuristics based optimization algorithms such as Simulated Annealing (SA), Genetic
Algorithm (GA), Tabu Search etc. are now being accepted as reliable, faster and simpler ways
to solve this optimization problem. In this chapter we discuss the suitability of a variant of
traditional Simulated Annealing (SA) known as the Adaptive Simulated Annealing (ASA)
in solving unknown groundwater pollutant source characterization problem. Growing
anthropogenic activities and improper management of their impacts on groundwater quality
has resulted in widespread contamination of groundwater worldwide. Coupled with ever
increasing water demand leading to increased reliance on groundwater, it has resulted in
a widespread recognition of public health risk posed by contaminated groundwater. This
has triggered massive efforts for better management of groundwater quality in general
and remediation of contaminated aquifers in particular. The sources of contamination in
groundwater are often hidden and inaccessible. Characteristics of these pollutant sources
such as their location, periods of activity and contaminant release history are often unknown.
Groundwater contaminant source identification problem aims at estimating various
characteristics of an unknown groundwater pollutant source using measured contaminant
concentrations at a number of monitoring locations over a period of time. It has been widely
accepted that for any remediation strategy to work efficiently, it is very important to know
the pollutant source characteristic. A detailed account of different categories of source
identification problems and various approaches to solve them has been presented in Pinder
[26].
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158 Simulated Annealing — Single and Multiple Objective Problems

Typically, groundwater contamination is first detected by one or more arbitrarily located well
or monitoring location. Unknown Groundwater source identification problem specifically
attempts to ascertain the following source characteristics:

Source Type (point, areal etc.)
Spatial location and extent of the source
Release pattern (slug, continuous, intermittent etc.)

Point of time when the source first became active (start time)

SR

Contaminant flux released as a function of time elapsed since start time (release history)

Source type is often obvious. In some cases, information on groundwater contaminant source
location may be available from preliminary investigations. If an exhaustive record of pollutant
inventory and industrial activities of the area is available, it may be possible to infer start time.
Release history of the source, however, is difficult to ascertain as the source is not physically
accessible for measurements and hence it is unlikely that any accurate temporal record of
contaminant fluxes released from the source exists.

Release history reconstruction problem is one of the most widely studied groundwater
source identification problems. Ascertaining release history of the contaminant sources
from available contaminant concentration measurements is an inverse problem as it requires
solving groundwater flow and transport equations backwards in time and space. The
process of solving this inverse problem is essentially the process of finding various unknown
characteristics of source using observed information about the transport media and the effects
caused by the source. In such circumstances, a solution cannot be guaranteed, especially
when observed information is sparse. Even if the solution exists, it may not be unique.
This is because different combinations of various source characteristics can produce the
same effect at a monitoring location. Moreover, the solution of this problem is highly
sensitive to measurement errors either in the observation data or model parameters and
hence this problem has been classified as an ill-posed inverse problem[33] . When this
inverse problem has to be solved by using inaccurate values of media parameters such as
hydraulic conductivity and porosity and contaminant concentration observed at arbitrarily
placed monitoring wells, it becomes even more challenging to obtain a reliable solution.

Methods proposed in the past to solve this ill-posed inverse problem can be broadly
classified as optimization approaches, analytical solutions, deterministic direct methods
and probabilistic and geo-statistical simulation approaches. A detailed review of these
methodologies can be found in Atmadja & Bagtzoglou [2]; Michalak & Kitanidis [25];
Bagtzoglou & Atmadja [3] and Sun et al. [31, 32]. The most effective of all suggested methods
seems to be those based on optimization or probabilistic and geo-statistical simulation. Of
the optimization methods, linked simulation-optimization approaches have been established
as one of the most efficient methods. In this approach, a numerical groundwater flow
and transport simulation model is linked to the optimization model. All the linked
simulation-optimization approaches aim at solving a minimization problem with an objective
function representing the difference in measured concentration and simulated concentration
at various monitoring locations. The optimization model generates candidate solutions for
various source characteristics. This is used as an input for the simulation model to generate
estimated contaminant concentration observations at designated monitoring locations. The
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optimization algorithm then calculates the value of objective function by calculating the
difference in contaminant concentrations estimated by simulation model and actual observed
values at the same monitoring locations over a period of time. Over a number of iterations, the
optimization algorithm minimizes the objective function value. Most prominent approaches
in this category are linear programming with response matrix approach [9], nonlinear
optimization with embedding technique [21-23], artificial neural network approach [28-30],
constrained robust least square approach [31, 32], classical optimization based approach [5-7],
genetic algorithm based approach [1, 24, 27] etc.

In recent past, heuristic global search approaches such as Genetic Algorithm [12], Harmony
Search, Tabu Search, Ant-Colony Optimization, Simulated Annealing[19] have developed
rapidly and have been applied to a wide range of optimization problems. One of the major
reasons for their popularity is the fact that these optimization methods do not easily get
trapped in the local optima, thereby maximizing the probability of achieving a global optimal
solution. Genetic algorithm (GA) and its variants, in particular, have been widely applied
for solving unknown pollutant source identification. [11, 24, 27]. Genetic Algorithms are
computational optimization algorithms that simulate the laws of natural genetics and natural
selection and use it to search for the optimal solution.

Apart from GA or its variants, Simulated Annealing has also been used in solving inverse
problems in groundwater management. Simulated annealing is inspired by the physical
process of annealing in metallurgy which involves heating and controlled cooling of a material
to reduce defects in crystal structure. The atoms are excited by heat and they become
agitated while getting into higher energy states. The slow cooling allows a better chance
for these atoms to achieve lower energy states than the ones they started with. In simulated
annealing, a current solution may be replaced by a random “neighborhood" solution chosen
with a probability that depends on the difference between corresponding function values
and on a global parameter T (called temperature) that is gradually decreased in the process.
Implementations of simulated annealing has been relatively limited because the traditional
simulated annealing algorithm is reported to converge slower compared with GA or its
variants. However, faster variants of simulated annealing have been developed and one of
the most promising variants in terms of convergence speed is Adaptive Simulated Annealing
(ASA) [14, 15]. The ASA code was first developed in 1987 as Very Fast Simulated Re-annealing
(VFSR) [13]. Ingber & Rosen [16] showed that VFSR is at least an order of magnitude superior
to Genetic Algorithms in convergence speed and is more likely to find the global optima
during a time limited search.

Linked simulation-optimization based approaches are computationally intensive as the
simulation model has to be run many thousands of times before an acceptable solution
is produced. This has been a deterrent to any desktop based implementation of the
simulation-optimization approach. Faster convergence can reduce the computational burden
significantly and thereby enhance the possibility of a desktop based implementation of
linked simulation-optimization approach. This paper investigates the applicability of ASA
to unknown groundwater contaminant source release history reconstruction problem and
compares its performance to genetic algorithm based solution. The performance evaluation
of competing simulation-optimization approaches are based on a realistic scenario of missing
measurement data, where contaminant concentration measurements are available a few years
after the sources have ceased to exist. Apart from the convergence speed, the two algorithms
are compared for their ability to produce accurate source release histories with moderately
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erroneous data and with uncertainty in estimation of hydro-geological parameters.

One of the most important factors that affects the execution time and accuracy of solutions
generated by linked simulation-optimization approaches is the choice of observation
locations. Poorly chosen contaminant observation locations often produce misleading results
and hence it becomes important that after the initial estimation of the contaminant sources, a
monitoring network is designed and implemented. In this study we use a monitoring network
designed specifically to enhance the efficiency of source identification. However, a detailed
discussion of the methodology used for monitoring network design is beyond the scope of
this book.

2. Methodology

The linked simulation-optimization approach consists of two parts. An optimization
algorithm generates the candidate solutions corresponding to various unknown groundwater
source characteristics. = The candidate solutions are used as input in the numerical
groundwater transport simulation model to generate the concentration of contaminant in
the study area. The generated concentration at designated monitoring locations is matched
to the observed values of contaminant concentrations at various time intervals at the same
locations. The difference between simulated and observed concentration is used to calculate
the objective function value which is utilized by the optimization algorithm to improve the
candidate solution. The process continues until an optimal solution is obtained. A detailed
schematic representation of this process of using SA as the optimization algorithm in a linked
simulation-optimization model is presented in Figure 1. The classical simulated annealing
(SA) algorithm has many associated guiding parameters such as the initial parameter
temperature, annealing schedule, acceptance probability function, goal function etc. Effective
application of the classical simulated annealing to a particular optimization problem normally
involves a lot of trials and adjustments to achieve ideal values for all or most of these
parameters. ASA, which is a variant of classical SA, helps overcome this difficulty to a certain
extent by automating the adjustments of parameters controlling temperature schedule and
random step selection thereby making the algorithm less sensitive to user defined parameters
compared with classical SA. This additional ability of ASA combined with inherent ability of
classical SA to find the global optimal solution even when multiple local optimums exists,
makes it a natural choice for solving the groundwater pollutant source identification problem.

2.1. Governing equations

The three-dimensional transport of contaminants in groundwater can be represented by the
following partial differential equation [17]

oC 9 (aC 9 gs N

Where
C is the concentration of contaminants dissolved in groundwater,ML_3 ;

tis time, T;
x;, x; is the distance along the respective Cartesian coordinate axis, L;
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Figure 1. Schematic Representation of Linked Simulation-Optimization Model using SA

Dij is the hydrodynamic dispersion coefficient, 271,

8; is the seepage or linear pore water velocity, LT~ ;

gs is the volumetric flux of water per unit volume of aquifer representing sources
(positive) and sinks (negative), T-1,

C, is the concentration of the sources or sinks, ML~3;
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8 is the porosity of the porous medium, dimensionless;
N is the number of chemical species considered;
Z}g’zl Ry is the chemical reaction term for each of the N species considered, ML 3T 1.

In order to solve this transport equation, linear pore water velocity needs to be known for the
study area. Hence, it becomes necessary to first calculate the hydraulic head distribution using
a groundwater flow simulation model. The partial differential equation for groundwater flow
is given by the following equation:

d oh 0 oh d oh oh

Kix, Kyy, and Kz, are the values of hydraulic conductivity (LT_l) along the x, y and z
co-ordinate axes respectively;

H is the potentiometric head (L);

W is the volumetric flux per unit volume representing sources and/or sinks of water
(T~1);

Ss is the specific storage of the porous media (L™1); and

t is time (7).

Where

The flow equation describes transient groundwater flow in three dimensions in a
homogeneous anisotropic medium, provided the principal axes of hydraulic conductivity are
aligned with the co-ordinate directions. A computer code called MODFLOW is used to solve
this groundwater flow equation. MODFLOW was developed by United States Geological
Survey (USGS) and is one of the most popular computer programs being used to simulate
groundwater flow today. MODFLOW is based on modular finite-difference method which
discretizes the study area into a grid of cells. The potentiometric head is calculated at the
center of each cell.

To solve the three dimensional ground water transport equation, another computer code
called MT3DMS is used. This is also a very popular computer program developed by the
USGS and uses modular finite-difference just like MODFLOW. The transport simulation
model (MT3DMS) utilizes flow field generated by the flow model (MODFLOW) to compute
the velocity field used by the transport simulation model. [34]

2.2. Formulation of the optimization problem

It is assumed in this study that information on a set of potential source locations are
available. The objective of simulation-optimization method then reduces to regenerating the
source release histories at these potential source locations. Spatial and temporal contaminant
concentration(C) is known at specific monitoring locations at various point of time. Candidate
source fluxes are generated by the optimization algorithm. These values are used for
forward transport simulations in MT3DMS. The difference between simulated and observed
contaminant concentrations are then used to calculate the objective function. The objective
function for this optimization problem is defined as:

nk nob 2
MinimizeF1 = Z Z (cesti-‘ob — cobsfob) .wi‘ob 3)
k=11iob=1
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Where,

cesti.‘o , = Concentration estimated by the identification model at observation well
location iob and at the end of time period k.

nk = Total number of concentration observation time periods;

nob= Total number of observation wells;

cobsfob= Observed concentration at well iob and at the end of time period k;

wi'(ob: Weight corresponding to observation location iob, and the time period k.

The weight wi.‘ob can be defined as follows:

—
10 (

w -_
k 2
cobsy, +n)

(4)

Where n is a constant, sufficiently large, so that errors at low concentrations do not dominate
the solution [18]. It is possible to include other forms of this weight.

2.3. Optimization algorithms

Of the various simulated annealing implementations, it is evident in literature that the
adaptive simulated annealing algorithm converges faster [16] while maintaining the reliability
of results and hence it was preferred over traditional Boltzmann annealing implementation
[19]. Its application to the unknown pollutant source identification has been limited but it is
potentially a good alternative because its convergence curve is steep, thereby producing better
results when execution time is limited.

Currently, the most widely used optimization algorithm for solving groundwater source
identification problem using linked simulation-optimization model is Genetic Algorithm and
its variants. The effectiveness of ASA in solving this problem is compared against the
effectiveness of GA. Genetic algorithms (GAs) are population based search strategies which
are popular for many difficult to solve optimization problems including inverse problems.
GAs emulate the natural evolutionary process in a population where the fittest survive and
reproduce [12]. GA-based search performs well because of its ability to combine aspects of
solutions from different parts of the search space. Real coded genetic algorithm was used
with a population size of 100, crossover probability of 0.85 and a mutation probability of 0.05.
The values were chosen based on a series of numerical experiments.

3. Performance evaluation

In order to evaluate the performance of two different optimization algorithms involving
comparison of solutions obtained, it is vital to first ensure that only one solution exists. In
other words, a unique solution has to be guaranteed. This is possible only under the following
idealized assumptions [33]:

1. The numerical models used for simulation of groundwater flow and transport are able to
provide exact solution of the governing equations in forward runs.

2. All the model parameters and concentration measurements are known without any
associated errors.
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3. The unknown parameter is piecewise constant.

The first assumption is valid for cases where grid size and time step used in the numerical
solution tends to zero. However since the groundwater simulation models used in this study
have been proven to be stable and convergent, this assumption approximately holds. The
second assumption however, cannot hold in real life scenarios. Hence it becomes necessary
to use synthetically generated observation values initially which can be considered free of
measurement errors. The third condition is implemented by assuming that the unknown
fluxes are constant in every stress period. In such conditions it approximately resembles
a well posed problem. Therefore these evaluations are initially carried out for synthetic
data (simulated data) with known parameter values. There is another related issue of
unique solutions. Whenever numerical simulation and optimization models are used, the
convergence of the solutions may be another issue related to unique solutions. These issues
are discussed in [4]. In this study the use of synthetic observation data, with known
hydro-geologic parameter values reduces the ill-posed nature of the problem. The uniqueness
of the solution cannot be guaranteed. However, sufficient iterations were allowed to ensure
convergence to the optimal solution. Performance of the source identification methodology is
evaluated using synthetic data from a three dimensional aquifer study area. The synthetic
contaminant concentration data is obtained by solving the numerical flow and transport
simulation models.

3.1. Simulating errors in concentration measurement data

Once the global optimal solution has been obtained for the idealistic assumption, the
performance evaluation of developed methodology can take into account the effects of
contaminant concentration measurement errors as well as uncertainty associated with the
determination of hydro-geological parameters. To test the performance for realistic scenarios,
concentration measurement errors are incorporated by introducing varied amounts of
synthetically generated statistical noise in the simulated concentration values. The perturbed
simulated concentrations represents erroneous measurements and is defined as follows:

Cpert = Cys + Syg X a x Cys )

Where,

Cpert= Perturbed Concentration values

Cus= Simulated Concentration

S,,4= a uniform random number between -1 and +1

a = a fraction between 0 and 1.0.

3.2. Performance evaluation criteria

The execution time of the algorithms is compared based on convergence curves which
represent the value of objective function achieved versus time. To compare the ability of
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competing linked simulation-optimization approaches to produce accurate source histories,
the errors in estimating source fluxes accurately is also used as a performance criterion.
Normalized absolute error of estimation (NAEE) is used as the measure of errors in estimation
of the sources. It can be represented as:

NAEE(%) = rLah (9., - (9) o
21'5:1 Zjlil (GID

x 100 (6)

act

Where,
NAEE = Normalized Absolute Error of Estimation
S = Number of Sources = 2 in this case.

N= number of transport stress periods = 5 in this case.

<q{> = Actual source flux for source number i in stress period j
ac

(qf) = Estimated source flux for source number i in stress period j
est

4. Discussion of solution results

The developed methodology was applied to a hypothetical illustrative study area with
synthetically generated concentration measurements over space and time. Advantage of
using a hypothetical study area lies in the fact that unknown data errors do not distort the
performance evaluation of the methodology. This helps in understanding the drawbacks of
developed methodology and improving it further.

4.1. Study area

The hypothetical study area is a heterogeneous aquifer measuring 2100m x 1500m x 30m and
consisting of three unconfined layers as shown in Figure 2.

The East and west boundaries are constant head boundaries, whereas north and south
boundaries are no flow boundaries. There are two sources (S1 and S2) of contamination. S1
is located in the top layer and S2 in middle layer. Five monitoring location (M1 through
Mb5) are located in the first layer as shown in Figure 3. A grid size of 30m x 30m x 10m
is used for finite difference based numerical calculation of groundwater flow and transport
equations. Transport time step used for MT3DMS is 36.5 days. Other model parameters
are listed in Table 1. Only a conservative contaminant is considered. There are two point
sources of contaminants. One in the top layer and another one in the middle layer. A
time horizon of 16 years is considered. Entire time horizon is divided into 5 different stress
periods. The first four stress periods are each 1.5 years long and the final stress period is
of 10 years duration. Sources are assumed to be active only in the first four stress periods
or in the initial 6 years. Original source fluxes are presented in Table 2. It is assumed that
groundwater contamination is detected at five different locations in the study area at the
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Figure 3. Top View of Study Area Showing Sources and Monitoring Locations

end of 8 th year, that is two years after the sources had ceased to exist. The observation
wells are monitored for a period of 8 years starting from year 9 at an interval of 36.5 days.
Observed contaminant concentration measurements at the designated monitoring locations
are generated using MT3DMS as transport simulation model followed by perturbation as per
Equation 5.
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Parameter Values
Length of Study Area (m) 2100
Width of Study Area (m) 1500
Saturated thickness, b(m) 30
Grid spacing in x-direction, Ax (m) 30
Grid spacing in y-direction, Ay (m) 30
Grid Spacing in z-direction, Az (m) 10
Hydraulic conductivity in x-direction, Ky (m/day) 12
Hydraulic conductivity in y-direction, Ky (m/day) 8
Vertical Anisotropy 5
Hydraulic Gradient (m/m) 0.002
Effective porosity, 0 0.3
Longitudinal dispersivity, a; (m) 18
Transverse dispersivity, ar (m) 4
Initial contaminant concentration (mg/1) 0.00

Table 1. Model Parameters

Sources Layer Row Column Contaminant Flux (g/sec)
Stress Period 1 1.5 years 6.000
Stress Period 2 1.5 years 4.000
Source 1 1 12 15 Stress Period 3 1.5 years 8.000
Stress Period 4 1.5 years 5.000
Stress Period 5 10 years 0.000
Stress Period 1 1.5 years 7.000
Stress Period 2 1.5 years 9.000
Source 2 2 38 9 Stress Period 3 1.5 years 6.000
Stress Period 4 1.5 years 7.300
Stress Period 5 10 years 0.000

Table 2. Original Source Fluxes

4.2. Release history estimation with error free data

A set of error free observation data is generated. These observations are then used to evaluate
the developed linked simulation-optimization methodology based on both GA and ASA.
Input parameters used for GA and ASA are presented in Table 3. Every iteration of ASA based
method uses one run of the groundwater transport simulation model (MT3DMS) whereas
every generation of GA based method uses 100 (population size) runs of the same simulation
model. Irrespective of the method, one run of the groundwater transport simulation model
takes 4.281 sec to run on a Dell Optiplex®running an Intel®Core™2 Duo Processor at
2.93GHz. The execution time for one transport simulation run is however dependent on the
computing platform. In order to keep the comparison independent of computing platform,
both the methods were compared based on number of transport simulation runs which
is directly proportional to the execution time. Both the methods were used to estimate
source release histories using the error free data. In order to verify the convergence of
each optimization method, time of run was made practically unconstrained. It was found
that eventually both the optimization algorithms were able to achieve an objective function
value very close to zero and identified the release history accurately. The objective function
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convergence profile as well as estimated fluxes were plotted at the end of 40,000 simulation
runs of the groundwater transport model. Minimum value of objective function achieved
is plotted against number of runs of the transport simulation model. The estimated flux
values for both the sources in each stress period is also plotted against actual source fluxes.
Convergence profile and source flux estimates are shown in Figure 4. Convergence profile
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Figure 4. Convergence Profile and Estimated Release History with Error Free Data

shows that the objective function value for source identification model converges to a value
very close to zero with about 5,000 simulation runs. However, further convergence is
accelerated when using ASA algorithm. From these results, it can be concluded that the
developed methodology is able to achieve optimal solution for an ideal error free scenario
which resembles a well-posed problem.

4.3. Release history estimation with erroneous data

Five sets of erroneous observation data are generated with the formulation described in
Equation 5. The value of fraction ‘a” is specified as 0.1. These erroneous observations
are used to reconstruct the release histories of contaminant sources. Linked simulation
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optimization method using ASA is compared with the one using GA as the optimization
algorithm. Parameters used for both the optimization algorithms is presented in Table 3.
Unlike the case with error free measurement data, in this case both the methods were used

Parameters of ASA Parameters of GA
Mutation Strategy: Polynomial Mutation
Variable Boundaries : Rigid

Accepted to generated ratio 1.00E-06

Cost Precision 1.00E-15 Population size 80
Maximum Cost Repeat 5|Total no. of generations 600
Temperature Ratio Scale 1.00E-05| Cross over probability 0.8
Temp. Anneal Scale 100| Mutation probability 0.05

Table 3. Parameters used in Optimization Algorithms

to reconstruct source release histories using the erroneous data with a limit on execution time.
In order to make the comparison consistent by ensuring same number of simulation runs
in the ASA and GA based methodologies, the number of simulation runs are restricted to
40,000. This restriction was based on the fact that increasing the number of simulation runs
even to 80,000 resulted in very little improvement in the objective function value. Minimum
value of objective function achieved is averaged over five solutions and is plotted against
number of runs of the transport simulation model. The plot is presented in Figure 5. This
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Figure 5. Convergence Plot

plot clearly shows that ASA based method converges much faster in the beginning and the
GA based method is able to achieve comparable objective function values only after a much

169



170 Simulated Annealing - Single and Multiple Objective Problems

larger simulation runs. Because of the erroneous measurement data this problem may be
ill-posed and the solution may not be unique. Therefore, lower objective function values do
not always mean accurate reconstruction of the release histories.

In order to test the effectiveness of the competing methods based on accuracy of solutions
produced, reconstructed release histories were compared to the actual release history after
every set of 10,000 transport simulation runs. The results are shown in Figure 6. It can be
seen that ASA based method is more efficient compared to GA based method after 10,000
and 20,000 simulation runs. However, as the execution time increases further with increase in
number of simulation runs, the release histories produced by both methods become similar.
This is also confirmed from the calculated values of NAEE presented in Table 4. As the
execution time increases, the NAEE of ASA based method appears to increase only slightly.
This could be due to statistical variation in the five different solutions and may be attributed
to the input data error. Averaging over larger number of solutions may modify this inference.
NAEE of GA based method consistently improves. However, the NAEE values obtained using
ASA is still better in comparison.
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Figure 6. Reconstructed Release Histories using the competing methods

NAEE (%)
GA[ ASA
10000(6.86| 4.25
20000(6.53| 4.18
30000/5.82| 3.83
40000(4.26] 3.62

No. Of Simulation Runs

Table 4. Normalized Absolute Error of Estimation
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5. Application of simulated annealing for monitoring network design

Monitoring network design in the context of groundwater quality management essentially
means specifying the spatial location of monitoring wells and frequency of sampling. Since
this is one of the most cost intensive part of most contaminated groundwater remediation
problems, an efficient and cost effective design of monitoring network is essential. Monitoring
of groundwater quality may be necessitated by a variety of objectives such as:

1. Unknown groundwater source characterization
2. Compliance monitoring for limiting the effects of groundwater contamination
3. Better aquifer characterization

4. Hydro-geological parameter estimation

Irrespective of the various objectives, the problem of monitoring network design can be
formulated as an optimization problem [8, 20]. While designing a monitoring network for
estimating unknown groundwater source characteristics, the objective of optimization can
be to maximize the reliability of estimated source characteristics or to minimize the total
number of monitoring locations in the network or both. Compliance monitoring is aimed at
minimizing the area of contamination when the contamination is first detected at monitoring
network or maximizing the probability of detection of contaminant in groundwater. Often,
only the average values of hydro-geological parameters of the aquifer are known. This
results in uncertainty in the modeling results. In order to better characterize an aquifer,
spatial distribution of hydro-geological properties should be specified. This objective can
be achieved by sampling hydro-geologic parameter at sufficient locations such that the
interpolated values can represent actual hydrological parameters accurately. The objective of
optimization in this case is to find the minimum number of samples required to accurately
represent a population of random hydro-geological parameter values. In all such cases,
Adaptive Simulated Annealing can be efficiently used as the tool for optimization. Our
attempts to develop classical simulated annealing algorithm for optimal design of a dedicated
monitoring network for enhancing the efficiency of source identification was successful to a
large extent. However, the mixed integer nature of the decision variables in a monitoring
network design problem makes the application of classical simulated annealing algorithm a
bit constraining. Adaptive Simulated Annealing is more suitable to solve this monitoring
network design problems.

6. Suitability and sensitivity of adaptive simulated annealing

In the application discussed here, Simulated Annealing is utilized for finding the global
minimum of a cost function that characterizes large and complex systems such as transport
of pollutants in groundwater.Simulated Annealing, as an algorithm, is very efficient in
solving non-convex optimization problems by ensuring that it does not always move
downhill on a complex non-convex search space and hence avoids getting trapped in
local minimum. Simulated annealing also differs significantly from conventional iterative
optimization algorithms in that gross features of the final state of the system are seen at higher
temperatures whereas the finer details of the state appear at lower temperatures [10]. The fact
that simualted annealing ensures a global optimal solution enhances its suitability for solving
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ill-posed inverse problems in general and the problem of unknown groundwater pollutant
source characterization in particular.

Its ease of use and remarkable efficiency in handling complex objective functions and
constraints has made simulated annealing an attractive choice for solving a wide range of
complex optimization problems. However, the slow convergence and hence long time of
execution of standard Boltzmann-type simulated annealing has been a constraint. Adaptive
Simulated Annealing removes that constraint by making the annealing schedules decrease
exponentially in annealing-time, thereby making the convergence much faster. A major
difference between ASA and traditional Boltzamnn Annealing algorithms is that the ergodic
sampling takes place in terms of n parameters and the cost function. In ASA the exponential
annealing schedules permit resources to be spent adaptively on re-annealing and on pacing
the convergence in all dimensions, ensuring ample global searching in the first phases of
search and ample quick convergence in the final phases[15].

Another major advantages of using Adaptive Simulated Annealing is also the fact that the
parameters of algorithm are adjusted adaptively and hence the solutions do not vary widely
if parameter values are changed within reasonable limits. This is in contrast with Genetic
Algorithm where even minor changes to parameters such as mutation probability, cross over
probability or population size causes a significant difference in the solutions.

7. Conclusion

A linked simulation-optimization method for source identification was developed based on
adaptive simulated annealing. It was applied to an illustrative study area. The results
obtained were compared with those obtained using genetic algorithm, a more commonly used
optimization approach. It is evident from the limited numerical experiments that adaptive
simulated annealing algorithm based solutions converge to the actual source fluxes faster
than genetic algorithm based solutions. This results in substantial saving in computational
time. The source fluxes identified by using adaptive simulated annealing are closer to
actual fluxes when compared to the results obtained using genetic algorithm, even when
the observation data are erroneous and the hydro-geological parameters are uncertain. It
can be concluded that adaptive simulated annealing is computationally more efficient for
use in simulation-optimization based methods for identification of unknown groundwater
pollutant sources, specially in a time constrained environment. Use of ASA has the potential
to reduce CPU time required for solution by an order of magnitude. However, with very
large number of iterations in the linked simulation-optimization approach, it is possible that
the solutions obtained using GA could converge to a marginally better solution compared
to that ASA based algorithm. However, it appears that ASA based solutions converge very
close to the optimal solution using only a small fraction of iterations required while using
GA. The relevance of contaminant monitoring locations is demonstrated. Further studies
are required to develop dedicated monitoring networks which can increase the efficiency of
source identification.
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