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1. Introduction

Limitations in the current blade technology constitute a technological barrier that needs to
be broken in order to continue the improvement in wind-energy cost. Blade manufacturing
is mostly based on composite laminates, which is labor-intensive and requires highly-quali‐
fied manpower. It constitutes a bottleneck to turbine upscaling that reflects into the increas‐
ing share of the cost of the rotor, within the total cost of the turbine, as turbine size increases.
Figure 1 shows a compilation of data by NREL-DOE [26] on the proportional cost of each
subsystem for different sizes of wind-turbines, where the systematic increase of the rotor
cost share is clearly reflected.

Figure 1. Evolution of the proportional cost for the different wind-turbine subsystems, as size increases (data com‐
pilation from [26]).
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Moreover, while the rest of the wind turbine subsystems are highly developed technological
products, the blades are unique. There is no other technological application that uses such a
device, so practical experience in blade manufacturing is relatively new. Blades also operate
under a complex combination of fluctuating loads, and huge size differences complicate ex‐
trapolation of experimental data from the wind-tunnel to the prototype scale. Hence, com‐
puter models of fluid-structure interaction phenomena are particularly relevant to the
design and optimization of wind-turbines. The wind-turbine industry is increasingly using
computer models for blade structural design and for the optimization of its aerodynamics.
Nevertheless, several features of the complex interaction of physical processes that charac‐
terize the coupled aeroelastic problem still exceed the capacities of existing commercial sim‐
ulation codes. Changes in structural response due to the development of new techniques in
blade construction and/or the use of new materials would also represent a major factor to
take into account if the development of a new prototype blade is considered.

Hence, a key factor for a breakthrough in wind-turbine technology is to reduce the uncer‐
tainties related to blade dynamics, by the improvement of the quality of numerical simula‐
tions of the fluid-structure interaction process, and by a better understanding of the
underlying physics. The current state-of-the-art is to solve the aeroelastic equations in a fully
non-linear coupled mode using Bernoulli or Timoshenko beam models (see [11], where a
thorough coverage of the topic is presented). The goal is to provide the industry with a tool
that helps them to introduce new technological solutions to improve the economics of blade
design, manufacturing and transport logistics, without compromising reliability. A funda‐
mental step in that direction is the implementation of structural models capable of capturing
the complex features of innovative prototype blades, so they can be tested at realistic full-
scale conditions with a reasonable computational cost. To this end, we developed a general‐
ized Timoshenko code [27] based on a modified implementation the Variational-Asymptotic
Beam Sectional technique (VABS) proposed by Hodges et al. (see [13] and references there‐
in). The ultimate goal is to combine this code with an advanced non-linear adaptive model
of the unsteady flow, based on the vorticity-velocity formulation of the Navier-Stokes equa‐
tions, called the KLE model [32,33], which would offer performance advantages over the
present fluid-structure solvers.

In this chapter we present a set of tools for the design and full-scale analysis of the dynam‐
ics of composite laminate wind-turbine blades. The geometric design is carried on by means
of a novel interpolation technique and the behavior of the blades is then simulated under
normal operational conditions. We obtained results for the displacements and rotations of
the blade sections along the span, section stresses, and fundamental vibrational modes of
the blades.
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2. Fluid--Structure Interaction Model

2.1. Structural model

Even though a wind turbine blade is a slender structure that may be studied as a beam,
they are usually not simple to model due to the inhomogeneous distribution of material
properties and the complexity of their cross section (see Fig. 2. The ad hoc kinematic assump‐
tions  made  in  classical  theories  (like  the  Bernoulli  or  the  standard  Timoshenko  ap‐
proaches) may introduce significant errors, especially when the blade is vibrating with a
wavelength shorter than its length. Complex blade geometry due to reasons of aerodynamic/
mechanical  design,  new techniques of  blade construction,  and the use of  new materials
combine themselves to give a new dimension to the problem. In order t0 obtain a fluid-
structure interaction model capable of dealing with the complex features of new-genera‐
tion blades, we developed a code [27] based on a modified implementation of the Variational-
Asymptotic Beam Sectional (VABS) model. Proposed and developed by Prof. Hodges and
his collaborators [see 13, 39, and references therein], VABS is a model for curved and twist‐
ed composite beams that uses the same variables as classical Timoshenko beam theory, but
the  hypothesis  of  beam  sections  remaining  planar  after  deformation  is  abandoned.  In‐
stead, the real warping of the deformed section is interpolated by a 2-D finite-element mesh
and its contribution to the strain energy is put in terms of the classical 1-D Timoshenko''s
variables by means of a pre-resolution. The geometrical complexity of the blade section and/
or its material inhomogeneousness are reduced into a stiffness matrix for the 1-D beam. The
reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic
sense. Elimination of the ad hoc  kinematic assumptions produces a fully populated 6 × 6
symmetric matrix for the 1-D beam, with as many as 21 stiffnesses, instead of the six fun‐
damental stiffnesses of the original Timoshenko theory. That is why VABS is referred to as
a generalized Timoshenko theory.

Figure 2. Example of blade-section structural architecture representative of current commercial blade designs. The
primary structural member is a box-spar, with a substantial build-up of spar cap material between the webs. The exte‐
rior skins and internal shear webs are both sandwich construction with triaxial fiberglass laminate separated by balsa
core (from [9]).
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Even for the case of large displacements and rotations of the beam sections, our model al‐
lows for accurate modeling of the bending and transverse shear in two directions, extension
and torsion of the blade structure as a 1-D finite-element problem. Thus, this way we are
able to decouple a general 3-D nonlinear anisotropic elasticity problem into a linear, 2-D,
cross-sectional analysis (that may be solved a priori), and a nonlinear, 1-D, beam analysis for
the global problem, which is what we would solve at each time step of a fluid-structure in‐
teraction analysis. This translates into substantial savings in computational cost as the struc‐
tural problem is solved along many timesteps. The cross-sectional 2-D analysis (that may be
performed in parallel for the many cross sections along the blade) calculates the 3-D warp‐
ing functions asymptotically and finds the constitutive model for the 1-D nonlinear beam
analysis of the blade. After one obtains the global deformation from the 1-D beam analysis,
the original 3-D fields (displacements, stresses, and strains) can be recovered a posteriori us‐
ing the already-calculated 3-D warping functions.

Figure 3. Generalized Timoshenko theory: Schematic of the reference line, orthogonal triads, and beam sections be‐
fore and after deformation (adapted from [39])

In order to make this chapter self-contained, we shall see a brief outline of the theoretical
basis of the dimensional reduction technique. More details can be found in [27, 13, 39] and
references therein. Referring to Fig. 3, we have a reference line R drawn along the axis of the
beam in the undeformed configuration. R could be twisted and/or curved according to the
initial geometry of the beam. Section planes are normal to R at every point along its length.

At the point where R intersects the section, an associated orthogonal triad , is de‐

fined in such a way that  is tangent to R and  are contained into the section plane;
with a correspondent coordinate system (X1,X2,X3) where X1 is the coordinate along R and
X2,X3 are the Cartesian coordinates on the section plane. The position of a generic point on
each section may be written as
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where  denotes the position of the center of the tern along R, and the index α assumes val‐
ues 2 and 3.

When the structure is deformed due to loading, the original reference line R adopts a new

geometry r, and we have a new triad  associated to each point, where  is tangent to

r and  are contained into the normal plane. The material point whose original position

was given by    has now the position vector

where wi are the contribution to the displacement due to warping. Now, we are able to com‐

pute the components of the gradient-of-deformation tensor as , where

 are respectively the covariant base vectors for the deformed configuration and the
contravariant base vectors in the undeformed configuration, obtained from the kinematic
description of equations (1) and (2). The Jaumann-Biot-Cauchy strain tensor is

Γij = 1
2 (F ij + F ji)−δij, which provides a suitable measure of the 3-D strain field in terms of the

beam strain measures and arbitrary warping functions. Γ is then used to compute the strain
energy density function as

2U = Γ T |S Γ , (3)

were, S is the matrix of the characteristics of the material expressed in the  coordinates,

and · = ∫S · Gd X 2d X 3, where s indicates the 2-D domain of the cross-section.

The next step is to find a strain energy expression asymptotically correct up to the second
order of h/l and h/R0, where h is the characteristic size of the section, l the characteristic
wavelength of deformation along the beam axis, and R0 the characteristic radii of initial cur‐
vatures and twist of the beam. A complete second-order strain energy is sufficient for the
purpose of constructing a generalized Timoshenko model because it is generally accepted
that the transverse shear strain measures are one order less than classical beam strain meas‐
ures (extension, torsion and bending in two directions) [38]. A strain energy expression that
asymptotically approximates the 3-D energy up to the second order is achieved using the
Variational Asymptotic Method proposed in [4]. The complete derivation of this procedure
is presented in [13], resulting in the following expression for the asymptotically correct
strain energy:
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2U =ε TAε + ε T 2Bε ′ + ε ′TCε ′ + ε T 2Dε ′′, (4)

where A, B, C, D are matrices that carry information on both the geometry and the material
properties of the cross section, ()'' indicates the partial derivative with respect to the axial
coordinate X1, and ε = γ̄11 κ̄1 κ̄2 κ̄3

T , are the strain measures defined in the classical Ber‐
noulli beam theory: γ̄11 the extension of the beam reference line, k̄ 1 its torsion, and k̄ 2 and k̄ 3

the bending of the reference line in axes 2 and 3 due to the deformation.

The variational asymptotic procedure to get the matrices in equation (4) involves the discre‐
tization by finite-element techniques of the warping functions wi defined in expression (2).

During this procedure, a set of four constraints must be applied on wi. These restrictions, de‐
fined as wi =0 and X 2w3−X 3w2 =0, where ∙ = ∫s ∙ d X 2 d X 3, are intended to eliminate
four rigid modes of displacement of the warped section (i.e. the three linear displacements

plus the turn around ), which are already included in the Bernoulli strain measures ε. Pre‐
vious implementations of VABS (e.g. [39,13]) use the technique described by Cesnik et al. [6]
to impose these constraints. In Cesnik et al.'s method, the rigid modes of displacement are
suppressed explicitly. Then, the eigenvectors associated with the rigid modes in the matrix
of the linear system that needs to be solved are computed, and used to get a reduced system.
Instead of that, in our implementation of VABS, we use the Lagrangian-multiplier technique
in its classical way to impose the constraints, solving the expanded system for the constrain‐
ed variational formulation itself. This simplifies the procedure by basically combining the
whole solution in a single step. This simplification produces by itself a certain reduction in
the overall computational cost, but most important, it has the advantage of allowing the use
of the internal-node condensation technique in the finite-element discretization. As we shall
see later, internal-node condensation allows us to substantially improve the efficiency of our
solution by the tri-quadrilateral finite-element technique.

Expression (4) for the strain energy is asymptotically correct. Nevertheless, it is difficult to
use in practice because it contains derivatives of the classical strain measures, which re‐
quires complicated boundary conditions. But, the well known Timoshenko beam theory is
free from such drawbacks. Hence, the next step is to fit the strain energy in (4), into a gener‐
alized Timoshenko model of the form

2U = εT γs
T X Y

YT G
ε
γs

=εT Xε + 2εT Yγs + γs
T Gγs , (5)

where �= γ11 κ1 κ2 κ3
T  are the classical Timoshenko strain measures due to extension,

torsion and bending, and γ = 2γ12 2γ13
T  the transverse shear strains.

What we need to find is X, Y and G in such a way that the strain energy in (4) and (5) would
be equivalent up to at least second order. There is an identity that relates both the Bernoulli
and the Timoshenko measures of deformation
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ε =ε + Qγγ ′
s + Pγγs, (6)

where

Qγ
T =

0 0 0 1
0 0 −1 0 , y Pγ

T =
0 K2 −K1 0
0 K3 0 −K1

, (7)

being K1 the twist, and K2 and K3 the curvatures of the original reference line R. Thus, using
(6),  we may rewrite expression (4)  in terms of the generalized Timoshenko strain meas‐
ures using the 1-D equilibrium equations. This provides a way to relate the derivatives of
strain measures with the strain measures themselves, to fit the resulting expression into the
generalized Timoshenko form (5). Then, an asymptotic method is used to get approxima‐
tions to X, Y and G; using as input the already computed matrices A, B, C, D (see [39] for

details). Finally, a stiffness matrix for the 1-D beam problem  is formed as a simple reor‐

dering of the matrix 
X Y

YT G }, in such a way as to get a functional for the strain energy

density of expression~(5)

(8)

where γ̄ =
γ
κ  is the array of Timoshenko measures of deformation regrouped in a more con‐

venient way, γ T = γ11 2γ12 2γ13  and κ T = κ1 κ2 κ3 .

For the discretization of the 2-D sections, we adopted the tri-quadrilateral finite-element
technique, which is based on the use of nine-node biquadratic isoparametric finite elements
that possess a high convergence rate and, due their biquadratic interpolation of the geomet‐
ric coordinates, provide the additional ability of reducing the so-called skin-error on curvi‐
linear boundaries when compared to linear elements. For a detailed description of the
isoparametric-element technique and its corresponding interpolation functions see Bathe [3].

In order to combine the advantages of the nine-node quadrilateral isoparametric element
with the geometrical ability of a triangular grid to create suitable non-structured meshes
with gradual and smooth changes of mesh density, we implemented what we called tri-
quadrilateral isoparametric elements. The tri-quadrilateral elements consist of an assembling
of three quadrilateral nine-node isoparametric elements in which each triangle of a standard
unstructured mesh is divided into. By static condensation of the nodes that lie inside the tri‐
angle, we can significantly reduce the number of nodes to solve in the final system, subse‐
quently recovering the values for the internal nodes from the solution on the non-
condensable nodes. The internal nodes may be expressed in terms of nodes which lay on the
elemental boundary following the classical procedure for elemental condensation (see [3]).
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This process of condensation allows us to reduce the size of the new system to solve to ap‐
proximately a 40% of the original system. The use of the static condensation procedure is
attractive not only because it reduces the size of the stiffness matrices arising in finite-ele‐
ment and spectral-element methods but also because it improves the condition number of
the final condensed system. This is related with the properties of the Schur-complement
technique. The condensed system is essentially the Schur complement of the interior-node
submatrix in the non-condensed original system. A detailed description of the tri-quadrilat‐
eral technique may be found in Ponta [33]; including a schematic example of a mesh of tri-
quadrilateral finite elements obtained from the original triangular discretization, and a
description of the internal topology of the tri-quadrilateral element.

To solve the one-dimensional problem for the equivalent beam, we use a formulation based
on the intrinsic equations for the beam obtained from variational principles [12], and
weighted in an energy-consistent way according to Patil et al. [30], which produces the fol‐
lowing variational formulation:

where

                                                       
F=

F
M , V̄=

V
Ω , f̄=

f
m ,

γ̂=
κ̃ 0
γ̂ κ̃ , V̂=

Ω̃ 0
Ṽ Ω̃ , K̂=

K̃ 0
ẽ1 K̃ .

Tilde indicates the skew-symmetric matrix associated to a vector magnitude in such a way
that, for example, if we have any pair of vectors A and B, the matrix--vector product Ã B is
equivalent to the cross product A× B. Thus, γ̃ is associated with κ̃ with κ , Ṽ with V, and so
forth. Hence, matrix γ̃ is a rearrangement of the components of the strain-measures vector γ̄
defined above, the generalized-velocities vector V̄ and matrix Ṽ represent the components
of the linear and angular velocities, and matrix K̃ represents the initial torsion and curva‐
tures of the beam (matrix e1̃ is the skew-symmetric matrix associated to e1

T = 1 0 0 , the
unit vector along X1). The generalized-forces vector F̄ represents the forces and moments re‐

lated with the strain measures , and the generalized-distributed-loads vector f̄

represents the forces and moments distributed along the axis of the beam. Here,  is the
same stiffness matrix for the 1-D model, see equation (8); and Ī is the inertia matrix of each
section. The upper dot indicates a time derivative, and the prime a derivative with respect to
the longitudinal coordinate of the beam X1.
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This variational formulation was discretized by the spectral-element method (see [20,29]).
The magnitudes in (9) where replaced by their interpolated counterparts: V̄=HV̄

e Qe, and

F̄=HF̄
e Qe, where HV̄

e  and HF̄
e  are the interpolation-function arrays, and Qe is a vector contain‐

ing the nodal values of both the generalized velocities and the generalized forces. Super‐
script e indicates discretization of the terms at the elemental level, which will disappear after
the final assembly of the terms into the global matrix for the whole beam. The axial deriva‐
tives of the magnitudes were interpolated in a similar way: V̄′ =BV̄

e Qe, and F̄′ =BF̄
e Qe, where

BV̄
e  and BF̄

e  are the arrays for the interpolation-function derivatives. Then, we arrived to the
discretized version of (9):

δQ eTM1
eQ̇e =δQ eT (K1

e + K2
e)Q e + δQ eTKq

eq −e + δQ eT BQ
e(Q e), (10)

where

                                      

M1
e  corresponds to the discretization of terms 1 and 2 giving the equivalent of a mass matrix.

K1
e , corresponding to terms 3 and 8, is the stiffness matrix of the 1-D problem. K2

e , corre‐
sponding to terms 4 and 9, is the additional stiffness related with the twist and curvature of
the undeformed configuration. Kq

e  corresponds to the evaluation of term 6, the contribution

of the distributed loads; and q̄e is an array containing the nodal values of the generalized
distributed loads. t is the natural coordinate in the elements and J is the Jacobian of the map‐
ping from the problem coordinate X1 to t (see [3]). The discretized version of the terms in (9)
related to non-linear interactions, i.e. terms 5, 7 and 10, gives
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A linearization of BQ
e (Qe) around any given configuration Q1

e  gives the matrix

where

                                                  

Matrix F̄ is a rearrangement of the components of the generalized-forces vector F̄ defined
above. Matrix P̄ is a rearrangement of the components of the generalized-momentum vector

P=
Pv

Pω
, which represents the linear and angular momenta related with the generalized-ve‐

locities . Tilde operates in the same way defined before, and the subscript 1 indi‐
cates the value of the magnitudes at a given state Q1

e .

Finally, after the assembly of the elemental terms into the global system, the solution for the
nonlinear problem (9) in its steady state was obtained by solving iteratively for ΔQ the dis‐
cretized expression

(11)

and updating the global vector of nodal values of the generalized velocities and forces as
Q(i+1) =Q(i) + ΔQ.

From the steady-state solution we also obtained the vibrational modes of the blade structure
and their corresponding frequencies by solving the eigenvalue problem

M1Q̇ + K1 + K2 + KN(Q(i)) Q=0. (12)

From these results for the intrinsic equations we recovered the displacements and rotations
of the blade sections by solving the kinematic equations for the beam (see [13])

(13)
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(14)

where u is the vector of displacements of each point along the reference line from its posi‐
tion in the reference configuration to the one in the deformed configuration, and CrR is the
orthogonal matrix that rotates the local triad from its original orientation in the reference
configuration to the one in the deformed configuration (both are defined in function of the
longitudinal coordinate X1). The strains γ and κ were computed from the generalized forces
and the stiffness of the corresponding blade section. Equations (13) and (14) were also line‐
arized, and like the other expressions, discretized by the spectral-element method.

2.2. Aerodynamic model

The flow model that interacts with the structural counterpart presented in section 2.1, called
Large Sectional Rotation BEM (LSR-BEM), is responsible to provide the aerodynamic loads
along the rotor blades, and is sensitive enough to take into account all the complex deforma‐
tion modes that the structural model is able to solve. The basis for our aerodynamic model is
the well known Blade Element Momentum theory (BEM). Nevertheless, due to the high lev‐
el of detail that our structural model can provide, a complete reformulation was needed in
the aerodynamic model to get a compatible level of description.

The tendency in the wind-turbine industry to increase the size of the state-of-the-art ma‐
chine [17] drives not only to bigger, but also to more flexible blades which are relatively
lighter. It is observed for this type of wind turbine blades that big deformations, either due
to blade flexibility or  to pre-conforming processes,  produces high rotations of  the blade
sections. Moreover, blades could be pre-conformed with specific curvatures given to any of
their axis (i.e. conning/sweeping). This tendency puts in evidence one of the most important
limitations of the current BEM theory. While the basics of this theory keeps being perfect‐
ly valid, the actual mathematical formulation implies the assumption of blade sections re‐
maining perpendicular to an outwards radial line contained in the plane of the actuator disk
coincident with the rotor's plane. That is, even though the basics of the BEM theory (i.e. the
equation of the aerodynamic loads and the change of momentum in the streamtubes) keeps
being  valid,  the  mathematical  formulation  cannot  represent  large  rotations  of  the  blade
sections. This basically leads to a misrepresentation of the effects of the large deformation
associated to flexible blades on the computation of the aerodynamic loads. Hence, a new
mathematical  formulation is  required to project  the velocities obtained from momentum
theory onto the blade element's plane and then re-project backwards the resulting forces
from Blade Element theory onto the plane of the stream tube actuator disk. When analyz‐
ing BEM theory for this cases, the principle of equating the forces obtained by Blade Ele‐
ment theory with the ones coming from the the changing of momentum in the stream tube
is still valid.

In what follows we will describe the main characteristics of our model, and refer to [25] and
[5] for details on the classical BEM theory.We start by defining a set of orthogonal matrices
that perform the rotation of the physical magnitudes involved (velocities, forces, etc.) The
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interaction with external control modules will require a constant update of this projection
matrices. For example, the rotor azimuth matrix, besides the instantaneous position of the
blade along its rotation, can reflect control actions on the dynamics of the Electro-Mechani‐
cal train that define the rotor's angular speed, Ω .

For instance, we could write the wind velocity vector Wh facing the differential annulus of
our actuator disk, affecting its components, according to BEM theory, by the axial induction
factor a and the rotational induction factor a'. The h subscript here indicates that the wind
velocity vector is described in the hub coordinate system according to standards from the In‐
ternational Electrotechnical Commission (IEC) [15].

Wh =

Wwh (1)
(1−a)

Wwh (2)
+ Ω rh (1 + a ′)

Wwh (3)

, (15)

where Wwh  is the incoming wind velocity projected into the h coordinate system, Ω is the
angular velocity of the rotor and rh is the radial distance of the airfoil section in the h coordi‐
nate system.

Then, to compute the relative velocity affecting a blade element, we will project Wh going
through the different coordinate systems, from the hub, until reaching the blade's section co‐
ordinate system. Let’s see first which rotations we shall go through, and which matrices will
transform our velocity vector from one coordinate system to the other.

Thus, the conning rotation matrix Cθcn
 is a linear operator with a basic rotation taking into

account the conning angle for the rotor, and the Pitching rotation matrix Cθp
, represents a

rotation around the pitch of the blade.

Cθp
=

cos (θp) −sin (θp) 0
sin (θp) cos (θp) 0

0 0 1
, (16)

where θp is the pitch angle.

Two more re-orientations are needed in order to get to the instantaneous coordinate sys‐
tem of the blade sections, associated with the deformed reference line r of section 2.1. The
first of this matrices contains information on blade section's geometry at the time the blade
was designed and manufactured. As it  was mentioned previously, the blade could have
pre-conformed curvatures along its longitudinal axis (i.e. the blade axis is no longer rectilin‐
ear). This curvatures can reflect either an initial twist along the longitudinal axis or a com‐
bination of twist plus pre-bending on the other two axes (i.e. conning/sweeping). To this end,
we compute during the blade design stage a set of transformation matrices which contain
the information of the three dimensional orientation of the blade''s sections for each posi‐

Advances in Wind Power134



tion on the longitudinal axis as we move along the span. To this end, we compute the Frenet-
Serret formulas that define the curvature of the (now curvilinear) longitudinal axis. These
differential formulas provide the means to describe the tangent,  normal  and binormal  unit
vectors on a given curve. Due to this unit vectors, the Frenet-Serret coordinate system is
also known as the TNB frame. More information about the calculation of the TNB unit vectors,
their properties and other applications can be found in [37]. Around the tangential axis of
the TNB, there is  a further rotation of  each blade section to orient it  accordingly to the
particular twist specified on the blade's aerodynamic design. Combining these rotations we
then create a transformation matrix for every blade section at different span positions. We
call this matrix the CRb, as it relates the global coordinate system of the blade b, with the
system of coordinates of the blade sections in the undeformed configuration defined by line
R, as in section 2.1.

After applying the CRb, one more projection is needed to get to the instantaneous coordinate
system associated with r. This last transformation is given by the CrR matrix, computed by
the 1D structural model, see equation 14. It contains information to transform vectors from
the R to the r systems after structural deformations had occurred. Note that this matrix is
updated at every timestep of the 1D model during dynamic simulations, being one of the
key variables transporting information between the structural and aerodynamic models.

After all these projections of the Wh vector, we have the relative wind velocity expressed in
the blade''s section coordinate system. The expression for the flow velocity relative to the
blade section, Wrel :

Wrel = (CrRCRbCθp
Cθcn

Wh ) + vstr (17)

where the addition of vstr  corresponds to the blade section structural deformation velocities,
coming from the structural model.

Then, the magnitude |Wrel |  and the angle of attack α are used to compute the forces on the
airfoil section through the aerodynamic coefficients Cl, Cd. Another innovation of our model
is that the data tables from static wind-tunnel are corrected at each timestep to consider ei‐
ther rotational-augmentation or dynamic-stall effects, or both.

The aerodynamic loads acting on the blade element is then projected back onto the h coordi‐
nate system,

dFh =Cθcn

T Cθp

T CRb
T CrR

T CLthaldFr (18)

where CLthal  is the matrix which projects the lift and drag forces onto the chord-wise and
chord-normal directions, which are aligned with the coordinates of r. Finally, as in the clas‐
sical BEM theory, dFh  is equated to the rate of change of momentum in the annular stream‐
tube corresponding to the blade element. The component normal to the rotor's disk, is
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equated to the change in axial momentum, while the tangential component, is equated to the
change of angular momentum.

In order to apply this theory to HAWT rotors, we must introduce some corrective factors
into the calculation process. BEM theory does not account for the influence of vortices being
shed from the blade tips into the wake on the induced velocity field. These tip vortices cre‐
ate multiple helical structures in the wake which play a major role in the induced velocity
distribution at the rotor. To compensate for this deficiency in BEM theory, a tip-loss model
originally developed by Prandtl is implemented as a correction factor to the induced veloci‐
ty field [8]. In the same way, a hub-loss model serves to correct the induced velocity result‐
ing from a vortex being shed near the hub of the rotor (see [25], [5].) Another modification
needed in the BEM theory is the one developed by Glauert [7] to correct the rotor thrust co‐
efficient in the "turbulent-wake" state. This correction plays a key role when the turbine op‐
erates at high tip speed ratios and the induction factor is greater than about 0.45.

BEM theory was originally conceived for axisymmetric flow. Often, however, wind turbines
operate at yaw angles relative to the incoming wind, which produces a skewed wake behind
the rotor. For this reason, the BEM model needs also to be corrected to account for this
skewed wake effect [31,22]. The influence of the wind turbine tower on the blade aerody‐
namics must also be modeled. We implemented the models developed by Bak et al. [2] and
Powles [34] which provide the influence of the tower on the local velocity field at all points
around the tower. This model contemplate increases in wind speed around the sides of the
tower and the cross-stream velocity component in the tower near flow field.

Our model also incorporates the possibility to add multiple data tables for the different air‐
foils, and use them in real-time according to the instantaneous aerodynamic situations on
the rotor. It also uses the Viterna's extrapolation method [36] to ensure the data availability
for a range of angles of attack ±180 .

3. Numerical Experimentation

In this section, we report some recent results of the application of our model to the analysis
of a set of rotor blades based on the 5-MW Reference Wind Turbine (RWT) proposed by NREL
[17]. We will start describing the structural features of the blade, its general aerodynamic
properties, the blade internal structure, and the finite element meshes associated to the
structural computations.

3.1. NREL Reference Wind Turbine

Based on the REpower 5MW wind turbine, NREL RWT was conceived for both onshore and
offshore installations and is well representative of typical utility-scale multi megawatt com‐
mercial wind turbines. Although full specific technical data is not available for the REpower
5MW rotor blades, a baseline from a prototype blade was originally released by LM Glass‐
fiber in 2001 for the Dutch Offshore Wind Energy Converter (DOWEC) 6MW wind turbine
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project~[21,23] and later re-adapted by NREL. In addition, the NREL 5-MW RWT project has
been adopted as a reference model by the integrated European Union UpWind research pro‐
gram~[1] and the International Energy Agency (IEA) Wind Annex XXIII Subtask 2 Offshore
Code Comparison Collaboration (OC3)~[14,18,28].

As stated in the NREL''s RWT project, the length of our rotor blade is set to be 61.5m. All
basic aerodynamic properties as blade section chords, twist angles and basic spanwise sta‐
tions distribution, correspond to the original data (see [17]). These aerodynamic properties,
as well as the denomination of the basic airfoils at the design stations are included in table 1.
Complementing the information in this table, figure 4 shows the blade section chords distri‐
bution along the span.

Station Location [m] Twist angle

[°]

Chord length [m] Airfoil type

1 0 13.3080 3.5420 Cylinder

2 1.3653 13.3080 3.5420 Cylinder

3 4.1020 13.3080 3.8540 Ellipsoid-1

4 6.8327 13.3080 4.1670 Ellipsoid-2

5 10.2520 13.3080 4.5570 DU 00-W-401

6 14.3480 11.4800 4.6520 DU 00-W-350

7 18.4500 10.1620 4.4580 DU 00-W-350

8 22.5521 9.0110 4.2490 DU 97-W-300

9 26.6480 7.7950 4.0070 DU 91-W-250

10 30.7500 6.5440 3.7480 DU 91-W-250

11 34.8520 5.3610 3.5020 DU 93-W-210

12 38.9479 4.1880 3.2560 DU 93-W-210

13 43.0500 3.1250 3.0100 NACA 64-618

14 47.1521 2.3190 2.7640 NACA 64-618

15 51.2480 1.5260 2.5180 NACA 64-618

16 54.6673 0.8630 2.3130 NACA 64-618

17 57.3980 0.3700 2.0860 NACA 64-618

18 60.1347 0.1060 1.4190 NACA 64-618

19 60.5898 0.0903 1.1395 NACA 64-618

20 61.0449 0.0783 0.7787 NACA 64-618

Table 1. Distributed blade aerodynamic properties.

Figure 4. Chord distribution along the blade.
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The blade structure is a combination of two external aerodynamic shells, mounted on a box-
beam spar which provides the main structural component to the aerodynamic forces. Analy‐
sing a blade section (see figure 2) we can see the aerodynamic shells plus two spar caps
which, together with two shear webs, form the box-beam spar. Constructive characteristics
as thickness as well as number and orientation of fiberglass layers for the different structural
components of the blade sections are covered in detail in reports published by SANDIA Na‐
tional Labs. [35,9]. According to these reports, the aerodynamic shells are mainly composed
by ±45  layers, plus a small amount of randomly oriented fibers, gelcoat and filling resin.
Shear webs, the the box-beam lateral walls, are made up of ±45  layers with a balsa wood
core which provides the needed buckling resistance. Shear webs are usually located at the
15% and 45% of the airfoil's chord but, for sections closer to the blade's root, the positions
are modified in order to increase the section's stiffness. Focusing now on the spar caps, these
are made of 0  layers and are the most important structural element as they give support to
the bending loads on the blade. Finally, the blade sections has a reinforcement at its rear
part, i.e. the trailing edge spline, also made up of 0  oriented fibers which supports the
bending loads in the chord-wise direction. Reports [35,9] also provide a comprehensive de‐
scription of lamination sequences and material properties.

Material properties within the subregions corresponding to each of the blade section compo‐
nents were assumed homogeneous and equal to those of an equivalent material. The proper‐
ties of this equivalent material, a 6 × 6 symmetric matrix with 21 independent coefficients,
were computed by a weighted average of the actual laminates properties. Since the thick‐
nesses of the region layers are very small compared to the actual size of the blade section,
this assumption does not introduce significant errors. Besides, if more detail is required, our
computational codes allow for independent meshing of every single layer of material sepa‐
rately using the exact properties.

Figure 5. Finite element meshes for morphed sections.]{Finite element meshes for morphed sections corresponding
to: (a) 20% of the blade span, and (b) 60% of the blade span.
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After the internal regions and materials were defined, a triquadrilateral mesh was generated
for a number of blade sections along the span. The preset master sections in table 1 served as
the basis for an innovative 3D-morphing technique based on variational cubic-spline inter‐
polation which allows us to obtain smooth transitions between the known 2D airfoil sections
along the span of the blade. This way one can divide the blade into any number of sections
larger than the known ones and generate finite element meshes for a more refined study of
the structural features. As an example, figure 5 shows the finite element meshes of two
morphed airfoil sections located at the 20% and 60% of the blade span.

Using the technique described for the internal blade structure components, we refined 46
blade sections along the span to match the structural properties of the ones reported by
NREL [17]. The main targeted properties to refine were edgewise, flapwise and torsional
stiffness as well as mass density for every blade section. The pitch axis centering and the lo‐
cation of the aerodynamic coefficients reference points were also computed according to in‐
formation in reference [17].

The general specifications of the turbine also match the ones on NREL's report. Thus, the ro‐
tor has an upwind orientation and is composed of three blades. The hub diameter is 3m and
is located at 90m from the ground level. Total rotor diameter is 126m. It has a precone of 2.5
and an overhang distance of 5m from the tower axis. The rated wind speed for this turbine
is 11.4m/s.

3.2. Aeroelastic Steady State

After computing stiffness and inertia matrices for a discrete number of cross-sections along
the span of the blade as described in section 2.1, the calculation of the aeroelastic steady
state of  the NREL RWT blades working under nominal  conditions was solved by fully-
coupling the structural and aerodynamic models presented in sections 2.1 and 2.2. Tip speed
ratio for the nominal operational condition is λ=7, so the tangential velocity at the tip of the
blade is 80m/s. For this nominal working condition, the power output computed for our
rotor is 5.455MW which, taking into account that as in any BEM approach the interference
of the tower and the nacelle is computed only approximately, is in very good agreement
with the reported power for the NREL-5MW reference turbine rated at 5.296MW accord‐
ing to [17].

Figure 6 shows the displacement of the blade's reference-line (blade axis) Uh  when it is sub‐
jected to the aerodynamic steady load in normal operational conditions. Figure 7, shows the
corresponding rotations of the blade sections θ h. These geometrical magnitudes were refer‐
red to a coordinate system, h from hub, aligned with the rotor's plane, according to stand‐
ards from the International Electrotechnical Commission (IEC) [15]. Hence, the first unit
vector is normal to the rotor's plane (i.e. axial) pointing downwind, the second is in the ro‐
tor's tangential direction pointing to the blade's trailing edge, and the third unit vector is in
the radial direction pointing to the blade tip.

From figure 6 we can see that the displacement Uh1
 of the blade's tip, normal to the rotor's

plane, is 5.73m. This is perfectly consistent with results shown in [17]. Added to this, the tan‐
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gential displacement Uh2
 is 0.78m in the negative direction, meaning that aerodynamic forces

are bending the blade in the direction towards its rotation as the rotor is producing a posi‐
tive driving torque.

Figure 6. Linear displacements of the reference-line Uh when the beam is subjected to a steady load in normal opera‐
tional conditions (referred to a coordinate system aligned with the rotor's plane).

In figure 7, angles θ h2
 and θ h1

 are directly associated with blade bending in the normal and
tangential directions to the rotor plane, that correspond to displacements Uh1

 and Uh2
 respec‐

tively. It is important to note that angle θ h2
 represents the angular displacements which

takes the blade's axis out of the rotor's plane.

Figure 7. Rotations of the beam sections θ h when the beam is subjected to a steady load in normal operational condi‐
tions (referred to a coordinate system aligned with the rotor's plane).
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3.3. Natural frequencies & Linear Modes

Vibrational modes around the aeroelastic steady-state are obtained from the solution of an
eigenvalue problem as described in section 2.1. The resulting eigenvalues are complex conju‐
gate, their imaginary part represent frequencies while their non-zero real part correspond to
aerodynamic damping effects coming from non-conservative force fields in the 1D functional.

Mode frequency

[Hz]

Dominant

U

Dominant θ

1 0.7066 Uh1 θ h2

2 1.0188 Uh2 θ h1

3 1.8175 Uh1 θ h2

4 3.3403 Uh2 θ h3

5 3.9493 Uh1 θ h2

6 6.4682 Uh2 θ h3

7 6.6851 Uh1 θ h3

8 8.0129 Uh2 θ h3

9 8.2403 Uh1 θ h2

10 9.7819 Uh1 θ h2

Table 2. List of frequencies and dominant components of Uh and θ h for the first ten modes of vibration.

Vibrational mode analysis provides relevant information about both the natural vibrational
frequencies of the blade around a steady-state condition, and for the modes of deformation
along the blade span. Table 2 summarizes the first 10 modes obtained showing the frequen‐
cies together with the corresponding dominant component for the displacements and the
rotations of the blade section.

Table 3 shows a comparison of the frequencies obtained for the first 3 modes with the values
reported by NREL in [17] using FAST [19] and ADAMS [16] software. FAST and ADAMS are
considered today state-of-the-art softwares for structural blades analysis. From this compari‐
son we see that the frequencies computed with our model match previous studies with a difference
of 1% for the first mode and a maximum difference of 5% for the second and third modes. This
difference is not surprising as the level of detail and richness of information that our computa‐
tional tools can register is not present in the previous software like FAST or ADAMS.

Mode frequency

[Hz]

FAST ADAMS

1 0.7066 0.6993 0.7019

2 1.0188 1.0793 1.0740

3 1.8175 1.9223 1.8558

Table 3. Frequencies comparison for the first three modes according to NREL report [17].
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Figures 8 and 9 show the amplitude of the deformation along the span for the three compo‐
nents of Uh and θ h, normalized by the dominant component, for some of the deformation
modes. Every mode shown includes displacements and rotations of the blade sections nor‐
malized by the value of the dominant component.

Figure 8. Amplitude of Uh and θ h for three vibrational modes around the aeroelastic steady-state configuration (nor‐
malized by the dominant component). From top to bottom modes # 1, 2 and 3.

Figure 9. Amplitude of Uh and θ h for three vibrational modes around the aeroelastic steady-state configuration (nor‐
malized by the dominant component). From top to bottom modes # 4, 7 and 10.
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3.4. Recovery of 3-D fields

After computing the global deformation from the 1-D beam analysis, we recovered the cor‐
responding 3-D fields (displacements, strains and stresses) using the 3-D warping functions
previously calculated with our model. The knowledge of the stress state of every layer is of
utter importance in the analysis of wind turbine blades in order to improve life-time and re‐
liability of the design. Our model can provide the full six tensorial components of the stress
tensor. Besides it can provide the 3 components of the displacement and 6 components of
the strain.

For the previously solved aeroelastic steady-state, we present in figure 11 and 11 the six
components of the Jaumann-Biot-Cauchy stress tensor Z=SΓ for the section located at 40% of
the blade span. This region is particularly interesting as it combines energy production and
structurally supports significant stress accumulation compared to other regions along the
blade span. The dominant stress component, Z11, at the top of figure 10 is the one primarily

associated with the out of rotor-plane bending loads. Note here how the lower spar-cap is
subjected to tensile stress while the upper one is under compression stress.

Figure 10. Components of the Jaumann-Biot-Cauchy stress tensor Z = S Γ for the section located at 40% of the blade
span (referred to the undeformed coordinate system (X1,X2,X3) in Pa). From top to bottom: Z11, Z12 and Z13.
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Fig. 11. Components of the Jaumann-Biot-Cauchy stress tensor Z= SΓ for the section located at 40% of the blade span
(referred to the undeformed coordinate system (X1,X2,X3) in Pa). From top to bottom: Z22, Z23 and Z33.

4. Conclusions

With the method presented in this work we are able to model the structural behavior of
wind turbine blades with the simplicity and economy of a one-dimensional model but with
a level of description equivalent to a much more costly three-dimensional approach. The
one-dimensional model is used to compute a fast, but accurate, solution for the deformed
state of the blade when subjected to a steady load in normal operational conditions, and an
analysis of the vibrational modes around this steady configuration. This provides a valuable
tool to use during the design process. In that sense, the capacity of the Generalized-Timo‐
shenko theory to capture the bending-twisting coupled modes in its fully populated 6 × 6
stiffness matrix for the 1-D beam problem plays a fundamental role.

Due to the geometrical complexity and material inhomogeneousness in the section, all the
deformation modes of the blade are combined modes, i.e. there are no pure-flexural or pure-
torsional modes. Plots of the vibrational modes may serve to identify eventual unstable
states in the dynamic behavior of innovative prototype blades. Figures 8 and 9 show that,
for certain modes, in some portions of the span, bending due to lift force occurs simultane‐
ously with twisting in the sense that increases the angle of attack, and then, the lift force. A
complete dynamic analysis of the fluid-structure interaction process would be needed to de‐
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termine if those particular modes would be activated or not during the blade operation.
Nevertheless, having the possibility of quickly identifying those modes (and their associated
frequencies) at an early stage of the design process seems very helpful.

Regarding the linear vibrational modes depicted in figure 8, the first mode shows mainly
out-of-plane curvature corresponding to the fundamental frequency of the blade but as the
blade is initially twisted and has complex inhomogeneous sections, it is not a pure bending
mode. Therefore, as a result of the non conventional couplings, curvature deformation in the
rotor plane and also torsion appears in this mode. The second mode is also commanded by
out-of-plane curvature but it has an important torsion component, while mode number
three is similar to the first one with a higher wave number.

Regarding the modes presented in figure 9, the fourth and seventh modes are mainly com‐
manded by torsion and hence they could be responsible for fluttering of the blade in case
they are excited by the interaction with the surrounding fluid. The tenth mode is also princi‐
pally a flap-wise curvature mode but with higher wave number than the first and third. It
shows a more complex behavior arising from complicated couplings among different defor‐
mations. The frequencies of the first three modes presented in table 3 are in good agreement
with published results obtained by other models.

The above-mentioned flexo-torsional characteristic also gives this model the ability to simu‐
late the dynamic performance of adaptive blades, at an affordable computational cost. In the
Adaptive-Blade concept (see [10,24], among others), tailoring of the flexo-torsional modes of
the blade is used to reduce aerodynamic loads by controlling the coupling between bending
and twisting. As the blade bends under load, the angle of attack of the airfoil sections
changes, reducing the lift force. Limiting extreme loads and improving fatigue performance,
this added passive control reduces the intensity of the actuation of the active control system.
Plots like figure 6 and figure 7 provide valuable information about the simultaneous defor‐
mation of twisting and bending under a given load.

Recovering of the stress tensor components for the different zones of the blade section helps
in the prediction of stress concentration in the basic design that may ultimately lead to even‐
tual material failure. More exhaustive fatigue studies can be conducted analyzing the stress
both in the steady state or in time-marching solutions of the problem. The capability of com‐
puting the whole 6 components of the stress tensor makes it possible to apply sophisticated
failure theories.

Our aeroelastic model may also be used to simulate the dynamic response of the wind tur‐
bine tower. In that case, the structural model would be applied to the tower to obtain the
stiffness matrices of the equivalent beam as it is done with the blades. The aerodynamic
loads would be computed from the aerodynamic coefficients of the cylindrical sections of
the tower using basically the same subroutines. As in the case of the blades, all the complex
flexo-torsional modes of deformation of the tower would be taken into account, and the as‐
sociated vibrational effects included in the general analysis of the whole turbine.

We plan to continue our work with a dynamic simulation of the fluid-structure problem. In
a first stage, we will couple the phenomena by feeding back changes in geometry due to
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blade deformation in our aerodynamic model and recomputing the forces. At this stage, we
also plan to include statistically-generated perturbations to represent fluctuations in wind
speed and direction based on anemometry data for wind resource in several representative
locations. Besides providing us with a fast model for a quick analysis, this model will serve
as an intermediate step before the ultimate goal of coupling the structural model with the
velocity-vorticity KLE approach mentioned above.
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