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1. Introduction

The production planning problem has received much attention, and many sophisticated
models and procedures have been developed to deal with this problem. Many other compo‐
nents of production systems have also been taken into account by researchers in so called
integrated systems, in order to achieve a more effective control over the system.

In this work, optimal control theory is used to derive the optimal production rate in a manu‐
facturing system presenting the following features: the demand rate during a certain period
depends on the demand rate of the previous period (dependent demand), the demand rate
depends on the inventory level, items in inventory are subject to deterioration, and the firm
can adopt a periodic or a continuous review policy. Also, we are using the fact that the cur‐
rent demand is related to the previous demand in order to integrate the forecasting compo‐
nent into the production planning problem. The forecast of future demand for the products
being produced is needed to plan future activities. Forecasting information is an important
input in several areas of manufacturing activity. This problem has been considered in the
literature. The proposed approach is different from that of other authors which is mainly
based on time-series. In [1], the authors deal with the interaction between forecasting and
stock control in the case of non-stationary demand. In [2], the authors assume a distribution
for the unknown demand, estimate its parameters and replace the unknown demand pa‐
rameters by these estimates in the theoretically correct model. In [3], the authors propose an
approach to evaluate the impact of interaction between demand forecasting method and
stock control policy on the inventory system performances. In [4], the authors present a sup‐
ply chain management framework based on model predictive control (MPC) and time series
forecasting. In [5], the authors consider a data-driven forecasting technique with integrated
inventory control for seasonal data and compare it to the traditional Holt-Winters algorithm
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for random demand with a seasonal trend. In [6], the authors assess the empirical stock con‐
trol performance of intermittent demand estimation procedures. In [7], the authors study
two modifications of the normal distribution, both taking non-negative values only.

Many researchers have investigated the situation where the demand rate is dependent on
the level of the on-hand inventory. In [8], the authors consider an inventory model under
inflation for deteriorating items with stock-dependent consumption rate and partial back‐
logging shortages. In [9], the authors examine an inventory model for deteriorating items
under stock-dependent demand and two-level trade credit. The reference [10] deals with a
supply chain model for deteriorating items with stock-dependent consumption rate and
shortages under inflation and permissible delay in payment. In [11], the authors deal with
the optimal replenishment policies for non-instantaneous deteriorating items with stock-de‐
pendent demand. In [12], the authors investigate an inventory model with stock–dependent
demand rate and dual storage facility. In [13], the authors develop a two warehouse inven‐
tory model for single vendor multiple retailers with price and stock dependent demand. In
[14], the authors asses an integrated vendor-buyer model with stock-dependent demand. In
[15], the authors study an EOQ model for perishable items with stock and price dependent
demand rate. In [16], the authors develop the optimal replenishment policy for perishable
items with stock-dependent selling rate and capacity constraint. In [17], the authors consider
an inventory model for Weibull deteriorating items with price dependent demand and time-
varying holding cost. In [18], the authors study fuzzy EOQ models for deteriorating items
with stock dependent demand and nonlinear holding costs. In [19], the authors approach an
extended two-warehouse inventory model for a deteriorating product where the demand
rate has been assumed to be a function of the on-hand inventory. In [20], the authors investi‐
gate a channel who sells a perishable item that is subject to effects of continuous decay and
fixed shelf lifetime, facing a price and stock-level dependent demand rate. In [21], the au‐
thors develop a mathematical model to formulate optimal ordering policies for retailer
when demand is practically constant and partially dependent on the stock, and the supplier
offers progressive credit periods to settle the account. The literature on stock-dependent de‐
mand rate is abundant. We have reported some of it here but only a comprehensive survey
can summarize and classify it efficiently.

In [22], the authors review the most recent literature on deteriorating inventory models, clas‐
sifying them on the basis of shelf-life characteristic and demand variations. In [23], the au‐
thors introduce an order-level inventory model for a deteriorating item, taking the demand
to be dependent on the sale price of the item to determine its optimal selling price and net
profit. In [18], the authors formulate an inventory model with imprecise inventory costs for
deteriorating items under inflation. Shortages are allowed and the demand rate is taken as a
ramp type function of time as well. In [10], the authors model the retailer's cost minimiza‐
tion retail strategy when he confronts with the supplier trade promotion offer of a credit
policy under inflationary conditions and inflation-induced demand. In [24], the authors de‐
velop two deterministic economic production quantity (EPQ) models for Weibull-distribut‐
ed deteriorating items with demand rate as a ramp type function of time.
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The goal of this chapter is to study the same problem in periodic and continuous review pol‐
icy context, knowing that the inventory can be reviewed continuously or periodically. In a
continuous-review model, the inventory is monitored continually and production/order can
be started at any time. In contrast, in periodic-review models, there is a fixed time when the
inventory is reviewed and a decision is made whether to produce/order or not.

We assume that the firm has set an inventory goal level, a demand goal rate and a produc‐
tion goal rate, to build the objective function of our model. The inventory goal level is a safe‐
ty stock that the company wants to keep on hand. The demand goal rate is the amount that
the company wishes to sell per unit of time. The production goal rate is the most efficient
rate desired by the firm. The objective is to determine the optimal production rate that will
keep the inventory level, the demand rate, and the production rate as close as possible to the
inventory goal level, the demand goal rate, and the production goal rate, respectively.

Therefore, we deal with a dynamic problem and the solution sought, the optimal production
rate, is a function of time. The problem is then represented as an optimal control problem
with two state variables, the inventory level and the demand rate, and one control variable,
the rate of manufacturing.

The rest of this chapter is organized as follows. In section 2, the notation used is introduced
and the dynamics of the system are described for both periodic and continuous review sys‐
tems. In section 3, the optimal solution is computed for each case. Simulations are conducted
in section 4 to verify the results obtained theoretically in section 3. Section 5 summarizes the
chapter and outlines some future research directions.

2. Model formulation

2.1. Continuous review integrated production model

Consider a manufacturing firm producing units of an item over some time interval 0, T ,
where T >0. Let I (t), D(t), and P(t) represent the inventory level, the demand rate, and the
production rate at time t , respectively. Let Î (t), D̂(t), and P̂(t) represent the corresponding
goals at time t . Also, let h , K , r  represent the penalties for each variable to deviate from its
goal. Then, the objective function J to minimize is given by

min
P(t)

J = 1
2 ∫

0

T{h I (t) - Î (t) 2 + K D(t) - D̂(t) 2 + r P(t) - P̂(t) 2}dt + 1
2 {h T I (T ) - Î (T ) 2 + KT D(T ) - D̂(T ) 2} (1)

In (1), the expression 1
2 {h T I (T ) - Î (T ) 2 + KT D(T ) - D̂(T ) 2} gives the salvage value of the

ending state. Using the shift operator defined by Δ f (t)= f (t) - f̂ (t), the objective function is
expressed as
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min
P(t)

J = 1
2 ∫

0

T
h Δ2I (t) + K Δ2D(t) + rΔ2P(t) dt + 1

2 {h T Δ2I (T ) + KT Δ2D(T )} (2)

To use a matrix notation, which is more convenient, let X (t)=
ΔI (t)
ΔD(t)  and let

X A
2 = X T AX . Then, the objective function (2) can be further rewritten as

min
P(t)

J = 1
2 ∫

0

T
X (t) H

2 + rΔ2P(t) dt + 1
2 X (T ) H T

2 (3)

where H =
h 0
0 K  and HT =

h T 0
0 KT

.

Two state equations are used to describe the dynamics of our system. The variations of the
inventory level and demand rate are governed by the following state equations

d
dt I (t)= P(t) - D(t) - θI (t) (4)

with known initial inventory level I (0)= I0 and

d
dt D(t)=aD(t) + bI (t) (5)

with known initial demand rate D(0)= D0 and a <0 for a stable demand. Since the goals Î (t),
D̂(t), and P̂(t) also follow the dynamics (4)-(5), we can use the shift operator defined above
to express the state equations (4) and (5) as

d
dt ΔI (t)=ΔP(t) - ΔD(t) - θΔI (t) (6)

and

d
dt ΔD(t)=aΔD(t) + bΔI (t) (7)

The state equations (6)-(7) can also be written in matrix form as

d
dt X (t)= AX (t) + BΔP(t) (8)

where A=
-θ -1
b a , B =

1
0 , with initial condition X (0)= X0.
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2.2. Periodic review integrated production model

In the periodic review model, the time interval 0,  T  is divided into N  subintervals of
equal length. During period k , the plant manufactures units of some product at the control‐
lable rate P(k ), and the state of the system is represented by the inventory level I (k ) and the
demand rate D(k ).

Assuming that the initial inventory level is I (0)= I0 and that the units in stock deteriorate at a
rate θ, the dynamics of the first state variable, the inventory level, are governed by the fol‐
lowing difference equation:

I (k + 1)=  α I (k ) + P(k ) - D(k ) (9)

where α =1 - θ.

Also, and as mentioned in the introduction and previous paragraph, assuming a dependent
demand rate and a stock-dependent demand rate with initial value D(0)= D0, the dynamics
of the second state variable, the demand rate, are governed by the following difference
equation:

D(k + 1)=a D(k ) + b I (k ) (10)

where a and b are positive constants, with 0<a <1, for a stable demand.

It is assumed that the firm has set for each period k  the following targets: the production
goal rate P̂(k ), the inventory goal level Î (k ), and the demand goal rate D̂(k ). If penalties qI ,
qD, and r are incurred for a variable to deviate from its respective goal, then the objective
function to minimize is given by:

J (P , I , D)= 1
2 ∑

k=0

N
qI∆

2 I (k ) + qD∆
2 D(k ) + r ∆2 P(k ) (11)

where the shift operator Δ is defined by ∆ f (k )= f (k ) - f̂ (k ).

Since the target variables satisfy the dynamics (9) and (10), these can be rewritten using the
shift operator Δ to get:

∆ I (k + 1)=α ∆ I (k) + ∆P(k ) - ∆D(k ) (12)

∆D(k + 1)=a ∆D(k ) + b∆ I (k ) (13)

It is more convenient to write the model using a matrix notation. To this end, let

Z (k )=
I (k )
D(k ) , Ẑ (k )=

Î (k )
D̂(k ) , Z0 =

I0

D0
, Q =

qI 0
0 qD

.
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The objective function (11) becomes

J (P , I , D)= 1
2 ∑

k=0

N
∆Z (k ) Q

2 + r ∆2 P(k ) (14)

where X A
2 = X T A X  while the dynamics (12)-(13) become

∆Z (k + 1)= A ∆Z (k ) + B ∆P(k ) (15)

where A=
α -1
b a  and B =

1
0 .

Thus we need to determine the production rates P(k ) at each sample that minimize the ob‐
jective function (14), subject to the state equation (15).

3. Optimal control

3.1. Optimal control of continuous review model

Given the preceding definitions, the optimal control problem is to minimize the objective
function (3) subject to the state equation (8):

(P) {min
P(t)

J = 1
2 ∫

0

T
X (t) H

2 + rΔ2P(t) dt + 1
2 X (T ) H T

2

subject to
d
dt X (t)= AΔX (t) + BΔP(t),  X (0)= X0

To use Pontryagin principle, see for example the reference [25], we introduce the Hamiltoni‐
an

H(ΔP , X , Λ, t)= 1
2 X (t) H

2 + rΔ2P(t) + ΛT(t) AX (t) + BΔP(t) (16)

where Λ(t)=
λ1(t)
λ2(t)  is the adjoint function associated with the constraint (8). An optimal sol‐

ution to the control problem (P) satisfies several conditions. The first condition is the control
equation ∇ΔP (t )H(ΔP , X , Λ, t)=0 which is equivalent to

rΔP(t) + B T Λ(t)=0 (17)

The second condition is the adjoint equation ∇ΔX (t )H(ΔP , X , Λ, t)= - d
dt Λ(t) which is

equivalent to
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- d
dt Λ(t)= HX (t) + A T Λ(t) (18)

The next condition is the state equation ∇Λ(t )H(ΔP , X , Λ, t)= d
dt X (t) which is equivalent to

(8). Finally, the last condition is given by the initial and terminal conditions X (0)= X0 and
Λ(T )= HT X (T ).

Note that, using the control equation (17), the state equation (8) becomes

d
dt X (t)= AX (t) - r -1BB T Λ(t) (19)

Model Solution

We propose the following two equivalent solution approaches to solve the optimal control
problem (P).

3.1.1. First solution approach

In this approach, we need to solve a Riccati equation as we will see below. To use the back‐
ward sweep method of Bryson and Ho [26], we let

Λ(t)=S (t)X (t) (20)

where S (t)=
s1(t) 0

0 s2(t) .

Differentiating (20) with respect to t  and then using successively the state equation (19) and
the change of variable (20) yields

d
dt Λ(t)= d

dt S (t) + S (t)A - r -1S (t)BB T S (t) X (t) (21)

Also, using the change of variable (20), the adjoint equation (18) becomes

d
dt Λ(t)= -H - A T S (t) X (t) (22)

Equating expressions (21) and (22), we obtain the following Riccati equation

d
dt S(t)= - H - S(t)A - A T S (t) + r -1S (t)BB T S (t) (23)

To solve Riccati equation (23), we use a change of variable to reduce it to a pair of linear
matrix equations. Let
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S (t)= E (t)F -1(t) (24)

The Riccati equation (23) becomes

d
dt E (t)F -1(t) - E(t)F -1(t) d

dt F (t)F -1(t)= - H - E (t)F -1(t)A - A T E (t)F -1(t) + r -1E (t)F -1(t)BB T E (t)F -1(t) (25)

Multiplying this expression from the right by F  yields

d
dt E (t) - E (t)F -1(t) d

dt F (t)= - HF - E (t)F -1(t)AF - A T E (t) + r -1E (t)F -1(t)BB T E (t) (26)

Now, set

d
dt E (t)= - HF (t) - A T E (t) (27)

Then, we have

E (t)F -1(t) d
dt F (t)= E (t)F -1(t)AF (t) - r -1E (t)F -1(t)BB T E (t) (28)

Multiplying this expression from the left by (E F -1)-1 yields

d
dt F (t)= AF (t) - r -1BB T E (t) (29)

Equations (27) and (29) now give two sets of linear equations

d
dt E (t)

⋯ ⋯ ⋯
d
dt F (t)

=
-AT ⋮ -H
⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯

-r -1BB T ⋮ A

E (t)
⋯ ⋯ ⋯

F (t)
(30)

Call G(t)=
E(t)
F (t) . The differential equations (30) become of the form

d
dt G(t)=ΓG(t), G(t0) given,  Γ constant (31)

where
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Γ=
-AT ⋮ -H
⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯

-r -1BB T ⋮ A
=

θ -b -h 0
1 -a 0 -K

-r -1 0 -θ -1
0 0 b a

The boundary conditions S (N )= H  are equivalent to E (N )F -1(N )= H  or E (N )= H  and
F (N )= I4 where I4 denotes the identity matrix of order 4. The linear equations (32) can be
solved in terms of a matrix exponential. The homogeneous set of equations has the solution

G(t)= e Γ(t -t0) G(t0) (32)

We recall that for a given a constant matrix Γ, the matrix exponential e Γt  is found as
e Γt = Pe Dt P -1, where D is the diagonal matrix whose elements are the eigenvalues of Γ and P
is the matrix whose columns are the corresponding eigenvectors. Thus,

G(t)= Pe D(t -t0)P -1G(t0) (33)

In the next solution approach, which also leads to a set of homogeneous equations, we will
show how the constant term G(t0) is obtained. For this approach, after finding E (t)and F (t),
the desired result S (t) is obtained by using the change of variable (24). The optimal solutions
of the problem (P) are:

I (t)= Î (t) + ∆ I (t), D(t)= D̂(t) + ∆D(t), P(t)= P̂(t) + ∆P(t),

where ∆ I (t) and ∆ I (t) are solutions of the linear equation:

d
dt
∆ I (t)
∆D(t) = (A - r -1B T E (t)F (t)-1) ∆ I (t)

∆D(t) ,

with initial condition X (0)=
∆ I (0)
∆D(0)

and

∆P(t)= - r -1B T E (t)F (t)-1 ∆ I (t)
∆D(t) .

3.1.2. Second solution approach

This approach avoids the Riccati equation as we will see. The adjoint equation (18) and the
state equation (19) are equivalent to the vector-matrix state equation
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d
dt X (t)

⋯ ⋯ ⋯
d
dt Λ(t)

=
A ⋮ -r -1BB T

⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯
-H ⋮ -A T

X (t)

Λ(t)
(34)

Let Z (t)=
X (t)
Λ(t) . Then, the vector-matrix state equation (32) can be rewritten as

d
dt Z (t)=ΦZ (t) (35)

where

Φ=
A ⋮ -r -1BB T

⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯
-H ⋮ -A T

=

-θ -1 -r -1 0
b a 0 0

-h 0 θ -b
0 -K 1 -a

Expression (35) is a set of 4 first-order homogeneous differential equations with constant co‐
efficients. It is similar to (31) and it has a solution similar to (33). We give here the explicit
solution.

The matrix Φ has four distinct eigenvalues mi,  i =1,2, 3,4. The explicit expressions of these
eigenvalues are easily obtained using some mathematical software with symbolic computa‐
tion capabilities such as MATHCAD, MAPLE, or MATLAB. These expressions are lengthy
and thus are not reproduced here. The explicit expressions of the corresponding eigenvec‐
tors are also obtained using the same software. Then, the solution to (33) is given by

Z (t)=φ(t)Z (0) (36)

Note that the first two components of Z (t) thus computed form the state vector X (t) whose
components are ΔI (t) and ΔD(t), while the last two components form the co-state vector
Λ(t) whose components are λ1(t) and λ2(t). In what follows, we show how φ(t) and Z (0) are
determined using the two initial conditions I (0)= I0,  D(0)= D0 and the terminal conditions
λ1(T )=h T ΔI (T ),  λ2(T )= KT ΔD(T ).

To determine φ(t), introduce the diagonal matrix M =diag(m1, m2, m3, m4) and denote by Y
the matrix whose columns are the corresponding eigenvectors. Then,

φ(t)=Y e DtY -1 =∑
i=1

4
Y ( : , i)Y -1(i, : )e mit (37)

whereY ( : , i) is the ith column of Y  and Y -1(i, : ) is the ith row of Y -1.
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To determine Z (0)=
X (0)
Λ(0) , we recall that X (0)=

ΔI (0)
ΔD(0)  is known while Λ(0)=

λ1(0)
λ2(0)  is not.

However, using the final value Λ(T ), we can find Λ(0) as follows. From (36), we have at
t =T ,

Z (T )=φ(T )Z (0)

which can be rewritten as

X (T )
Λ(T ) =

φ1(T ) φ2(T )
φ3(T ) φ4(T )

X (0)
Λ(0)

Using the terminal condition

Λ(T )= HT X (T )

we have

X (T )
HT X (T ) =

φ1(T ) φ2(T )
φ3(T ) φ4(T )

X (0)
Λ(0)

from which, it follows

Λ(0)= (HT φ2(T ) - φ4(T ))-1(φ3(T ) - HT φ1(T ))X (0) (38)

Finally, the optimal solutions of the problem (P) using the second method are:

I (t)= Î (t) + ∆ I (t), D(t)= D̂(t) + ∆D(t), P(t)= P̂(t) + ∆P(t),

where ∆ I (t) and ∆ I (t) are solutions of the linear equation:

∆ I (t)
∆D(t) =φ1(t)

∆ I (0)
∆D(0) + φ2(t)Λ(0)

Λ(t)=φ3(t)
∆ I (0)
∆D(0) + φ4(t)Λ(0)

and

∆P(t)= - r -1B T Λ(t) .

3.2. Optimal control of periodic review model

Here also we assume that the system state is available during each period k. To use the
standard Lagrangian technique, we introduce the discrete Lagrange multiplier vector:

Λ(k )=
λI (k )
λD(k )

Then, the Lagrangian function is given by

Optimal Control of Integrated Production – Forecasting System 127



L(P , Z , Λ)= ∑
k=0

N { 1
2 ∆Z (k ) Q

2 + r ∆P(k )2 + Λ(k + 1)T -ΔZ (k + 1) + A ΔZ (k ) + B ΔP(k ) } (39)

The necessary optimality conditions are the control equation

∂L
∂  ∆ P (k ) =0 ⇔ r ∆P(k ) + B T Λ(k + 1)=0 (40)

and the adjoint equation

∂L
∂  ∆Z (k ) =0 ⇔Q∆Z (k ) - Λ(k ) + A T Λ(k + 1)=0. (41)

In order to solve these equations, we use the backward sweep method of Bryson and Ho
(1975), who treat extensively in their book the problem of optimal control and estimation.
They detail two methods for solving the Riccati equation arising in linear optimal control
problem, the first one being the transition matrix method and the second being the back‐
ward sweep method. Let

Λ(k )=S (k ) ΔZ (k ), (42)

The control equation (40) becomes

ΔP(k )= - r -1B T Λ(k + 1), =  - r -1B T S (k + 1)ΔZ (k + 1),
 =  - r -1B T S (k + 1) A ΔZ (k ) + B ΔP(k ) .

(43)

Solving for ΔP(k ), we get

ΔP(k )= - V (k + 1) ΔZ (k) (44)

where

V (k + 1)= r -1 1 + r -1B T  S (k + 1) B -1B T  S (k + 1)A

Now the adjoint equation (41) becomes

Λ(k )=Q ΔZ (k ) + A T Λ(k + 1) (45)

so that

S (k ) ΔZ(k)=Q ΔZ(k) + AT S (k + 1)ΔZ (k + 1),
=Q ΔZ(k) + AT S (k + 1) A ΔZ (k ) + B ΔP(k ) ,

(46)
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=Q ΔZ(k) + AT S (k + 1) A ΔZ (k ) - B V (k + 1)ΔZ (k) ,
= {Q + AT S (k + 1)A - A T S (k + 1)B V (k + 1)}ΔZ (k).

Finally, the matrices S can be computed from the backward discrete time Ricatti equation
(DTRE) given by the recursive relation

S (k )=Q + AT S (k + 1)A - r -1A T  S (k + 1)B 1 + r -1B T S (k + 1)B -1B T  S (k + 1)A (47)

The boundary condition S (N )=Q follows from ΔP(N )=0. Now, to obtain the optimal pro‐
duction rates, we use the change of variable (42) to get from the adjoint equation (41),

AS (k + 1)ΔZ (k + 1)=S (k)ΔZ (k ) - AΔZ (k ) (48)

so that

ΔZ (k + 1)= AS (k + 1) -1 S (k ) - Q ΔZ (k ) (49)

Also, from the dynamics (15), we have the optimal production rates

P(k )= P̂(k ) - r -1 1 + r -1B T  S (k + 1)B -1B T S (k + 1)A ΔZ (k) (50)

where the optimal state vector ΔZ (k ) is found in expression (49) above and S(k) is found in
expression (47).

Parameters Values

Nonmonetary parameters Length of planning horizon T = 2.5

Initial inventory level I0 = 5

Initial demand rate D0 = 2

Demand rate coefficient a= 0.8

Inventory level coefficient b= 1

Deterioration rate θ= 0.1

Monetary parameters Penalty for production rate deviation r = 0.1

Penalty for inventory level deviation h = 4

Penalty for demand rate deviation K = 10

Inventory salvage value h T = 100

Demand salvage value KT = 100

Table 1. Data for continuous-review model
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4. Simulation results

4.1. Simulation of continuous review model

To illustrate numerically the results obtained, firstly we present some simulations for opti‐
mal control of the continuous-review integrated production-forecasting system with stock-
dependent demand and deteriorating items. The data used in this simulation is presented in
Table 1.

Using the MATLAB software, we implemented the results of the previous section and ob‐
tained the graphs below. Figures 1, 2 and 3 show the variations of ΔI (t), ΔD(t), and ΔP(t).
We observe that they all converge toward zero, as desired.

Using equation (3), the optimal cost is found to be J = 3047.93. A sensitivity analysis is per‐
formed in order to assess the effect of some of the system parameters on the optimal cost.
The analysis is conducted by keeping the values of the parameters at the base values shown
in Table 1 and varying successively one parameter at a time. We were interested in the effect
on the value of the optimal objective function J  of the parameters a, b, and θ, that we varied
from 0.1 to 0.9. Table 2 summarizes the results of the sensitivity analysis.

Figure 1. Variation of the optimal inventory level
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Figure 2. Variations of the optimal demand rate

Figure 3. Variations of the optimal production rate
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a /b / θ J (a) J (b) J (θ)

0.1 5822.40 23426.21 3047.93

0.2 489.77 7648.73 463.79

0.3 485.62 5560.00 461.53

0.4 481.57 740.12 459.30

0.5 477.58 659.34 457.09

0.6 473.67 600.85 454.91

0.7 469.84 556.02 452.76

0.8 466.08 520.24 450.63

0.9 462.38 490.83 448.52

Table 2. Sensitivity analysis

As can be seen, the objective function decreases as any of the three parameters increases.

4.2. Simulation of periodic review model

In this second part of the simulation, we illustrate the results obtained on the optimal con‐
trol of the periodic review integrated production-forecasting system with stock-dependent
demand and deteriorating items. Thus, consider the production planning problem for a firm
for the next T  units of time. Divide this interval into N  subintervals of equal length. Assume
the product in stock deteriorates at the rate θ. Assume also the variations of the demand
rate occur according to the dynamics (10). The firm has set the following targets. For
k =1, ⋯ , N , the goal inventory level and goal demand rate are assumed to be as follows:

Î (k )=5 + 1.5 sign(sin( 2πk
40 )) and D̂(k )=2 + 0.5 sign(sin( 2πk

15 ))
where the sign function of a real number x is defined by

sign(x)= {-1 if x <0,
0 if x =0,
1 if x >0.

We have to note that the goal inventory level and the goal demand rate were constant in the
continuous review case.

The goal production rate is then computed using

P̂(k )= D̂(k ) + θ Î (k)

where we assume that the inventory goal level is constant over a certain range. The penalties
for deviating from these targets are qI  for the inventory level, qD for the demand rate, and r
for the production rate. The data are summarized in Table 3.
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Parameters Values

planning horizon length T 10

number of subintervals N 51

coefficient for demand dynamics a 0.1

coefficient for demand dynamics b 0.2

deterioration rate θ 0.01

deviation cost for inventory level qI 20

deviation cost for demand rate qD 15

deviation cost for production rate r 0.01

Table 3. Data for periodic-review model

For the periodic review case, the simulation results are shown in the graphs below. Figure 4
shows the variations of the optimal inventory level and the inventory goal level. We observe
that except for the early transient periods, I (k ) follows Î (k )very closely.
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Figure 4. Optimal and inventory goal levels
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Figure 5 shows the variations of the optimal demand rate and the demand goal rate. We ob‐
serve that except for the early transient periods, D(k ) follows D̂(k ) very closely.

Finally, Figure 6 shows the variations of the optimal production rate and the production
goal rate. We again observe that except for the early transient periods, P(k ) follows P̂(k )
very closely.

The optimal cost is found to be J =10.3081. Here also a sensitivity analysis is performed in
order to assess the effect of some of the system parameters on the optimal cost. The analysis
is conducted by keeping the values of the parameters at the base values shown in Table 3
and varying successively one parameter at a time. We were interested in the effect on J  of
the parameters a, b, and θ, that we varied from 0.1 to 0.9. Table 4 summarizes the results of
the sensitivity analysis.
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Figure 5. Optimal and demand goal levels
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Figure 6. Optimal and production goal rates

a/b/θ J(a) J(b) J(θ)

0.1 10.3081 10.0807 10.3072

0.2 10.3173 10.3081 10.3064

0.3 10.3339 10.6868 10.3056

0.4 10.3601 11.2166 10.3050

0.5 10.4004 11.8973 10.3044

0.6 10.4630 12.7284 10.3036

0.7 10.5651 13.7098 10.3040

0.8 10.7444 14.8413 10.3033

0.9 11.0880 16.1226 10.3032

Table 4. Effect of the parameters a, b and θ on the optimal cost J

Optimal Control of Integrated Production – Forecasting System 135



The second column of Table 4 shows that the optimal cost increases as a increases. The third
column of Table 4 shows that the optimal cost increases also as b increases. The effect of b on
J  is however more significant than the effect of a. Finally, column 4 of Table 4 shows that the
optimal cost decreases as θ increases. The effect of θ is however almost negligible.

5. Conclusion

In this chapter we have used optimal control theory to derive the optimal production rate in
a manufacturing system presenting the following features: the demand rate during a certain
period depends on the demand rate of the previous period (dependent demand), the de‐
mand rate depends on the inventory level, items in inventory are subject to deterioration,
and the firm adopts either a continuous or periodic review policy. In contrast to most of the
existing research which uses time series forecasting models, we propose a new model,
namely, the demand dynamics equation. This model approaches realistic problems by inte‐
grating the forecasting component into the production planning problem with deteriorating
items and stock dependent demand under continuous-review policy. Simulations were con‐
ducted in order to show the performance of the obtained solution. The theoretical and the
simulations results allow gaining insights into operational issues and demonstrating the
scope for improving stock control systems.

Of course, as with any research work, this study is not without limitations. The main contri‐
bution of our model is equation (5) where we use the demand from the previous period to
predict the demand in the current period. The main limitation of that equation is that it in‐
volves two coefficients. We have assumed in this chapter that the parameters a and b of the
demand state equation are known. However, in real life, that may not be the case. We are
currently further investigating this model to estimate these parameters in the case when
they are unknown, using self-tuning optimal control.

Another research direction would be to use a predictive control strategy where, given the
current inventory level, the optimal production rates to be implemented at the beginning of
each of the following periods over the control horizon, are determined. Model predictive
control (or receding-horizon control) strategies have gained wide-spread acceptance in in‐
dustry. It is also well-known that these models are interesting alternatives for real-time con‐
trol of industrial processes. In the case where the above parameters a and b are unknown,
the self-tuning predictive control can be applied. The proposed control algorithm estimates
online these coefficients and feeds the controller to take the optimal production decision.

Note that our state equations are linear and thus linear model predictive control (LMPC),
which is widely used both in academic and industrial fields, can be used. Nonlinear model
predictive control (NMPC) can be used in case one of the state equations is nonlinear, for
example, if equation (5) were of the form

d
dt D(t)=aD(t) + αI (t)β (51)
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NMPC has gained significant interest over the past decade. Various NMPC strategies that
lead to stability of the closed-loop have been developed in recent years and key questions
such as the efficient solution of the occurring open-loop control problem have been exten‐
sively studied.

The case combining unknown coefficients and a nonlinear relationship between the demand
rate and the on-hand inventory yields a very complex, highly nonlinear process for which
there is no simple mathematical model. The use of fuzzy control seems particularly well ap‐
propriate. Fuzzy control is a technique that should be seen as an extension to existing con‐
trol methods and not their replacement. It provides an extra set of tools which the control
engineer has to learn how to use where it makes sense. Nonlinear and partially known sys‐
tems that pose problems to conventional control techniques can be tackled using fuzzy con‐
trol.
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