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1. Introduction 

Superconductivity is a macroscopic quantum phenomenon [1]. Therefore it shows quite 

interesting properties because of its quantum nature. Such properties are described by a 

macroscopic complex wave function of the superconductivity. Especially, a phase of the 

macroscopic wave function play an important role in these properties. For example, 

superconducting devices, such as, superconducting charge, flux and phase qubits, 

superconducting single flux quantum device, and intrinsic Josephson junction Terahertz 

emitter of high Tc cuprate superconductors, use such quantum nature of superconductivity. 

They have attracted much attention recently.  

In conventional superconductors, there is only single phase φ of the superconducting order 

parameter or the macroscopic wave function 
φΔ = Δ ie . This phase causes interference 

effect, such as, Josephson effect, and quantization of vortices in the superconductor. But 

unconventional and anisotropic superconductivity have different phase that comes from 

internal degree of freedom of the superconducting order parameter. Because in the 

superconductors, electrons are paired and if their paring symmetry is an s-wave, as in the 

conventional superconductors, the order parameter is just a single complex number. But if 

the symmetry is other one such as p-wave or d-wave, then the order parameter has an 

internal phase [2,3]. For example, d-wave superconductors, especially 2 2−x y
d -wave 

superconductors have a symmetry that is shown in Fig. 1. This symmetry is internal and it 

appears in momentum space that means the wave function of the Cooper pair moving along 

the x-axis has + sign and that moving along y-axis has – sign. This is also another phase of 

superconducting order parameter and it affects the interference phenomena in the 

superconductors. 
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Figure 1. The symmetry of  2 2−x y
d -wave superconductivity. The color shows the sign of wave function 

(order parameter) and the shape shows the amplitude of the wave function (order parameter). 

The high-Tc cuprate superconductors are typical example of d-wave superconductors. Since 

the discovery of the high-Tc superconductors, the pairing symmetry, as well as its origin, 

has been controversial, but phase-sensitive experiment is crucial for determining the 

symmetry of the Cooper pairs. One such phase-sensitive experiment is a corner junction 

experiment [4,5]. In this experiment, a square-shaped high-Tc superconductor is connected 

with a conventional s-wave superconductor with two Josephson junctions A and B, around 

a corner and each junction is perpendicular to either of the x or the y axes of the high-Tc 

superconductor, as shown in Fig. 2. 

 

Figure 2. Configuration of corner junction between d- and s-wave superconductors. There are two 

junctions, A and B. 

In such geometry if the Cooper pair tunnels through junction A has phase 0, then the 

Cooper pair tunnels through junction B has phase π. The critical current between the s- and 

the d-wave superconductors through these two junctions is zero under zero external 

magnetic field because each supercurrent cancels with each other. This is in apparent 

contrast with a corner junction between both s-wave superconductors for which the critical 

current is largest under zero external field. Therefore, from this experiment, the symmetry 
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of the Cooper pairs in high-Tc superconductors was determined as d-wave, especially 

2 2−x y
d . 

In addition, this experiment showed that the critical current become smax when the total 

magnetic flux through the corner junction was
0

2Φ . Here, 
0

2Φ = hc e is the flux quantum. 

Because the phase difference π between two Josephson currents through junctions A and B, 

is compensated by additional phase,  

 
0

2 2 2
2 2χ π π

Φ
= ⋅ = ⋅ = Φ =

Φ  C s

e e e
A ds curlA dS

c c ch
 (1) 

where C is a contour around the corner junction and S is the area surrounded by the C  and    

Φ is the total magnetic flux through the junctions. When total magnetic flux 
0

2Φ = Φ , this 

phase becomes χ π= . With this phase, total phase difference becomes 0 or 2π. Therefore 

two Josephson currents now are reinforced with each other. 

This result shows, the stable superconducting state under zero external current and zero  

external field becomes nontrivial. For such stable state, the free energy of whole system, 

especially the superconducting condensation energies of both d- and s-wave 

superconductors should be low. Therefore the order parameter should become continuous 

across both of junctions. And then the phase of order parameter cannot be uniform because 

of the phase difference π between two junctions. This phase difference π should be 

compensated by changing the phase of the order parameter spatially in both s- and d-wave 

superconducting regions because of single valuedness of the order parameter. This spatial 

variation of the order parameter causes the supercurrent around the corner junction and 

then spontaneous magnetic flux is created at the corner without an external field. Because 

the associated phase change of this supercurrent is not 2π but only π, the spontaneous 

magnetic flux is not singly quantized magnetic flux 
0

Φ , but half-flux quantum magnetic 

flux (
0

2Φ ). 

An experiment showing this property was done by Higenkamp et al., who made a zigzag 

junction between conventional s-wave superconductor Nb and high-Tc d-wave 

superconductor YBCO, which consists of successive corner junctions [6]. And they observed 

spontaneous magnetic fluxes at every corner under a zero external field, using scanning 

SQUID microscope. The spontaneous magnetic fluxes aligned antiferromagnetically, 

because of the attractive vortex-anti-vortex interaction. They also made small ring with two 

junctions between Nb and YBCO, which is called π-rings, and controlled the spontaneous 

half-quantum magnetic fluxes [7]. 

When spontaneous magnetic flux appears in the zero external magnetic field, this state does 

not have the time reversal symmetry, which the original system has. Therefore there are 

always two degenerate stable states. In these states, supercurrent directions are opposite and 

henceforth directions of spontaneous magnetic fluxes are opposite. This spontaneously 

appeared magnetic flux is useful and can be used as a spin or a bit by it self. Ioffe et al. [8] 

proposed a quantum bit using this half-quantum flux. Using the spontaneous magnetic flux 
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as an Ising spin system, Kirtley et al. made a frustrated triangular lattice of π-rings [7]. In 

their systems, the π-rings were isolated and interacted with each other purely by the 

electromagnetic force. 

 

Figure 3. Schematic diagram of a d-dot. 

In contrast to the previous approach for using the spontaneous half-flux quantum, we 

considered nano-sized d-wave superconductor embedded in an s-wave matrix, as shown in 

Fig. 3 [9-11]. We want to consider the whole d-dot system as a single element, not the 

individual half-quantum fluxes. As in the single half-quantum system, our d-dot has two 

degenerate states if the spontaneous magnetic fluxes appear, because the state with 

spontaneous magnetic fluxes under zero external field also breaks time-reversal symmetry. 

This property is independent from the shape, and the d-dot in any shape always has two 

degenerate stable states. Therefore, the d-dot as a whole can be considered as a single 

element with two level states and it might be used as a spin or a bit also as a qubit. It has 

better properties than those of single flux quantum element, which will be shown in 

following sections. 

In the following, we first show a phenomenological superconducting theory, which 

describes the spontaneous magnetic fluxes in these composite structures, especially in d-dot 

systems and then we discuss the basic properties of this d-dot, based on this 

phenomenological theory. Also, we discuss the difference between a single half-quantum 

flux system and our d-dot system. 

2. Model: two components Ginzburg-Landau free energy 

In order to discuss the basic properties of the d-dot, especially to describe the appearance of 

spontaneous magnetic fluxes, we use the phenomenological Ginzburg-Landau (GL) theory. 

However, for anisotropic superconductors, such as the 2 2−x y
d -wave high-Tc cuprate 
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superconductors, their anisotropy cannot be treated by the simple GL theory. This is 

because using only up to quartic term and quadratic term of gradients of the single order 

parameters in free energy, there are no anisotropic terms. Anisotropy of the vortices in d-

wave superconductors within the phenomenological theory was treated by Ren et al., who 

used a two-component GL theory [12-15]. Here, two components mean the two components 

of the order parameter of with s and d symmetries. They derived the two-component GL 

free energy from the Gor'kov equations. 

Multi-components GL equations were used for exotic superconductors, e.g. heavy fermion 

superconductors[16-18] and Sr2RuO4[19,20]. Also, recently, two components GL equations 

are studied for two-band or two-gap superconductors, such as MgB2 [21,22]. 

The model by Ren.et al. especially emphasize the anisotropy of d-wave superconductivity. 

Therefore, we use the following two-component Ginzburg-Landau (GL) free energy for d-

wave superconductors; 
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where
2

Π = ∇ −
 e

i c
A is a generalized momentum operator that is gauge invariant and 

( )
( )

2

7 3

8

ζ
α

π
=

T
. Δd and Δs are the d-wave and the s-wave components of the order parameter, 

respectively. ( )0λ =d dV N is the strengths of the coupling constants for the d-wave 

interaction channel and  

1

α
λ

+

=

s

d
s

d

V

V
. Here, ( )0N is the density of states of electrons at the 

Fermi energy and dV  and sV  are interaction constants between electrons for d- and s-wave 

channels, respectively. We assume attractive and repulsive interactions for the d- and the s-

wave channels, respectively. cdT  is the transition temperature of the d-wave 

superconductivity under zero-external field. H is an external field and curl=h A . We take 

the London gauge i.e. 0∇ ⋅ =A and 0⋅ =A n at the surface of superconductor. The term 

( )2
∇ ⋅A in the integrand of Eq. 2 is added for fixing the gauge. 

Also, for s-wave superconductors, we use the following two-component GL equation 

with attractive and repulsive interactions for the s-wave and the d-wave channels, 

respectively: 
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Here ( )0λ =s sV N is the strengths of the coupling constants for the s-wave interaction 

channeland 

2 1

α
λ

−

=

s

d
d

s

V

V
. 

In these free energies, the anisotropy of the d-wave superconductivity appears in the 

coupling terms of the gradient of both components of order parameters, 

( )H.c.
∗ ∗ ∗ ∗Π Δ Π Δ − Π Δ Π Δ +x s x d y s y d , where the two terms that contain the gradients along the x 

and the y directions have different signs. 

              

Figure 4. (a) Triangle elements of superconductors. (b) Nodes of a triangle element and the value of 

physical quantities at the nodes. 

By minimizingthe sum of these free energies, we obtain the Ginzburg-Landau (GL) 

equations. For this purpose, we use the finite-element method [23-25], because we want to 

investigate variously shaped d-dots. Hereafter we consider two-dimensional system and 

ignore the variation of physical quantities along the direction perpendicular to the two 

dimensional system. In the finite-element method for two-dimensional system, we divide 

the superconductor region into small triangular elements (see Fig. 4 (a)) and then expand 

the order parameters and the vector potential in each element by using the area coordinate, 

which is defined as, 

 ( )
( )

( )
1

    inside of element
2, i 1,2,3

0                               outside of element


+ +

= =



i i ie

ei

a b x c y
SN x y  (4) 
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eS is an area of e-th element and the coefficients are defined as, 

 = −e e e e

i j k k ja x y x y  (5) 

 = −e e

i j kb y y  (6) 

 = −e e

i k jc x x  (7) 

where ( ), ,i j k is a cyclic permutation of ( )1,2,3  and ( ),
e e

i ix y is the coordinate of the i-th 

nodes of the e-th element (see Fig. 4(b)).These area coordinates are localized functions as 

shown in Fig. 5.Also the area coordinate ( ),
e

iN x y represents normalized area of a triangular 

of which nodes are P, Pj and Pk  in Fig. 5 (b), where   ( ), ,i j k  is a cyclic permutation of 

( )1,2,3 . And then they have following properties; 

 ( )
3

1

, 1
=

= e

i
i

N x y  (8) 

 ( ), δ=e e e

i j j ijN x y  (9) 

 

 

Figure 5. (a) A bird's-eye view of an area coordinate ( ),
e

iN x y . (b) Area coordinates represent 

normalized area of triangular elements.  

Using these properties, the order parameters are expanded as 

 ( ) ( )
3

1

, ,
=

Δ = Δ e e

d di i

e i

x y N x y  (10) 
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 ( ) ( )
3

1

, ,
=

Δ = Δ e e

s si i

e i

x y N x y  (11) 

and also the magnetic vector potential is expanded as, 

 ( ) ( )
3

1

, ,
=

= e e

i i

e i

x y N x yA A  (12) 

where Δe

di and  Δe

si are the value of the d-wave and the s-wave order parameters at the i-th 

vertex of e-th element, respectively (see Fig. 4 (b)). Also, e

iA  is the value of the vector 

potential at the i-th vertex of the e-th element (see Fig. 4 (b)). Inserting these expansions into 

the free energies Eqs. 2 and 3, the free energies are expressed by those values, Δe

di , Δe

si and e

iA . 

Then, minimizing the free energies, we get following GL equations. For the d-wave 

superconducting order parameter, 
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And for the s-wave superconducting order parameter, 
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ss ss ss ss I

ij ij sj ij ij sj
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ij dj ij dj i
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Q A Q P A P

P A Q A V
 (16) 

Coefficients for d-wave region and s-wave region are different and are given in Appendix. 

Also for the vector potential following equations are obtained as follows, 

 { }( ) { }( )2 2
, , Δ Δ + Δ Δ + = − −  e e e ex ex ey

ij d s ij d s jx ij jy i i i

j j

R R A S A T T U  (17) 

 { }( ) { }( )2 2
, , Δ Δ − Δ Δ − = + −  e e e ey ey ex

ij d s ij d s jy ij jx i i i

j j

R R A S A T T U  (18) 
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Here coefficients are also given in Appendix. At the boundary of d- and s-wave 

superconductors, because the wave function is continuous, following boundary conditions 

are applied: 

 1 2

1 2

Δ Δ
=s s

s sV V
 (19) 

 1 2

1 2

Δ Δ
=d d

d dV V
 (20) 

In this model, d- and s-wave components of the order parameter interfere anisotropically 

with each other in the both of d-wave and s-wave superconductors. And the boundaries 

between both superconductors are assumed clean. But we cannot take into account the 

roughness of the boundary. 

 

Figure 6. Mesh partition used in the finite element method. Red, blue and grey regions are d-wave and 

s-wave superconducting and junction regions, respectively. 

For treating roughness of the junctions, we consider second model. In contrast to the first 

model, in the second model, the s-wave superconductor is connected to the d-wave 

superconductor through a thin metal or an insulator layers. In the second model, we 

consider only the d-wave (s-wave) component of the order parameter in the d-wave (s-

wave) superconducting region, but in the thin metal layer, we take both components. So, 

free energies are given as, 

 ( ) ( )
2

22 2 223 4ln 1 1 1
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Here ( ),Δd d AF , ( ),Δs s AF  and ( ), ,Δ ΔM s d AF are the free energies for d-wave, s-wave 

superconducting and junction regions respectively. A typical division of superconducting 

region to d- and s-wave superconducting and junction regions is given in Fig. 6. In the 

junction region, order parameters and the vector potential vary rapidly and therefore 

smaller mesh sizes are taken. At the boundary, we assume that each component of the order 

parameter is continuous. 

3. Appearance of the half-quantum magnetic flux in d-dot 

Using the two models in Section 2, the spontaneous magnetic flux can be described. In Fig.7, the 

s-wave and d-wave order parameters and magnetic field distribution are shown for a corner 

junction between s-wave and d-wave superconductors under zero external magnetic field.  

 

Figure 7. Appearance of spontaneous half-quantum magnetic flux at a corner junction. (a) Amplitude 

of s-wave component of order parameter. (b) Amplitude of s-wave component of order parameter. (c) 

Magnetic field distribution at zero external field. 
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In this calculation, the physical parameters, such as the GL parameters and the transition 

temperatures, for Nb and YBCO in the s- and the d-wave superconducting regions are used, 

and system size is set as 
0

25ξ= dL . Here, 
0

ξd  is the coherence length of the d-wave 

superconductors at zero temperature. In Fig.7 (c), right-lower part is the d-wave 

superconductor and other part is s-wave superconductor. Both components of the order 

parameter exist in both of s- and d-wave superconductors. Especially, s-wave component 

penetrates into the d-wave superconducting region and interferes with d-wave component. 

Such interference causes the spontaneous magnetic field, which is perpendicular to the 

plane. In Fig. 7 (c), blue color means magnetic field zH  is positive. Total magnetic flux 

around the corner is approximately
0

2Φ . So a half-quantum magnetic flux appears 

spontaneously. In this figure, the size of d-wave superconductor is 
0 0

10 10ξ ξ×d d . The 

coherence length of high-Tc superconductors is rather small (
0

2 ~ 4ξ =d nm for YBCO) and 

the size of d-wave region is 40 nm, which is rather small compare to the experiments by 

Hilgencamp et al. [6]. But for such nano-sized d-wave superconductors, half-quantum 

magnetic fluxes appear, as this result shows. For larger d-wave region, the spontaneous 

magnetic flux is expected to appear easily. 

 

 

Figure 8. Superconducting order parameter and magnetic field structures for a square d-wave 

superconductor in an s-wave superconductor. (a) Amplitude of d-wave component of the order 

parameter. (b) Amplitude of s-wave component of the order parameter. (c) Magnetic field distribution. 

Blue means H z < 0. 
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How such spontaneous magnetic flux appears, when a square d-wave superconductor is 

embedded in an s-wave superconductor? In Fig.8, the typical magnetic flux structure of such 

square d-dot in which edge of square is parallel to the x- or y-directions, under zero 

magnetic field is shown. In this figure, red color means H z < 0. Magnetic fluxes appear at 

four corners of the square d-dot, and they order antiferromagnetically. Such 

antiferromagnetic order is already obtained by the experiment for zigzag junctions by 

Hilgencamp et al. [6]. The reason of this antiferromagnetic order can be understood by 

considering the interaction between vortices. Usual theory of vortex interaction tells us that 

parallel vortices repel each other and antiparallel vortices attract each other because of the 

current around the vortices and Lorentz force by this current. For the d-dot in Fig.8, the 

spontaneous current flows form top-center of the d-wave superconductors, turns right and 

left and flows into left and right sides of d-wave superconductor. So this current naturally 

creates upward flux at the left-top corner and downward flux at the right-top corner. Fluxes 

at the lower two corners can be explained similarly. 

 

 
 

Figure 9. The d-wave superconducting order parameter amplitudes ( (a) and (c)) and magnetic field 

distribution ( (b) and (c) ) for smaller d-dot with d=1.7ξ. ( (a) and (b)) with d=1.3 ξ ((c) and (d)). 
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The second model of d-dots (Eqs.21-23) also describes these spontaneous half-quantum 

magnetic fluxes. Using this model, we argue the size-dependence of these magnetic fluxes. 

Question is: The d-dot in Fig.8 have four half-quantum magnetic fluxes, but if the size of d-

dot becomes small, then what happens? In Fig.9, the typical size dependences of the order 

parameter structure and the magnetic fluxes are shown. In these figures, for smaller d-dots 

the amplitudes of d-wave order parameter and magnetic field distributions are shown. 

When the size of the d-dot becomes small, then the amplitude of d-wave component of the 

order parameter becomes small, and the spontaneous magnetic field becomes small. This is 

because the spontaneous current, which flows around each corner, does not decrease much 

at the center of the edge of the square when the size of the d-dot is comparable to the 

coherence length. Then, the total magnetic flux becomes less than the half-flux quantum, 

although the fluxoid is still a half-flux quantum.  

The temperature dependences of amplitude of order parameters and the spontaneous 

magnetic fluxes also show similar tendency, because in this case, the coherence length 

increases with increasing temperature.  

 

 

 

 

Figure 10. Order parameter ((a) d-wave and (b) s-wave) and magnetic field (c) distribution for an s-dot. 
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These spontaneous magnetic fluxes do not appears for the geometry for a square d-wave 

superconductor embedded in an s-wave superconducting matrix, but they appear for a 

square s-wave superconductor embedded in d-wave superconducting matrix and various 

shaped d-wave superconductors embedded in the s-wave superconducting matrix. The s-

wave superconducting dot case is called “s-dot”. For an s-dot, order parameter structures 

and field distribution are shown in Fig. 10. There appear spontaneous magnetic fluxes 

around the corners antiferromagnetically. These magnetic fluxes also are explained similarly 

by the phase anisotropy of d-wave superconductivity. But the distribution of magnetic field 

is opposite to the d-dot case, where magnetic field appears mainly outside of inner 

superconducting region, but in this case, magnetic field appears mainly inside of inner 

superconducting region. The s-dot is also useful but in the following we focus on the d-dot 

case, which is more easily fabricated, we think. 

Next we discuss the shape dependence of the d-dot. Even if the shape of the d-wave 

superconducting region is different from the square that is parallel to the crystal axis or x- 

and y-axis, the spontaneous magnetic field is also expected. In Fig. 11, distributions of the 

order parameters and magnetic field for an equilateral triangle plate are shown. For this case 

the spontaneous magnetic fluxes appear along the upper edges connected to the top corner. 

The spontaneous current flows the top corner and return to the intermediate points of upper 

edges. Also spontaneous magnetic fluxes appear around the lower corners. These 

spontaneous magnetic field along the edge also appear for rotated or diagonal squares, as 

shown in Fig. 12. In these figures, the spontaneous currents across the junction mainly flow 

along x- or y- directions. And direction of junction between d- and s-wave superconductors 

is important for the appearance of magnetic flux.  

 

 

Figure 11. Spatial distribution of d-wave component of the order parameter  (a) and magnetic field for 

a triangular d-dot. 

Also we note that not only square d-dots that is parallel to the x- and y-axis but also 

arbitrary shaped d-dots that show spontaneous magnetic field, such as in Figs. 11 and 12, 

have doubly degenerate stable states. And the shape of d-dot controls 15 the magnetic field 

distribution. 
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Figure 12. Spatial distribution of d-wave component of the order parameter (a) and magnetic field for a 

rotated square d-dot. 

 

 

Figure 13. Spatial distribution of magnetic field for a square d-dot. (a) 0H = , (b) 2
00.02 2H Lπ= Φ , 

(c) 2
00.05 2H Lπ= Φ , (d) 2

00.1 2H Lπ= Φ , and  (e) 2
00.2 2H Lπ= Φ . 

These doubly degenerate states have good properties for applications. First they remain 

under weak external magnetic field. In Fig. 13, external field dependence of spontaneous 

magnetic field distributions for a square d-dot is shown. The spontaneous magnetic flux 

parallel (anti-parallel) to the external field becomes large (small), respectively. Although the 

degeneracy from broken time reversal symmetry is lifted under the external magnetic field, 
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the state with π/2 rotated magnetic field distributions are equally stable. These doubly 

degenerate states come from the broken four-fold symmetry of the square shape. This 

property depends on the shape of d-dots. For asymmetric shaped d-dots, one of the doubly 

degenerate states becomes more stable than another state. This means that we can control 

these degenerate states using the magnetic field for asymmetric d-dots. 

      

Figure 14. Magnetic field distributions of (a) the most stable state (udud) and (b) an excited state 

(udud). 

 

Figure 15. Free energies of (a) the most stable state (udud) and (b) an excited state (uudd). is the 

condensation energy of the superconductor and Tcs is the critical temperature of the s-wave 

superconductor. 

Second property is the stability of the degenerate stable states. For the square d-dots, most 

stable states show antiferromagnetic order of spontaneous magnetic fluxes, and we call 

these state udud (up down up down) (Fig. 4 (a)). There are other states, which have higher 

free energy. In Fig. 14 (b), one of such states is shown. In this state, spontaneous magnetic 

fluxes do not show antiferromagnetic order, but parallel magnetic fluxes align at the upper 

or lower edges. We call this state uudd (up up down down). The free energies of the udud 

and uudd states are shown in Fig. 15. Well below the critical temperature of the s-wave 

superconductor Tcs, free energy difference between udud (a) and uudd (b) states becomes 

comparable to the condensation energy of the superconductor. Therefore we can treat them 

as two-level systems. 

E
cond



Composite Structures of d-Wave and s-Wave Superconductors (d-Dot):  
Analysis Using Two-Component Ginzburg-Landau Equations 335 

4. Interaction between d-dots 

As shown in previous section, the d-dots have double degenerate stable states. So we can 

use them as bits or 1/2 spins. In order to use them as artificial spins, the d-dots will be placed 

periodically or randomly. Then the interaction between them is important for these spin 

systems. For using the d-dots as computational bits, they are also placed to transform the 

information. Therefore interaction between d-dots also important for these applications.  

 

Figure 16. Pairs of d-dots in a parallel (a) or a diagonal (b) positions. 

How the d-dots interact with each other? Interaction between d-dots basically comes from 

the interaction between spontaneous magnetic fluxes or vortices. If the spontaneous vortices 

are independent from each other, that is, if there is no current flow between the vortices, 

then via a purely electromagnetic interaction, they interact. This is the case of the π-ring 

system of Kirtley et al. [4]. If the vortices are interacting in the same superconductors, there 

is a supercurrent flow around the vortices and ordinary vortices interact with each other 

through this current. The current distribution around a singly quantized vortex is given by 

the first order Bessel function. And therefore the interaction force to vortex 1 from vortex 2 

is given as, 

 
( ) ( )0 0 121 2

12 1 122 3
ˆ

8π λ λ
 

=  
 

r
Kf r

Φ Φ
 (24) 

Where 
12
r  and  

12
r̂  are distance between two vortices and a unit vector from the vortex 2 to 

the vortex 1, respectively, and 
1
K is the first order modified Bessel function. Directions of 

vortices are expressed by ( )0 i
Φ and if two vortices are parallel (anti-parallel) then interaction 

is repulsive (attractive), respectively. 

For d-dots, there is an s-wave region between d-wave islands, and the spontaneous currents 

around the corners affect each other as usual supercurrent around singly quantized vortices, 
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mentioned above. Then, an interaction between d-dots arises through the spontaneous 

currents in the s-wave region. If two square d-dots are in a line (Fig. 16 (a)), nearest vortex 

pair should be antiparallel (e.g. right-upper flux in the left d-dot and left upper vortex in the 

right d-dot should be antiparallel). And then we can expect that two d-dots will have a same 

spontaneous magnetic flux distribution, as shown in Fig. 16 (a). Therefore when we regard a 

d-dot as a spin, they interact ferromagnetically. In contrast to this configuration, if two 

square d-dots are placed diagonally (Fig. 16 (b)), then we expect an antiferromagnetic 

interaction by the same argument. In Fig. 17, stable states for parallel two d-dots are shown. 

For short distance ((e)), the nearest magnetic fluxes disappear and the flux distributions of 

two d-dots are same. Increasing the distance, the nearest magnetic fluxes appear and 

becomes gradually large ((f)-(h)) and the states of the d-dots are still same.Therefore 

ferromagnetic states are always stable, as we expected, and this is independent from the 

distance. 

 

 

 

Figure 17. Stable states for parallel two d-dots. (a)-(d) : configurations of d- and s-wave 

superconductors. (e)-(h): Stable magnetic field distributions. 
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Figure 18. Stable magnetic field distribution around a pair of d-dots, which are placed diagonally. The 

states of these d-dots are same and therefore they interact ferromagnetically. 

 

Figure 19. Free energies for Ferromagnetic (F) and Antiferromagnetic states in diagonally placed two d-

dots. 

However, for diagonally placed two d-dots, the magnetic field distribution is not so simple. 

In Fig. 18, the stable state is shown for short distance between two diagonally placed d-dots. 

Unlike to the expectation from the usual vortex-vortex interaction, ferromagnetic state 

becomes stable. This is because two adjacent half-quantum fluxes are connected and form 

broad single quantum flux and this can occur when two fluxes are parallel. Therefore the 

ferromagnetic state becomes stable. It seems that the energy of this configuration becomes 

lower when two half-quantum fluxes are closer to each other. This property does not appear 

for ordinary vortices and we call this a fusion of half-quantum vortices. In Fig. 19, distance 

dependence of the free energies for the ferromagnetic and antiferromagnetic states are 

plotted. When distance between two d-dots is short, the ferromagnetic state has much lower 
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free energy than that of the antiferromagnetic state. For longer distance, free energies of 

these states are almost same, because the spontaneous magnetic fluxes become almost 

independent as shown in the insets of Fig. 19. 

These interactions between d-dots can be used for changing the state of the d-dots [26]. 

Using these interactions, the d-dots have a potential applicability to the superconducting 

devices[27]. 

5. Conclusions 

We showed that the anisotropic pairing of superconductivity causesinteresting phenomena 

when two different superconductors are combined. Spontaneous half-quantized magnetic 

flux around the junction between d-wave and s-wave superconductors is one of such 

phenomena. It is simulated by the two-components Ginzburg-Landau equations, which can 

treat the anisotropy of d-wave superconductivity. This half-quantum magnetic state for the 

d-wave superconductors embedded in the s-wave superconductor has good properties for 

applications to superconducting devices, especially for classical bits or qubits.  

Appendix 

In this appendix, the coefficients in Eqs. 13-18 aregiven. For d-wave superconducting 

regions, they are defined as, 
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For s-wave superconducting regions, they are defined similarly.  

The coefficients in Eqs. 17 and 18  in the d-wave superconducting region are given as, 
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