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1. Introduction

A one-dimensional phenomenological approach to simulate both the mechanical and
functional properties in shape memory alloys (SMAs) is described in the following sections.
In fact, shape-memory alloys exhibit unique mechanical and functional features, due to
reversible transformations in crystal structure. In particular, on the macroscopic scale,
SMAs are able to remember a geometrical shape and can return to that shape by activating
the phase transition mechanisms. Many kinds of SMAs have been exploited in the last
decades, such as the copper-zinc-aluminum (ZnCuAl), copper-aluminum-nickel (CuAlNi),
nickel-manganese-gallium (NiMnGa), nickel-titanium (NiTi), and other ones made by
alloying zinc, copper, gold, iron, etc. Among these alloys the near equiatomic NiTi binary
system shows the most exploitable characteristics due to the high stress and strain recovery
capabilities associated with their functional properties, namely pseudoelastic effect (PE)
and shape memory effect (SME). These properties are due to a reversible solid state phase
transformation between a parent phase (austenite) and a product phase (martensite), the
so called thermoelastic martensitic transformation (TMT), that can be activated either by
temperature (Thermally Induced Martensite, TIM), or by applied stress (Stress Induced
Martensite, SIM) [1]. Due to these features NiTi alloys are currently used in an increasing
number of applications in many fields of engineering [2], for the realization of smart sensors
and actuators, joining devices, hydraulic and pneumatic valves, release/separation systems,
consumer applications and commercial gadgets. However, thanks to their good mechanical
properties and biocompatibility the most important applications of NiTi alloys are in the
field of medicine, where pseudoelasticity is mainly exploited for the realization of several
components, such as cardiovascular stent, embolic protection filters, orthopedic components,
orthodontic wires, micro surgical and endoscopic devices. As a direct consequence of
their interesting features NiTi alloys have attracted the interest of scientific and engineering
community in the last years. However, despite the increasing interest and the efforts of many
researchers to better understand these unusual mechanisms, the use of NiTi alloys is currently
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2 Will-be-set-by-IN-TECH

limited to high-value applications (i.e. medical devices, MEMS, etc.), due to the high cost of
the raw material as well as to the complex component manufacturing; in fact, an accurate
control of the processing parameters must be carried out as the functional and mechanical
properties of NiTi alloys are significantly affected by the thermo-mechanical loading history
experienced during manufacturing [3–8]. On the other hand, the design of complex shaped
NiTi-based components needs an accurate knowledge of the mechanical and functional
response of the material, as well as how this evolves during subsequent thermo-mechanical
processes. Within this context the use of numerical modeling techniques, to simulate both
mechanical and functional behavior of SMAs, is of major concern and, consequently, many
studies have been focused on this topic in the last few years [9, 10], with the aim to model
the non-linear hysteretic behavior that describes the phase transformation, and the related
functional properties. Some of these models are based on microscopic and mesoscopic
approaches [10], where the thermo-mechanical behavior is modeled starting from molecular
level and lattice level, respectively; other models are based on macroscopic approaches, where
only phenomenological features of the SMAs are used [11–24]. In this field, some authors
proposed one-dimensional models based on an assumed polynomial-free energy potential
[11, 12] while other models are based on an assumed phase transformation kinetic and
consider simple mathematical functions to describe the phase transformation behavior of
the material [13–15]. These models are probably the most popular in the literature due to
their phenomenological approaches, which allow easy developments without considering the
underlying physics of the transformation kinetic. Furthermore, other models are based on
the elastoplasticity theory [16–22] which are capable of describing the functional behavior of
the material using plasticity concepts. Finally, some researchers used the Galerkin method
to describe thermo-mechanical behaviors of shape memory alloys [23, 24]. More recently,
a 1-D phenomenological approach to simulate both the shape memory effect [27–29] and
pseudoelastic effect [30] in NiTi-based shape memory alloys has been developed and it is
described in the following sections. In particular, the temperature-strain and stress-strain
hysteretic behavior of SMAs, associated with the thermally induced and stress-induced phase
transition mechanisms, are modeled from a phenomenological point of view, i.e. without
considering the underlying physics of the problem, by using Prandtl-Ishlinksii hysteresis
operators [25, 26]. The main features of this approach is a simple implementation together
with a good accuracy and efficiency in predicting the stress-strain hysteretic behavior of 1D
components. Unfortunately, the one dimensional nature of the proposed model, represents
one of the major drawback with respect to some of the pre-existing phenomenological models,
which are based on more thermodynamically consistent frameworks and, consequently, are
able to capture several behaviors of NiTi alloys, such as detailed stress-strain distribution in
2D and 3D components. However, the high computational efficiency of the proposed model
allows its use for real time simulation and control o 1D SMA components. The parameters
of the phenomenological model are identified by simple and efficient numerical procedures,
starting from a set of experimentally measured hysteresis loops. The identification procedures
have been developed in the commercial software package MatlabTM, while the computed
parameters are used in SimulinkTM models, which are able to simulate the whole path
dependent hysteretic behavior of the SMAs, i.e. for generic complete and incomplete
stress-induced and/or thermally induced phase transition mechanisms. The models are also
able to capture the hysteresis modifications due to complex loading conditions, i.e. they are
able to predict the change of the transformation stresses and temperatures according to the
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Clausius-Clapeyron relation [1]. The unique thermo-mechanical features of SMAs are firstly
illustrated in the following section 2, while the numerical approach is described in section 3
together with some case studies, involving both shape memory and pseudoelasticity, and the
results show good accuracy and small computational time.

2. Thermo-mechanical properties of NiTi alloys

2.1. Thermoelastic martensitic transformation

Nickel-Titanium (NiTi) based shape memory alloys exhibit unique thermomechanical
properties due to a reversible solid state phase transformation between a high temperature
parent phase (B2 - austenite) and a low temperature product phase (B19’ - martensite), the so
called Thermoelastic Martensitic Transformation (TMT). In particular, TMT can be activated
by a temperature variation (TIM, Thermally Induced Martensite) or by the application of an
external mechanical load (SIM, Stress Induced Martensite), and it allows the crystal lattice
structure to accommodate to the minimum energy state for a given temperature and/or stress.
Figure 1 schematically shows the crystal structures of the two phases.

Figure 1. Schematic depiction of the lattice structures of austenite and martensite.

The austenitic phase is characterized by a Body Centered Cubic structure (BCC), with a nickel
atom at the center of the crystallographic cube and titanium atoms at the cube’s corners, while
the lattice structure of the martensitic phase consists of a rhombus alignment with an atom at
each of the rhombus corners. On the macroscopic scale the two crystal structures exhibit
different engineering properties, such as Young’s modulus, electrical resistance, damping
behavior, etc. As a consequence, the transition between the two phases gives the possibility
to obtain variable and/or tunable properties, i.e. NiTi alloys are able to change and or/adapt
their response as a function of external stimuli. In addition, phase transition mechanisms are
also associated with high strain recovery capabilities resulting from both thermally-induced
and/or stress-induced transformations as described in the following section.

2.1.1. Thermally-induced martensitic transformation

When cooling the austenitic structure a thermally-induced martensitic transformation
(B2→B19’) occurs in the temperature range between martensite start temperature (Ms), and
martensite finish temperature (M f ). When the martensitic structure is heated the reverse
transformation between martensite and austenite (B19’→B2) occurs in the range between
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austenite start temperature (As) and austenite finish temperature (A f ). These characteristic
temperatures, the so called phase transition temperatures (PPTs), can be regarded as material
parameters, which depend on the alloy composition and on the thermomechanical processing
conditions [1], and can be easily detected by Differential Scanning Calorimetry (DSC)
investigation, as schematically shown in Figure 2.

Figure 2. Differential scanning calorimetry thermogram of a NiTi alloy

In addition, transformation from B2 cubic austenite into monoclinic B19’ martensite could
occur either directly or via an intermediate rhombohedral phase (R-phase), as shown in
Figure 2. In particular, the R-phase transformation (B2→R) can be observed during cooling
from A f to Ms prior to martensitic transformation, resulting in a sequential transformation
B2→R→B19’. However, it is worth noting, that the B2→R transformation is observed
only under specific processing conditions of the alloy [33]. In addition, marked differences
are normally observed between direct and reverse transformation temperatures as a direct
consequence of the thermal hysteretic behavior of the alloy, as illustrated in Figure 3. In
particular, this figure shows the thermal hysteresis describing the evolution of the volume
fraction of martensite (ξM) together with the characteristic transformation temperatures.

Figure 3. Thermal hysteresis of a NiTi alloy describing the evolution of volume fraction of martensite
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2.1.2. Stress-induced martensitic transformation

When a mechanical load is applied to the austenitic structure the stress-induced B2→B19’
transformation occurs, corresponding to a plateau in the stress-strain curve of the alloy. If the
mechanical load is removed the reverse B19’→B2 transformation occurs which is related to
another stress plateau and allows an almost complete strain recovery. Figure 4 illustrates an
example of stress-strain curve of a NiTi alloy exhibiting stress-induced phase transformation
mechanisms, together with the characteristic transformation stresses of the alloy, i.e. the
stresses for direct B2→B19’ transformation (σAM

s , σAM
f ) and the stresses for reverse B19’→B2

transformation (σMA
s , σMA

f ).

Figure 4. Stress-strain curve of an austenitic NiTi alloy with characteristic transformation stresses.

Figure 4 also illustrates the recovery strain εL due to the stress-induced transformation
mechanisms, together with the Young’s moduli of the two phases (EA and EM). Another
stress-induced microstructural change occurs when a mechanical load is applied to the
martensitic structure, i.e. for T < M f , the so called detwinning. This mechanism can be
regarded as a variant reorientation process and, on the macroscopic scale, it causes large
plastic-like deformations which corresponds to a plateau in the stress-strain curve of the alloy.
This mechanism is responsible for the shape memory effect as described in the following
section. In addition, it is worth noting that NiTi SMAs exhibit a marked temperature
dependent stress-strain response, as schematically depicted in Figure 5. In particular,
the temperature dependence of transformation stresses is given by the Clausius-Clapeyron
relation of equations 1:

dσAM

dT
= CM;

dσMA

dT
= CA (1)

where CM (direct martensitic transformation) and CA (reverse austenitic transformation) are
in the range between 5 and 10 MPaK−1.

2.2. Shape memory effect

Shape Memory Effect (SME) is the ability of a SMA to remember a predetermined shape and

to recover this shape even after being subjected to large mechanical deformations (up to 10%).

In NiTi alloys this property is observed under martensitic conditions, i.e. when T < M f ,
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Figure 5. Relation between transformation stresses and temperature according to the
Clausius-Clapeyron relation.

and it can be attributed to the combination of two microstructural changes: i) detwinning

of martensitic variants and ii) thermally induced phase transformation. Figure 6 shows a

schematic depiction of the SME together with the associated phase transition mechanisms

(Figure 6.a) and the corresponding stress-strain-temperature response (Figure 6.b).

Figure 6. Schematic depiction of the shape memory effect: a) phase transition mechanisms and b)
stress-strain-temperature response

In particular, Figs. 6 show that if a mechanical load is applied to the twinned martensitic

structure (1), i.e. for T < M f , detwinning occurs at a given critical stress value which

corresponds to large plastic-like deformations (up to 10%) through a plateau in the

stress-strain curve (2). In fact, these deformations persist after complete unloading as only

elastic recovery of the detwinned structure is observed. However, if the material is heated

up to the austenite finish temperature (T > A f ) a complete thermally induced phase

transformation occurs from the detwinned martensitic structure to the austenitic one (3) and,

on the macroscopic scale, this transformation allows a complete shape recovery. Finally, if the

material is cooled down to the martensite finish temperature (T < M f ) it is able to remember

126 Smart Actuation and Sensing Systems – Recent Advances and Future Challenges
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its original twinned martensitic structure (1). This unusual functional property is also known

as one-way shape memory effect (OWSME) as it defines the ability of material to remember

just one shape, the cold one (T < M f ), and to recover this shape after being mechanically

deformed. However, under specific thermo-mechanical treatments NiTi alloys could exhibit

another shape memory mechanism, the so called two-way shape memory effect (TWSME), i.e.

they are able to remember a cold shape, linked to the martensitic structure, and a hot shape,

linked to the austenite. As a consequence, during repeated heating and cooling, the material

changes its shape in a reversible way, through a hysteresis loop, as schematically illustrated

in Figure 7.

Figure 7. Schematic depiction of the two-way shape memory effect: a) phase transition mechanisms and
b) strain-temperature hysteretic response

In particular, TWSME can be induced by proper thermomechanical procedures, the so-called

training, which usually involve repeated deformations and transformations between austenite

and martensite. This thermomechanical process produces a dislocation structure and,

consequently, creates an anisotropic stress field that benefits the formation of preferentially

oriented martensite variants [32], resulting in a macroscopic shape change between the phase

transition temperatures.

Figure 8 shows an example of the thermomechanical cycle, which is composed of four

subsequent steps: 1) strain controlled uniaxial loading up to a training deformation εtr, 2)

complete unloading at the same rate and recording of the residual strain εr, 3) heating up to

the austenite finish temperature A f , in stress free conditions, to activate SME and measuring

the recovery deformation εre and permanent strain εp, and 4) cooling down to the martensite

finish temperature M f , in stress free conditions, and recording the induced two-way shape

memory strain εtw. Experimental measurements have been carried out in [28] where several

training cycles have been executed with a training deformation εtr = 5.5%. Each training

cycle starts from the end of the cooling stage of the previous one, so that the total deformation

at the i − th cycle, εtot(i), can be defined as follows:

εtot(i) = εtr(i) + εp(i−1) + εtw(i−1) (2)

Figure 9 reports the measured εtw, εp, εpe, and εtot vs the number of training cycles. The figure

clearly shows that the two-way shape memory strain εtw increases with increasing the number
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Figure 8. Example of training cycle: 1) loading, 2) unloading, 3) heating up to A f , and 4) cooling down
to M f [28].

of training cycles, and a similar behavior is observed for the permanent deformation εp, the

strain recovery εre, and the total deformation εtot. In particular, εtw increases from 1.0% at

the first training cycle to 2.8% after six cycles; εp and εreincrease from 1.5% to 4.2% and from

4% to 6%, respectively, and, consequently, εtot increases from 5.5% to 11.8%. In Figure 10, the

Figure 9. Measured deformations versus number of training cycles: εtw, εp, εpe, and εtot [28].

measured thermal hysteresis behavior strain vs temperature, describing the TWSME of the

trained material, is shown. In particular, Figure 10.a illustrates the stress-free hysteresis loop,

together with the PTTs, while in Figure 10.b the stress-free thermal hysteresis loop is compared

with those obtained under a tensile stress of 50 MPa and 100 MPa. The comparison clearly

shows and a systematic increase in εtw, as well as in all PTTs, when increasing the applied

stress σ. In particular, the increase of εtw is attributed to i) the variation of Young’s modulus in

the thermal hysteresis behavior between martensite and austenite and ii) the increased volume

fraction of favorably oriented martensite variants with increasing external stress.
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Figure 10. Thermal hysteresis behavior of the trained material strain vs temperature: a) stress-free
hysteresis loop with an highlight of the PTTs and b) effects of the applied tensile stress [28].

2.3. Pseudoelastic effect

The pseudoelastic (PE) effect in NiTi alloys consists in the high strain recovery capability (up
to 10%) observed during isothermal loading/unloading cycles carried out at temperature
T > A f , i.e. when the alloy is in austenitic conditions. This functional property can be
directly attributed to the reversible stress-induced martensitic transformations as discussed
in section 2.1.2. In particular, Figure 11 illustrates that if a mechanical load is applied to
austenitic structure (1) the B2→B19’ transformation occurs and, on the macroscopic scale,
large mechanical deformation are achieved through a stress-strain transformation plateau (2).
However, if the mechanical load is removed the reverse B19’→B2 transformation occurs and,
consequently, the material is able to recover its original shape through an unloading plateau
in the stress strain curve. However, the reverse transformation occurs at lower stress values
resulting in a marked stress-strain hysteretic behavior.

Figure 11. Schematic depiction of the pseudo elastic effect: a) stress-induced phase transition
mechanisms and b) stress-strain hysteretic response

1291D Phenomenological Modeling of Shape Memory and Pseudoelasticity in NiTi Alloys
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It is worth noting that Figure 11.b illustrates the nominal stress-strain behavior of a
pseudoelastic SMA, while NiTi alloys exhibit a marked evolution of the stress-strain hysteretic
behavior in the first mechanical cycles, up to a stable response, due to the formation of
stabilized martensite [32], which causes a reduction of the pseudoelastic recovery of the SMA.
In particular, Figure 12 illustrates the evolution of the stress-strain hysteretic behavior of the
material in the first 25 mechanical cycles for a fixed value of total strain εtot = 3.5%. These data
were obtained from experimental testing of a commercial pseudoelastic NiTi alloy [30]; the
figure clearly shows a marked reduction of the pseudoelastic recovery, from 3.5% to about 3%,
but the stress-strain loops becomes stable after 20 cycles. Furthermore, as reported in section

Figure 12. Evolution of the stress-strain response of a commercial pseudoelastic NiTi alloy during the
first 25 mechanical cycles for a maximum applied deformation εtot = 3.5% [30]

2.1.2, the critical stresses for direct and inverse phase transformation are significantly affected
by the temperature, according to the Clausius-Clapeyron constant (Equation 1), as illustrated
in the experimentally measured curves in Figure 13 [30]. These curves have been obtained
from isothermal loading unloading cycles, carried out at increasing values of the testing
temperature for T > A f (303K − 328K), by using a SMA with a stable pseudoelastic response.
The analysis of the data in Figure 13 allows to obtain the value of the Clausius-Clapeyron
constant (CM = CA = 8.7MPaK−1).

3. Hysteresis modeling: basics

A one-dimensional numerical approach to simulate the stress-strain and strain-temperature
hysteresis behavior of SMAs is described in this section. In particular, in a purely
phenomenological way, the hysteresis loop is modeled by a Prandtl-Ishlinskii hysteresis
operator H [26]; the basic idea of this approach consists in modeling the non-linear hysteretic
behavior by a weighted superposition of many elementary hysteresis operators, such as the
backlash operators Hr, as schematically illustrated in Figure 14.

H = {w}T{Hr} (3)

where {Hr} is the vector of backlash operators and {w} is the corresponding vector of
weights. As shown in Figure 14.a, each backlash operator Hri is characterized by its dead
band width dwi, while the corresponding weight wi represents the slope of the oblique lines
of the operator. As illustrated in Figure 14.b, which represent a generic x(t)− y(t) hysteretic
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Figure 13. Isothermal stress-strain hysteresis loops of a commercial pseudoelastic NiTi alloy as a
function of the testing temperature [30].

Figure 14. Schematic depiction of the hysteresis operators: a) elementary backlash operator Hr and b)
Prandtl-Ishlinskii hysteresis operator H given by weighted superposition of elementary hysteresis
operators.

behavior, the proposed approach consists of modeling the hysteretic loop by a linear piecewise
discretization. The accuracy of the model can be improved by increasing the total number
of linear pieces, which represent the total number of the backlash operators. The problem
of modeling the hysteretic behavior, starting from the experimental measurements, is now
reduced to the determination of the deadband width vector {dw} of the backlash operators
and the associated gain vector {w}. In particular, the parameters of the model can be easily
identified by the outer loop of the hysteretic region by using the following simple relation:

yk =
k

∑
i=1

(dwk+1 − dwi)wi (4)

where yk is the output value of the lower branch of the loop in the generic point of
discontinuity k, as shown in Figure 14.b. The vector {dw} is a user defined discretization of
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the total amplitude of the input signal. Equation 4 can be rewritten in matrix form as follows:

{y} = [A]{w} (5)

where the matrix [A] is constructed, for a given {dw} vector, by using equation 4; the
unknown vector {w} can be found by solving a system of N linear equations, where N is
the total number of backlash operators, as follows:

{w} = [A]−1{y} (6)

The main drawback of the Prandtl-Ishlinskii approach consists in the fact that only loops with
an odd symmetry to the relative center can be modeled; in fact the symmetry of the elementary
hysteresis operator, with respect to the center of the loop, persists under linear superposition.
However, this drawback can be overcome by using a modified Prandtl-Ishlinksii operator,
as described in details in [26], in which a weighted superposition of saturation operators is
combined with the hysteresis operator. The parameters of this sub model, such as saturation
limits {S} and associated gains {ws}, can be identified by using a procedure similar to that
described above.

3.1. Modeling of pseudoelastic effect

The numerical model described in this section is able to simulate the pseudoelastic effect of
a shape memory alloy [30], i.e. the the stress-strain (σ − ε) hysteretic behavior, based on the
Prandtl-Ishlinksii operator and on the assumptions reported in the following.

3.1.1. Basic assumptions

Figure 15 shows the stabilized stress-strain hysteretic behavior of a commercial NiTi alloy, i.e.
the response of the material after the first training cycles (see Figure 12), for different values
of the applied deformation. The figure also illustrates the Young’s moduli of austenite and
detwinned martensitic structures, EA and EM, together with the generic young’s modulus of
the alloy, E(ξM), corresponding to an incomplete stress induced martensitic transformation,
i.e. as a function of the martensite fraction ξM (0 < ξM < 1). In particular, EA represents the
slope of the early stage of the stress-strain loading curve, EM is measured from the unloading
curve of a complete martensitic transformation (ξM = 1), while E(ξM) is obtained from the
unloading path of an incomplete phase transformation.

The total strain ε can be decomposed in elastic and a transformation strain components, εel

and εtr, respectively:
ε = εel + εtr (7)

where the elastic strain can be expressed as a function of the applied stress, σ, and of the
Young’s modulus, E(ξM), of the material:

εel =
σ

E(ξM)
(8)

As schematically shown in Figure 15 the Young’s modulus changes during stress-induced
phase transformation between austenite and martensite, i.e. it decreases from EA to EM, and
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Figure 15. Stress-strain hysteretic behavior of a commercial NiTi alloy together with the Young’s moduli
of austenite and detwinned martensite [30].

it is assumed to be dependent on the volume fraction of martensite ξM according to the Reuss
formula [20]:

1

E(ξM)
=

ξM

EM
+

1 − ξM

EA
(9)

The evolution of martensite is assumed to be a linear function of the stress in the stress-strain
transformation curves, i.e. in the range (σAM

s , σAM
f ) in the loading stage and (σMA

s , σMA
f ) in

the unloading stage. In particular, the evolution rule for a complete transformation, can be
expressed as follows:

ξM =

⎧

⎪

⎨

⎪

⎩

σ−σAM
s

σAM
f −σAM

s
Loading path

1 − σ−σMA
s

σMA
f −σMA

s
Unloading path

(10)

The assumptions given by equations (9) and (10) have been validated by experimental
measurements of the Young’s modulus, as reported in Figure16. In particular, the figure shows
the measured values of the Young’s modulus as a function of the applied stress, on the direct
stress-strain transformation plateau, together with the predictions of the Reuss formula, and
a satisfactory agreement is observed.

However, it’s worth noting that the evolution of martensite is characterized by a hysteretic
behavior, i.e. it is stress path dependent, and equations (9) and (10) do not correctly predict the
effects of incomplete transformations. These effects are simulated mathematically, by using a
backlash operator, as schematically illustrated in Figure 17; in particular, Figure 17.a shows
the stress vs time path, while Figure 17.b illustrates the evolution of ξM and 1/E(ξM) vs the
applied stress. Furthermore, the continuous lines in Figure 17.b are relative to a complete
martensitic transformation, i.e. ξM increases from 0 to 1, while the dashed lines show the
effects of an incomplete transformation. Due to the modification in Young’s modulus during
the phase transformation between austenite and martensite, as shown in Figure 17.b, both
elastic and transformation strain components are represented by a hysteretic behavior and it
can be calculated using equations (7-10); as an example in Figure 18 a typical σ − ε hysteresis
loop for a complete phase transformation is compared with the corresponding computed
elastic strain (σ − εel) and transformation strain (σ − εtr) hysteresis loops.

1331D Phenomenological Modeling of Shape Memory and Pseudoelasticity in NiTi Alloys



14 Will-be-set-by-IN-TECH

Figure 16. Evolution of the Young’s modulus as a function of the applied stress: experimental
measurements vs simulations [30].

Figure 17. Evolution rule of the martensite fraction ξM in the tension cycle: a) example of stress-time
path and b) simple hysteresis model to predict the Young’s modulus E(ξM) [30].

Figure 18. Stress strain (σ − ε) hysteresis loops: elastic strain εel and transformation strain εtr [30].
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3.1.2. Numerical flowchart

Based on the Prandtl-Ishlinskii hysteresis modeling approach together with the model
assumptions described in the previous section, a one-dimensional numerical model can be
easily developed by using commercial software packages. In particular, Figure 19 illustrates
an implementation of the model in the MatlabSimulinkTM platform, in which the two strain
components, εel and εtr, are treated separately. As clearly illustrated in Figure 19, both stress

Figure 19. Flowchart of a MatlabSimulinkTM model to simulate the pseudoelastic effect in SMAs [30].

and temperature are taken as input variables, and the critical stresses are calculated, based on
the current value of the temperature, by using the Clausius-Clapeyron relation (equation 1).
In the model the saturation operators are used to identify the stress range where the material
exhibits the hysteretic behavior (σMA

f < σ < σAM
f ), and the dead zones of transformation

where only elastic deformation of austenite (σ < σMA
f ) or martensite (σ > σAM

f ) occurs.

Three different sub-models are highlighted in Figure 19 which simulate the σ − εtr and σ − εel

hysteresis loops, and the linear elastic response of the material in austenitic and martensitic
conditions. In particular, a Prandtl-Ishlinskii hysteresis operator, was used to model the σ− εtr

hysteretic behavior, a single backlash operator was adopted to model the σ − εel loop (see
Figure 17.b), and a gain operator was used to describe the linear elastic response for σ < σMA

f

and for σ > σAM
f . The parameters of the Prandtl-Ishlinskii operator describing the σ − εtr

hysteretic behavior, i.e. the deadband width vector {dw} and the associated gain vector {w}
are determined from an experimentally measured stress-strain hysteresis loop by using the
procedure described in section 3. In particular, as shown in Figure 20, the generic input
and output variables (x and y) can be regarded as the stress and strain values (σ and ε),
respectively. As a consequence, the vector {dw} represents a user defined discretization of
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the stress amplitude while the vector {w} can be determined by using equation (6), where
the vector {y} is the vector of strain values {ε}. The computational procedure to obtain
the aforementioned model parameters from an experimentally measured hysteretic loop can
be easily implemented, which generates the vector {dw}, by a partition of the input stress
amplitude, and calculates the unknown vector of weight {w} by solving a system of N linear
equations, where N is the number of backlash operators.

Figure 20. Loading branch of the stress-strain hysteresis loop and linear piecewise discretization
obtained by a weighted superposition of three backlash operators [30].

3.1.3. Numerical results vs experiments

The accuracy of the numerical method is illustrated by comparisons with experimentally
measured hysteresis loops, by using he thermo-mechanical parameters reported in [30]
(EA=39 GPa, EM=20 GPa, σAM

s =260 MPa, σAM
f =385 MPa, σMA

s =250 MPa, σMA
f =125 MPa,

CA = CM=10.3 MPa/K). Figure 21 shows the stress-strain hysteretic behavior of the SMA for
a stress path which involves several incomplete stress-induced martensitic transformations
(A → M), by repeated isothermal tension cycles (T = 303K) carried out between σmin = 0
and decreasing values of σmax < σAM

f . In particular, the comparison between numerical

simulations and experimental measurements, illustrated in Figure 21.a, clearly shows a
satisfactory accuracy of the model in predicting the non-linear stress-strain hysteretic behavior
of the material; the figure also shows that the model is able to capture the modification of
Young’s modulus in the stress-strain transformation curve, as it correctly predicts the change
in the slopes of the unloading curves. Furthermore, Figure 21.b shows the evolutions of the
transformation strain, εtr, and elastic strain, εel , for the same input stress path of Figure 21.a.
As illustrated in section 3.1.1, both εtr and εel are characterized by hysteretic behaviors, which
are due to the mismatch between the critical stresses in the stress induced transformations and
the modification of Young’s modulus in the stress-strain transformation curve, respectively.

Figures 22 show comparisons between numerical predictions and experimental
measurements for two input isothermal stress paths (T = 303K) which involve incomplete
M → A transformations (Figure 22.a) and both incomplete A → M and M → A
transformations (Figure 22.b). In particular, Figure 22.a shows the hysteretic response of the
material for a stress path which is composed of some subsequent tension cycles between
increasing values of σmin < σMA

f and σmax = const, while Figure 22.b is relative to a stress
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Figure 21. Numerical simulation for isothermal stress cycles with incomplete A → M transformations:
a) comparison with experimentally measured loops and b) evolution of transformation strain, εtr , and
elastic strain, εel [30].

path which involves different subsequent tension cycles carried out between increasing
values of σmin > σMA

f and decreasing values of σmax < σAM
f ; both figures shows good

agreements between experiments and numerical simulations.

Figure 22. Comparison between numerical simulations and experimentally measured hysteresis loops
for isothermal stress cycles with: a) incomplete M → A transformations and b) incomplete A → M and
M → A transformations [30].

3.2. Modeling of two-way shape memory effect

The numerical model described in this section is able to simulate the two-way shape memory
effect of a trained NiTi based shape memory alloy, i.e. the the strain-temperature (ε − T)
hysteretic behavior [27–29]. Furthermore, the model is able to capture the effects of applied
stress on the thermal recovery of the alloy.
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3.2.1. Basic assumptions

In a pure phenomenological way, the variation of the two-way shape memory strain, εtw, with
increasing the applied stress (see Figure 10.b) can be attributed to two different mechanisms:
i) the variation of Young’s modulus in the thermal hysteresis behavior between martensite
and austenite, ii) the increased volume fraction of favorably oriented martensite variants with
increasing external stress.

∆εtw = εtw − εtw0 =

(

1

EM
−

1

EA

)

σ + cσ (11)

where subscript 0 indicate the stress-free condition, EM and EA represent the Young’s moduli
of martensite and austenite, respectively, while c can be assumed as a material constant. In
particular, the first term at the right end side of equation 11, indicated as ∆εmech, describe the
first effect while the last terms, namely ∆εmem, take into account the second effect. Young’s
moduli EM and EA can be measured by isothermal tensile tests carried out at temperatures
T < M f and T > A f , respectively, while the parameter c can be obtained from experimental
measurements of the two-way shape memory strain carried out at different value of the
applied stress. In the following the values of the parameters reported in [28] have been used
(EM = 36 ∗ 103 MPa, EA = 67 ∗ 103 MPa, c = 8.5 ∗ 10−5 MPa−1). Two simple mathematical
functions, obtained by a numerical fitting of the experimental data, are used to describe
the phase transformation kinetics. In particular, as reported in the model by Tanaka and
Nagaki [13], the heating and cooling branches of the hysteresis loop can be represented by
two exponential curves:

ε =

{

εtweaA(A f −T+δTM ) M → A

εtw[1 − eaM(M f −T+δTA ) A → M
(12)

where εtw, Ms, and As are functions of the applied stress, as reported in Equations 11 and
1; aM, aA, δTM, and δTA, which define the shape of the heating and cooling branches of the
loop, can be identified by a numerical fitting of the experimental data. Figure 23.a shows
a comparison between experimental measurement and exponential curves; in the figure,
points P1 and P2 represent the range where the numerical fitting is executed to identify the
parameters of the heating branch of the loop, while points P3 and P4 are relative to the cooling
branch. In Figure 23.b, a linear fitting between points P1 and P2 of the experimental data
in the T − logε plane is shown, where the slope of the line defines the parameter aA and
the intersection with the logε axis allows us to obtain the parameter δTM. If the loop is
characterized by an odd symmetry with respect to its center, as is quite well observed in the
investigated material, the same values can be assumed for the constants aA and aM and δTA,
and δTM. The two exponential curves describe the two branches of the hysteresis loop in a
parametric way for a generic value of the applied stress by using Equations 1 and 11. Starting
from the curves ε − T, the numerical method based on the Prandtl-Ishlinksii operator can be
developed, which is able to predict the output response for a generic temperature path, as
decribed in the following section.

3.2.2. Numerical flowchart

The numerical method described above can be easily implemented in a MatlabSimulinkTM

model, as shown in Figure 24, by a modified Prandtl-Hishlinkii hysteresis operator. The
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Figure 23. Numerical fitting of the experimental data: a) comparison between exponential curves and
experimental measurements; b) numerical fitting in the T − logε plane to identify the parameters of the
exponential curve in the heating branch of the hysteresis loop [28]

Figure 24. Flowchart of a MatlabSimulinkTM model to simulate the two way shape memory effect in
SMAs.

Prandtl-Hishlinkii operator is implemented in the submodel #1 of Figure 24, by a weighted
superposition of several backlash operators, and the corresponding parameters, i.e. the
deadband width vector {dw} and the associated gain vector {w}, are determined from the
exponential curves of equation 12, which in turn are obtained from a fitting of experimental
data (T − ε) as illustrated in Figure 23. In particular, the generic input and output variables
(x and y) can be regarded as the temperature and strain values (T and ε), respectively. As
a consequence, the vector {dw} represents a user defined discretization of the temperature
amplitude while the vector {w} can be determined by using equation (6), where the vector
{y} is the vector of strain values {ε} obtained from equation 12 (εi = ε(Ti)). The saturation
operator in the submodel #1 is used to simulate the dead zones of transformation, i.e. the
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material behavior when the temperature is above A f during heating and below M f in the
cooling branch of the hysteresis loop. In particular, this operator imposes upper and lower
bounds on the temperature, which are A f and M f , respectively, so that when the temperature
is outside these bounds the signal is clipped to the upper or lower bounds. In Figure 25.a, the
response of the submodel #1, in terms of strain-temperature loop, is illustrated for a thermal
cycle between the temperatures T0 < M f and T1 > A f ; the figure clearly shows that the
hysteretic behavior of the material is properly described in the range of temperatures between
M f and A f , and the dead zone of transformation, when the temperature exceeds A f or falls
below M f , are also simulated.

Figure 25. Numerically simulated loop for a thermal cycle between the temperatures T0 < M f and
T1 > A f obtained by: a) Prandtl-Ishlinskii model and b) modified Prandtl-Ishlinskii model [28].

Unfortunately, when comparing the experimental results with the numerically simulated
loops, high errors are observed in the extremity of the hysteretic region, i.e. when the
temperature is below M f during cooling and above A f during heating. To overcome this
limitation, a modified Simulink model can be implemented by including the submodel #2
of Figure 24. This latter uses two subsystems, for the heating and cooling branches of the
loop, which modifies the output response of the system when the temperature is near M f

and A f . In particular, each subsystem implements a weighted superposition of several dead
band operators, which is executed by a series of a dead band block and a gain block, while
the saturation block assures that the correction is carried out only in a limited range of
temperatures near M f and A f . Figure 25.b shows a simulated hysteresis loop, obtained by
the modified model, between the temperatures T0 < M f and T1 > A f ; the figure clearly
shows that the model allows a better simulation of the extremity of the hysteretic region with
respect to Figure 25.a.

3.2.3. Numerical results vs experiments

In this section, the accuracy and efficiency of the 1D numerical model are illustrated by
comparing some experimentally measured hysteresis loops with the corresponding numerical
predictions. The simulations have been carried out by using a model with 20 backlash
operators and 5 dead zone operators to modify the loops in the extremity of the hysteretic
region. Figure 26.a shows a comparison between the experimentally measured hysteresis loop
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for a stress-free martensitic transformation, between the temperatures T0 < M f and T1 > A f ,
and the numerically simulated one; the figure clearly shows a good accuracy of the numerical
model with very small errors. In Figure 26.b, a comparison between numerical predictions and
experimental results when the material is subjected to a tensile stress σ = 100MPa is shown.
Also, in this case a satisfactory agreement is observed, but the errors increase with respect
to the stress free condition. However, it is important to point out that the model parameters
were identified by using the measured hysteresis loop under stress-free conditions, and by
applying Equations 1 and 11 to modify both the PTTs and εtw.

Figure 26. Comparison between experimental measurements and numerical predictions for a thermal
cycle between the temperatures T0 < M f and T1 > A f under a) stress-free condition and b) tensile strees
of 100 MPa [28].

The accuracy of the model was also analyzed when the material is subjected to partial
thermal cycles, i.e. to incomplete martensitic transformations. Figures 27.a and 27.b show
the hysteretic behavior of the material for two different temperature-time paths in stress-free
conditions; in particular, Figure 27.a shows incomplete A → M transformations, while Figure

Figure 27. Comparison between experimental measurements and numerical predictions for two
different temperature-time paths: a) incomplete A → M transformations and b) incomplete M → A
transformations [28].
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27.b illustrates incomplete M → A transformations. As shown in the figures, the comparison
between experimental measurements and numerical predictions show a good accordance in
both cases. It is worth noting that the same model parameters of the first example (Figure
26.a) were used in these numerical simulations.

Author details

Maletta Carmine

Assistant professor of Machine Design at University of Calabria, Department of Mechanical

Engineering, Rende (CS), Italy

Furgiuele Franco

Full professor of Machine Design at University of Calabria, Department of Mechanical Engineering,

Rende (CS), Italy

4. References

[1] Otsuka K, Ren X, (2005) Physical Metallurgy of TiÐNi-Based Shape Memory Alloys.

Prog. Mater. Sci. 50: 511-678.

[2] Otsuka K, Wayman CM (1998) Shape Memory Materials. Cambridge University 559

Press, Cambridge.

[3] Wu Ming H (2002) Fabrication of Nitilon Materials and Components. Mater. Sci. Forum.

394-395:285-292.

[4] Schlossmacher P, Haas T, Shussler A (1997) Laser-Welding of a Ni-Rich Tini Shape

Memory Alloy: Mechanical Behavior. J. Phys. IV. 7(5):251-256.

[5] Tuissi A, Besseghini S, Ranucci T, Squatrito F, Pozzi M (1999) Effect of Nd-YAG

Laser Welding on the Functional Properties of the Ni-49.6 at. %Ti. Mater. Sci. Eng. A.

273-275:813-817.

[6] Theisen W, Schuermann A (2004) Electro Discharge Machining of Nickel-Titanium

Shape Memory Alloys. Mater. Sci. Eng. A. 378:200-204.

[7] Falvo A, Maletta C, Furgiuele F M (2005) Laser Welding of a Niti Alloy: Mechanical and

Shape Memory Behavior, Mater. Sci. Eng. A. 412:235-240.

[8] Falvo A, Maletta C, Furgiuele F M (2006) Functional Behavior of a Niti Welded Joint:

Two-Way Shape Memory Effect. Mater. Sci. Eng. A. 481-482:647-650.

[9] Gall K A, Seitoglu H, Chumlyakov Y (2000) Niti Experiments Versus Modeling: Where

Do We Stand?, Proc. SPIE. 3992:536Ð547.

[10] Paiva A, Savi M A (2006) An Overview of Constitutive Models for Shape Memory

Alloys. Math. Probl. Eng. art. no. 56876.

[11] Falk F (1980) Model Free-Energy, Mechanics and Thermodynamics of Shape Memory

Alloys. Acta Metall. 28(12):1773-1780.

[12] Falk F (1983) One-Dimensional Model of Shape Memory Alloys. Arch. Mech.

35(1):63-84.

[13] Tanaka K, Nagaki S (1982) Thermomechanical Description of Materials With Internal

Variables in the Process of Phase Transitions. Ing. Arch. 51:287-299.

[14] Liang C, Rogers C A (1990) One-Dimensional Thermomechanical Constitutive Relations

for Shape Memory Materials. J. Intell. Mater. Syst. Struct. 1:207-234.

142 Smart Actuation and Sensing Systems – Recent Advances and Future Challenges



1D Phenomenological Modeling of Shape Memory and Pseudoelasticity in NiTi Alloys 23

[15] Brinson L C (1993) One Dimensional Constitutive Behavior of Shape Memory Alloys:

Themomechanical Derivation With Non-Constant Material Functions and Redefined

Martensite Internal Variable. J. Intell. Mater. Syst. Struct. 4:229-242.

[16] Bertran A (1982) Thermomechanical Constitutive Equations for the Description of Shape

Memory Effects in Alloys. Nucl. Eng. Des. 74(2):173-182.

[17] Souza A C, Mamiya E, Zouain N (1998) Three-Dimensional Model for Solids

Undergoing Stressinduced Phase Transformations. Eur. J. Mech. A/Solids. 17(5):789-806.

[18] Boydand J G, Lagoudas D C (1996) A Thermodynamical Constitutive Model for Shape

Memory Materials. Part I. The Monolithic Shape Memory Alloy International Journal of

Plasticity. 12(6):805-842.

[19] Auricchio F, Lubliner J (1997) A Uniaxial Model for Shape Memory Alloys. Int. J. Solids

Struct. 34(27):3601-3618.

[20] Auricchio F, Sacco E (1997) A One-Dimensional Model for Superelastic Shape Memory

Alloys With Different Elastic Properties Between Austenite and Martensite. Int. J.

Non-Linear Mech. 32(6):1101-1114.

[21] Auricchio F, Taylor R L, Lubliner J (1997) Shape-Memory Alloys: Macro and Numerical

Simulations of the Superelastic Behavior. Comput. Methods Appl. Mech. Eng. 146(3-4):

281-312.

[22] Marfia S, Sacco E, Reddy J N (2003) Superelastic and Shape Memory Effects in

Laminated Shape-Memory-Alloy Beams. AIAA J. 41:100-109.

[23] Liew K M, Ren J Reddy J N (2005) Numerical simulation of thermomechanical behaviors

of shape memory alloys via a non-linearmesh-free Galerkin formulation. Int. J. Numer.

Meth. Engng 63:1014-1040.

[24] Amalraj J, Bhattacharyya A, Faulkner M G (2000) Finite element modeling of phase

transformation in shape memory alloy wires with variable material properties. Smart

Mater. Struct. 9:622-31.

[25] Krejci P, Kuhnen K, (2001) Inverse Control of Systems With Hysteresis and Creep, IEE

Proc.: Control Theory Appl. 148(3):185-192.

[26] Kuhnen K, Janocha H (2001) Inverse Feedforward Controller for Complex Hysteretic

Nonlinearities in Smart Material Systems. Control Intell. Syst. 29(3):74-83.

[27] Falvo A, Maletta C, Furgiuele F M (2007) Two-Way Shape Memory Effect of a Ti Rich Niti

Alloy: Experimental Measurements and Numerical Simulations. Smart Mater. Struct.

16:771-778.

[28] Falvo A, Maletta C, Furgiuele F M (2008) A Phenomenological Approach for Real-Time

Simulation of the Two-Way Shape Memory Effect in NiTi Alloys. ASME Journal of

Engineering Materials and Technology. 130:771-778.

[29] Falvo A, Maletta C, Furgiuele F (2008) Hysteresis modeling of two-way shape memory

effect in NiTi alloys. Meccanica. 43:165-172.

[30] Falvo A, Maletta C, Furgiuele F (2009) A phenomenological model for superelasticity in

NiTi alloys. Smart Mater. Struct. 18:025005.

[31] Raniecki B, Lexcellent C H and Tanaka K 1992 Thermodynamic Models of Pseudoelastic

Behavior of Shape Memory Alloys .Arch. Mech. 44 261-284.

[32] Hamilton R F, Sehitoglu H, Chumlyakov Y, Maier H J (2004) Stress Dependence of the

Hysteresis in Single Crystal Niti Alloys. Acta Mater. 52:3383-3402.

1431D Phenomenological Modeling of Shape Memory and Pseudoelasticity in NiTi Alloys



24 Will-be-set-by-IN-TECH

[33] Sittner P, Landa M, Lukas P, Novak V (2006) R-phase transformation phenomena in

thermomechanically loaded NiTi polycrystals. Mechanics of Materials 38:475-492

144 Smart Actuation and Sensing Systems – Recent Advances and Future Challenges


