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1. Introduction

In the search for genetic mutations susceptible to human diseases, researchers take either

genome-wide approaches or candidate gene approaches [1]. Traditional techniques in both

approaches, such as chromosomal scan on the pedigree data and case-control design for

a small number of genes of interest, however, have limitations in either achieving high

resolution to identify specific genes, or obtaining whole genome coverage. Discoveries

from pedigree linkage usually pointed to one or a few chromosomal regions related to the

phenotype of interest, and these regions generally harbor many (perhaps hundreds) of genes,

which rendered pinpointing actual genetic causes a daunting task. On the other hand,

association studies typically focused on a couple of genes, some of which may participate

in the same pathway, and the number of interrogated variants was always experimentally

manageable. However, technical advances have brought high-throughput approaches within

the reach of more and more scientists, increasing the volume of variants that researchers can

interrogate by genotyping array and next-generation sequencing techniques at an exponential

pace. A recent dbSNP build (build 135), a large public-domain database of single-nucleotide

polymorphisms (SNPs), hosts more than 41.7 million validated human mutations, and with

ongoing large-scale efforts such as the 1000 Genomes Project [2], that number is poised to

grow significantly larger.

Of all genomic variants, those occurring in the protein-coding genes and resulting in amino

acid substitutions hold special interest, as we have more knowledge about coding genes and

their products than other genomic elements. Amino acid substitutions, or nonsynonymous

SNPs (nsSNPs), not only change primary protein sequence but also have the potential for

altering protein structure and disrupting or creating functional sites. These consequences can

be tested experimentally, although doing so is costly and time-consuming.

Currently, about 1.2 million nsSNPs have been mapped to NCBI RefSeq proteins (2012/06),

but we only have knowledge for a small fraction of them. The Human Gene Mutation

©2012 Li et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Database (HGMD; [3]) logs roughly 69,000 nsSNPs that are associated with diseases or traits;

UniProt documents 37,000 nsSNPs as being neutral. For every six nsSNPs deposited in

the public databases, five will have no disease or phenotype association. This gap will

even grow larger as the emerging personal genome projects (www.personalgenomes.org) and

whole-exome sequencing [4, 5] discover more rare variants.

Accompanying the compilation of a myriad of variants, a natural question arises about

interpreting them in the context of human health. More specifically, how do we assess the

disease risk for individual variants based on available biomedical information? Population

studies, such as genome-wide association studies, have in recent years provided estimates of

an odds ratio by comparing the frequencies of hundreds of thousands of genomic variants

between disease/trait patients and healthy controls. One centralized resource, namely the

Catalog of Published Genome-Wide Association Studies from the National Human Genome

Research Institute [6], has collected published association studies involving at least 100,000

variants from 2008. The latest version (2012/06) records 8,063 significant mutation-trait

associations from 1,287 studies. Most of these associations present a modest effect size with

a median odds ratio (OR) of 1.36 (interquartile range [IQR]: 1.19–2.02). One clear observation

from these studies is that the majority of variants occur in non-coding regions where the

two most frequent locations are intergenic regions (43 percent) and introns (40 percent). In

sharp contrast, only 368 nsSNPs associated with 177 diseases/traits were reported, with a

slightly stronger effect size: a median OR of 1.52 (IQR: 1.21–3.33). This examination makes

clear that the number of cohort studies will not keep pace with the increase in nsSNP data

generation, suggesting that computational approaches may provide an important aid to our

understanding of mutation-disease relationships.

Among all genome-level characteristics, scientists have collected the most knowledge about

protein-coding genes, and they have published many investigations into the impacts of

missense variants. Through mapping disease-associated nsSNPs and amino acid changes

without disease annotations to the multispecies sequence alignment, researchers have

observed that mutations related to monogenic diseases occurred significantly more frequently

at slow-evolving positions, while neutral nsSNPs were enriched at fast-evolving positions

[7, 8]. This observation therefore suggests that evolutionary rate could act as an indicator for

discriminating diseases from neutral mutations. Also, the availability of crystal structure for

numerous proteins provides us an opportunity to examine nsSNP consequences in the steric

context. For example, p53, a well-studied tumor suppressor protein, is involved in many

critical cell processes, such as DNA repair and cell-cycle regulation; p53 is inactive in half of all

cancers [9]. Six mutation hot spots, such as R175H, R273H, and R282W, have been mapped to

the p53 DNA-binding core domain that is critical to its activation, and most of them destabilize

protein structure, leading to the degradation of p53 [10]. Intriguingly, certain mutations

introduced to the mutant p53 could counteract this reduced stability and potentially rescue

its functionality [11]. For example, nsSNP N268D in mutant p53 results in a hydrogen bond

which bridges two strands and ultimately leads to an increase in thermodynamic stability.

Finally, nsSNPs could influence a broad array of functional sites, including protein- and

ligand-binding sites, catalytic residues, and numerous post-translational modification (PTM)

sites. N-linked glycosylation, one type of PTM, is essential for the folding of some proteins.

Proteins subjected to N-linked glycosylation contain an NX[ST]motif recognized by enzymes.
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For example, amino acid substitution T183A, identified in the prion protein (PRNP), can cause

spongiform encephalopathy by disrupting the consensus sequence NX[ST] through the loss

of the threonine [12].

Many computational tools aiming to establish that nsSNPs cause disease are based on

evolutionary characteristics, structural consequences, or functional impact, alone or in

combination. One early and established method, SIFT (sort intolerant from tolerant

substitutions; [13]), estimates the predisposition to disease for mutation solely by exploiting

conservation information from sequence homology. Another well-known tool, PolyPhen-2

[14], uses predicted physicochemical features based on protein sequence in a naive Bayes

classifier, in addition to sequence alignment.

In this chapter, we discuss the structural and functional impact of nsSNPs on the underlying

proteins. We will provide concrete examples of both aspects, showing mechanisms through

which amino acid substitutions affect proteins and contribute to disease phenotypes. We

describe algorithms for predicting stability changes and for assigning probabilities to putative

phosphorylation sites. We then apply these concepts/tools to the problem of distinguishing

deleterious mutations from neutral ones. Finally, we will present another nsSNP prediction

approach, MutPred, and apply it to a subset of dbSNP. Through these efforts, we aim

to characterize a variety of computational approaches to the problem of inferring disease

consequences for genetic variants, and demonstrate that these approaches are fruitful.

2. Structural impact of mutations

A classic disease that results from protein structural change via amino acid substitution is

sickle cell anemia [15]. Replacement of a hydrophilic glutamic acid residue with a strong

hydrophobic valine on the sixth amino acid of hemoglobin subunit beta causes the protein to

aggregate and form rigid molecules, which in turn reshape the red blood cells as sickle-like

[16]. The sickle cells die prematurely and thus result in anemia. Other possible structural

abnormalities that nsSNPs can induce include changes of secondary structure, gain or loss

of protein stability, and other physicochemical property alterations. In this section, we will

illustrate two mutations on a cancer-related gene, BRCA1, and then describe an algorithm for

predicting protein stability; finally, we will discuss its application to discriminating neutral

and deleterious mutations.

BRCA1 is a well-known suppressor of breast and ovarian cancer tumors. Two C-terminal

sequence repeats (BRCT) are essential for BRCA1’s function, since mutations of stop codon

and missense substitutions on these regions were observed in breast cancer patients [17, 18].

The crystal structure of the BRCT segments [19] shows that these two domains pack to each

other in a tandem manner where one helix on the N-terminal domain and two helices on the

C-terminal domain form an inner-domain interaction surface (Figure 1).

Two amino acid substitutions occur on this interface at A1708E, located near the end of the

α1 helix, and at M1775R, located near the beginning of the α2 helix. At position 1708, the

mutant glutamic acid is much larger than the original alanine (having a molecular weight of

147 versus 89) and introduces negative charge. Because M1708 lies near the center of the

interaction surface, the compact core cannot accommodate this mutation sterically. Thus,

235Bioinformatics Approaches to the Functional Profi ling of Genetic Variants
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Figure 1. The crystal structure of human BRCT domains (PDB ID: 1JNX). The N-terminus is shown in
blue; the C-terminus, in red. Residues A1708 and M1775 are depicted as ball and stick models. Three
helices, α1 from the N-terminus and both α2 and α3 from the C-terminus, pack into a hydrophobic core
that is important to the folding of BRCT domains.

A1708E would destabilize the BRCT interaction. On the other hand, although R1775 could

be placed on the edge of the BRCT interface spatially, it positions a positive charge against the

nearby R1835. Thus, both mutations would destabilize the BRCT core through either sterical

incompatibility or disruption of electrostatic interactions [19]. This explanation found support

from a mutation sensitivity assay that measures the stability of the inner domain interaction

subject to proteolytic degradation. The wild-type protein resists the digestion by trypsin,

elastase, and chymotrypsin, whereas the mutant with M1775R was partially degraded and

A1708E was almost completely degraded [19]. The BRCT structure and in vitro experiments

suggest that the genetic variants A1708E and M1775R cause the BRCA1 defect by destabilizing

its inner-domain interaction.

From this example, we can see that crystal structure can be a powerful tool in interpreting

possible consequences of nsSNPs by physicochemical principles. However, we cannot

reasonably expect every protein and its mutants to have high-resolution three-dimensional

(3D) structures or homology models available, either because of difficulties in structural

determination, such as for membrane proteins, or because some proteins are intrinsically

disordered [20].

To overcome this severe limitation, many computational tools aiming to predict structural

properties use sequence information as input, either by direct use of sequence or through

derived features such as amino acid composition and sequence motifs. Here, we describe

a stability prediction method proposed by [21], namely MUpro, which was based on

a sophisticated machine learning technique–Support Vector Machine (SVM)–and which

achieved good performance.

In traditional molecular dynamics simulation, potential functions from a force field were

usually calculated to obtain ∆∆G, which was mainly influenced by interactions between

nonlocal amino acids [22]. Although it is generally difficult, if not completely impossible,

to infer protein structural architecture accurately based solely on amino acid sequence,

pioneering work from [23, 24] showed that protein sequence was effective in the prediction
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of secondary structure and solvent accessibility. MUpro fit a set of features derived from

protein sequence to an experimental stability data by nonlinear transformation through SVM.

The ProTherm database [25] collects from the literature a range of experimentally measured

thermodynamic parameters, such as Gibbs free energy changes for wild-type and mutant

proteins, with experimental conditions, including pH and temperature. From ProTherm

MUpro used protein sequences and mutations for training and test purposes, along with

numeric energy changes.

MUpro adopted a standard binary classification scheme in feature generation by selecting a

window centered on a mutant position and then encoding each amino acid in the window

as a vector of 20 elements. In this kind of vector, each element corresponds to one of 20

standard amino acids and takes a value of 1 if the corresponding amino acid is identical

to the one observed or else 0. MUpro considered a window of seven amino acids for each

mutation, thereby representing the feature set by a 140-element vector. The first 20-element

vector records information about wild-type and mutant amino acids at the mutant position,

and the final six vectors document the six flanking amino acids.

In a two-dimensional space, linear classifiers are designed to separate two classes of data

points by a straight line. As illustrated in Figure 2 (left plot), any lines passing through the

space between two parallel lines can separate the blue points (one class) from the orange (the

other class) perfectly, and thus would be a good choice for linear classification. However,

SVM algorithms [26] would select the dashed line, which distances two lines equally, as the

class boundary. In other words SVMs optimize a margin separator that maximizes its distance

to data points. Figure 2 shows the margin m between two classes, which is the optimization

object in SVMs algorithm. Mathematically, larger m is expected to provide the classifier greater

generalization, which measures how well the classifier performs on new, unseen data points.
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Figure 2. The left plot illustrates a linear classification on separable data with two classes (blue and
orange). The class boundary (dashed line) is the middle line between two parallel lines. The right plot
shows MUpro predictions against experimental values for 1,008 nsSNPs; points on the diagonal
represent exact predictions.
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When data sets overlap, SVMs still try to optimize a new objective function that considers both

m and penalties from misclassification. Regardless of the separability of the data, m depends

only on points located on the parallel lines (completely separable) or points located between

them (partially separable). These points are called support vectors.

Besides data classification, SVMs can perform regression for data points with continuous

response values, where the objective function measures the difference between prediction

and actual values. But unlike typical linear regression, SVM regressions do not penalize

differences falling within a predefined range.

The abilities of SVMs, however, go beyond linear classification and regression. By projecting

the original data points into higher dimensional spaces, SVMs actually create additional, and

usually more complex, features from the input points. By using the same linear settings as

described above in these newly high-dimensional spaces, SVMs can effectively capture highly

nonlinear relationships among data which otherwise would be missed.

MUpro applied a popular SVM implementation, SVMlight [27], to carry out energy change

sign classification and regression. In 1,008 training mutations, MUpro performed rather

well against true energy changes, with a root-mean-square deviation (RMSD) of 0.39 (Figure

2, right plot). Moreover, it made more accurate predictions with less dramatic actual

stability changes between wild-type and mutant amino acids. Generally, MUpro tended to

underestimate larger energy changes.

In one early comprehensive examination of the effects of nsSNPs on protein function,

[28] catalogued nsSNP effects according to structural and sequence changes caused by the

introduction of mutant amino acids. That study extracted 262 disease-causing missense

variants from the HGMD and 42 neutral variants from hypertension-associated genes.

Proteins harboring these variants either had 3D structures deposited in the Protein Data Bank

(PDB) or they could find homologous ones with a sequence similarity of at least 40 percent.

They then modeled both wild-type and mutant protein structures based on available 3D

structures. By examining a broad range of physicochemical parameters from built models,

including loss of hydrogen bonds, loss of a salt bridge, over-packing, and disruption of

binding, Wang et al. could compare distributions of effects observed in disease-causing and

neutral variants (Table 1). Their results clearly demonstrated that loss of stability accounts for

many more disease-causing variants than neutral variants (83 versus 26 percent) and that 70

percent of neutral variants cause no measurable effects on the protein structure.

Effect Disease Neutral

Stability 83 26
Ligand binding 5 2
Other 2 2
No effect 10 70

Table 1. Percentage of effects from missense variants on protein function (adapted from Figure 2 in [28])

This survey suggests that nsSNPs giving rise to stability changes will more likely be

disease-related than not, and this property might be useful in distinguishing disease-causing

from neutral nsSNPs. Moreover, computational tools like MUpro capable of predicting
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stability greatly facilitate this task by applying to virtually any protein with sequences

available.

3. Functional impact of mutations

Besides structural consequences, variants can disrupt molecular functional sites, such as

catalytic residues and DNA/protein binding sites, which are usually position-specific or

share consensus motifs. Those disruptions, however, do not necessarily involve disruption

of structure. A prominent class of sites that variants would affect consists of diverse

PTM sites, of which some of the most frequent types are phosphorylation, glycosylation,

acetylation, methylation, and ubiquitination. PTMs play an important role in cellular signal

transduction and regulation, and activating and inactivating certain key proteins rely on

precise modulation of PTMs in cell activities. For instance, without environmental stress, p53

is suppressed through ubiquitination catalyzed by E3 ubiquitin ligases, while in the presence

of stress, such as DNA damage, p53 is activated by a variety of PTM enzymes, including

acetylation and phosphorylation on its flexible DNA-binding domain [29]. PTM sites and

flanking residues generally form consensus sequences with a high degree of variety, and

therefore variants within these enzyme-specific motifs could abolish known functionalities or

create new ones. This section starts by detailing two concrete examples of functional changes

due to variants, followed by a description of DisPhos (Disorder-enhanced Phosphorylation

sites predictor), an established phosphorylation predictor, and then explain how the concepts

of gain and loss of phosphorylation can be used to analyze a cancer data.

FGFR2 (fibroblast growth factor receptor 2), one of four members of FGFR family of receptor

tyrosine kinases, plays an important role in transmembrane signal transduction. Recent

research identified one missense mutation, A628T, as being involved in LADD syndrome

through severely impairing the kinase activity of FGFR2 [30]. Residue A628 is in the

center of the catalytic pocket in the tyrosine kinase domain of FGFR2. A mutant structure,

A628T-FGFR2 [31], reveals that the substitution of the smaller amino acid alanine at position

628 with the larger, polar threonine pushes one of the key residues, R630, out of the catalytic

pocket; that movement disrupts the hydrogen bond between D626 and R630 existed in the

wild-type structure (Figure 3, left). Although the position of D626 remains almost unchanged,

R630 is too far away from the catalytic pocket and fails to stabilize the interaction with

substrates, which consequently greatly compromises the catalytic ability of FGFR2. Compared

with wild-type FGFR2, the A628T-FGFR2 mutant has roughly the same structure but highly

reduced kinase activity.

It has been observed that amino acid substitutions occurred on non-PTM-sites could spread

their influence to neighboring PTM sites on the same protein. One of such examples is

PTPS, human PTP (protein tyrosine phosphatase) synthase, which catalyzes triphosphate

elimination. PTPS participates in the biosynthetic pathway for tetrahydrobiopterin (BH4).

Lack of PTPS catalytic activity causes a deficiency of BH4, which in turn leads to

hyperphenylalaninemia (HPA), an autosomal recessive disorder. Missense mutation R16C

was associated with HPA and resulted in reduced activity of PTPS [32]. Moreover,

phosphorylation of S19 on PTPS is required for maximal enzyme activity [33]. So how does

R16C affect phosphorylation on S19? There are multiple potential explanations. One is that the

structure of PTPS shows the exposure of both R16 and S19 on the surface of the protein (Figure
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Figure 3. The crystal structure of the catalytic pocket of the A628T-FGFR2 mutant (left, PDB ID: 3B2T)
and ribbon view of human PTPS structure (right, PDB ID: 3I2B). In both cases, the N-terminus is colored
in blue and the C-terminus in red. Residues of interest are depicted as ball and stick models.

3, right; [34]) that forms the consensus sequence R16XXS19 for cGMP protein kinase II. The

substitution C16 disrupts this kinase-recognizable motif and thus hinders phosphorylation,

which ultimately leads to the inactivation of PTPS. Another explanation is that a removal of

R16 prevents a salt bridge between it and a phosphate group when attached, which in turn

results the loss of stability of the modified protein.

As with the stability prediction tool MUpro, described in the previous section, experimental

difficulties have promoted the development of computational approaches to estimating many

common PTM sites based on protein sequence. For the prediction of phosphorylation,

DisPhos differs from other available methods like NetPhos [35] and ScanSite [36], since its

model explicitly includes a range of characteristic features from the predicted disorder region

around the phosphorylation site [37].

In some cases, researchers have found phosphorylation sites located on intrinsically

disordered regions or have observed disorder-to-order or order-to-disorder conformational

changes upon phosphorylation [38]. DisPhos exploited such observations by integrating

predicted disorder information with the motif profile to improve its predictive performance.

Because phosphorylation occurs on residues S, T, and Y (S/T/Y), DisPhos assembled three

pairs of positive-negative data sets, with each pair corresponding to one residue-specific

predictor. First, it extracted proteins with phosphorylation annotations from UniProt

(Universal Protein Resource); it then combined this data with data from Phospho.ELM [39].

DisPhos placed a 25-residue segment centered on each annotated S/T/Y into a positive set,

while placing the same length segment around every non-annotated S/T/Y on the same

protein into a negative set. To reduce the sequence bias caused by homologs or duplications,

DisPhos only kept entries with a pairwise sequence similarity of less than 30 percent, which

means that it allowed up to seven matches from alignment without gap. Due to the small size

of experimentally verified phosphorylation sites, the filtered data sets were highly unbalanced

(Table 2).

DisPhos used a broad range of features to discriminate positive from negative sites (Table 3).

To cope with the highly dimensional, yet sparse feature space, DisPhos performed feature

selection by applying a permutation test to binary features and applying principal component
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Residue Positive Sites (P) Negative Sites (N) N/P Ratio

S 613 10,798 17.6
T 140 9,051 64.7
Y 136 5,103 37.5

Table 2. Data sets used in DisPhos (adapted from Table 1 in [37])

Type Features Dimension

Amino acid composition Binary coding 480
Amino acid frequency Binary coding 20
Disorder VLXT, VL2, VLV, VLC, VLS 5
Secondary structure Helix, loop and sheet 7
Sequence property Complexity and flexibility 2
Residue property Net charge, aromatic content, 5

Hydrophobic moment, Hydrophobicity,
exposed/buried

Table 3. Descriptive and predicted features used in DisPhos training.

analysis (PCA) to continuous features and then fitted logistic regression models to the

transformed data sets.

Generally, binary classifiers work best in settings of balanced or close to balanced data

sets in terms of accuracy, sensitivity, and specificity. For a classification in which the class

boundary is determined by a solution that maximizes accuracy–the default configuration

for many popular classifiers–training on highly unbalanced data sets inevitably results in

extreme values for sensitivity or specificity, ultimately leading to poor generalization. DisPhos

adopted an ensemble strategy to correct this issue in the S/T/Y data sets.

The combination of data filtering, feature selection, and sophisticated training and test

configurations enabled DisPhos to achieve accuracy ranges between 70 and 80 percent,

an improvement over the accuracy of other similar predictors. Moreover, the features

derived from disorder predictions improved the accuracy by two percent on average,

and these improvements showed the usefulness of disorder features in the prediction of

phosphorylation sites.

DisPhos represents outcomes as probabilities, which quantitatively measure the likelihood

that the underlying residues are phosphorylation sites. This characteristic facilitated the

definition of gain and loss of phosphorylation for a specific site [40], and since these concepts

can be interpreted readily, they may help provide insight into the underlying molecular

mechanisms of mutations associated with diseases. Actually, the definitions of gain and loss

are not limited to phosphorylation sites and can apply just as well to many other functional

and structural properties.

Using bioinformatics tools that predict functional and structural attributes on both wild-type

and mutant protein sequences provides us with two probabilistic estimates for a property p:

P(p = 1 at sw
i ) and P(p = 1 at sm

i ) at site si, with sw
i denoting a wild type site and sm

i denoting

a mutant site. Then, conceptually, we have

P(loss of property p at site si) = P(p = 1 at sw
i AND p = 0 at sm

i ). (1)

241Bioinformatics Approaches to the Functional Profi ling of Genetic Variants



10 Will-be-set-by-IN-TECH

Given that sw and sm are actually different molecules, we consider that P(p = 1 at sw
i ) and

P(p = 0 at sm
i ) are not dependent because of any underlying process. Therefore, we can

expand the right hand of equation (1) as a product:

P(p = 1 at sw
i AND p = 0 at sm

i ) = P(p = 1 at sw
i ) · P(p = 0 at sm

i )

= P(p = 1 at sw
i ) · [1 − P(p = 1 at sm

i )]
(2)

By substituting equation (1) with equation (2), we get

P(loss of property p at site si) = P(p = 1 at sw
i ) · [1 − P(p = 1 at sm

i )] (3)

Likewise, we can define gain of a property as

P(gain of property p at site si) = [1 − P(p = 1 at sw
i )] · P(p = 1 at sm

i ) (4)

Figure 4 shows the contour of gain of a property. Note that we can still compute gain/loss

even if the predictions for the property are the same for wild-type and mutant sequences. The

value of gain/loss varies from 0 to 0.25 when both predictions take a value of 0 through 0.5.
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Figure 4. The contour of gain of property with respect to probability on mutant sequence–x-axis,
P(mutant)–and wild-type sequence–y-axis, P(wild)). The dashed line denotes sites with equal
probabilities for the two types of sequences.

[40] showed one application of gain and loss of phosphorylation. An experiment in their

study collected 1,099 breast and colorectal cancer nsSNPs occurring on 847 proteins from a

large-scale cancer-tumor-sequencing project [41]. Radivojac et al. then paired control and

mutation data by randomly mutating on the same set of 847 wild-type proteins at the codon

level. Their study then calculated gain and loss of phosphorylation for each mutation in

both data sets, and found that disease-associated nsSNPs were significantly more likely to

be involved in adding new phosphorylation sites (Table 4).
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Phosphorylaiton change Disease nsSNPs Control nsSNPs P-value

Gain 1.91 0.86 0.014
Loss 1.70 1.50 0.59

Table 4. Percentage of mutations predicted to have undergone gain or loss of phosphorylation. P-values
were computed by t-test.

This survey showed how the concepts of gain and loss of phosphorylation could distinguish

cancer-associated from neutral somatic mutations; it also suggested that they could serve as

useful features for discriminating between general disease-related nsSNPs and neutral ones.

4. Mutation prediction: MutPred

In light of the above observations on the wide variety of consequences of a single mutation,

we developed a large range of features for each variant and employed a popular machine

learning technique, random forest, to distinguish disease-associated mutations from neutral

ones. We called the model MutPred [42].

In a supervised learning scenario, we collected two sets of disease-associated mutations. One

set came from the HGMD [3], in which 95 percent of mutations were annotated to monogenic

diseases. We extracted the other set from a cancer-sequencing project [41]. Also, we created

two corresponding control data sets (Table 5). For the HGMD data, we took a set of variants

from UniProt that were annotated as polymorphisms to serve as controls (SPP). We identified

all neutral mutations that occurred on the same proteins observed in the cancer data set and

used them as the cancer controls. On average, HGMD proteins harbored 7.3 times as many

variants as SPP proteins, while we observed a much less dramatic difference between cancer

data set and its controls.

Data set Mutations Proteins Type

HGMD 39,218 1,879 Disease
SPP 26,439 9,305 Neutral
Cancer 653 519 Disease
Cancer control 1,016 312 Neutral

Table 5. Summary of disease and neutral data sets.

We generated a total of 130 numeric attributes based on protein sequences for each

mutation and utilized them as the input into a random forest classifier. These attributes

can be divided into three major types (Table 6). Other evolutionary attributes include

position-specific scoring matrix (PSSM) generated by PSI-BLAST, Pfam domain profile, and

transition frequency from SNAP [43].

As the PTPS example shows, the influence of nsSNPs could spread to neighboring PTM sites.

Accordingly, we expanded the definitions for gain/loss of structural and functional properties

to pick up the largest gain/loss changes within an 11-residue window centered on the mutant

position.

Random forest is an ensemble learning technique based on a population of binary decision

trees, each of which is grown on a proportion of randomly chosen features and bootstrapped

samples [54]. For classification, the outcome is the majority voting of individual trees.
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Type Property Software

Functional properties DNA-binding residues DBS-PRED [44]
Catalytic residues †
MoRFs [45]
Phosphorylation sites DisPhos [37]
Methylation sites [46]
Glycosylation sites †
Ubiquitination sites [47]

Structure and dynamics Secondary structure PHD/Prof [48]
Solvent accessibility PHD/Prof [48]
Stability MUpro [21]
Intrinsic disorder DISPROT [49]
B-factor [50]
Transmembrane helix HMMTOP [51]
Coiled-coil structure marcoil [52]

Evolutionary information Sequence Conservation SIFT [13]
Conservation index‡[53]

Table 6. Major attributes used in MutPred. † unpublished in-house program. ‡ used in latest version of
MutPred.

Compared to a normal single decision tree, each subtree within a random forest uses

only partial features and samples, which results in small correlations among subtrees and

effectively reduces the overall variance of the model. Moreover, random forests inherit

some attractive properties from decision trees, such as robustness to outliers and ease of

interpretation.

In our model, we specified 1,000 trees to build the classifier between disease and neutral

mutations. The HGMD achieved better accuracy than the somatic cancer data, suggesting

that monogenic disease-related mutations are more suited to MutPred than somatic cancer

mutations (Table 7). This is likely due to the large number of passenger variants (not causative)

in tissue cancer sequencing data sets. Also, in terms of area under the curve (AUC) MutPred

observed 0.86 in HGMD and 0.69 in cancer data sets (Figure 5, left).

Data set Sensitivity Specificity Accuracy

HGMD 76.8 79.0 77.7
Cancer 60.9 68.4 65.5

Table 7. Percentage of classification performance measurement for HGMD and cancer data sets.

MutPred can provide not only comparable predictions for a mutation’s predisposition to cause

diseases [55], but it also allows the estimation of the significance level for individual gain/loss

of properties (Figure 5, right). It is reasonable to assume that the distribution of property p in

the neutral data set provides an unbiased approximation of the true null distribution, given

the fact that UniProt provided the largest available set of curated neutral variants. Therefore,

we could generate hypotheses about the molecular mechanism underlying variants at three

different confidence levels: (1) actionable hypotheses: 0.78 ≥ MutPred score > 0.5 AND

property score < 0.05; (2) confident hypotheses: MutPred score > 0.78 AND 0.01 ≤ property
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Figure 5. The Receiver Operating Characteristic (ROC) curves for HGMD and cancer data sets (left), and
example distributions of gain/loss property p in neutral and disease sets (green and red, respectively;
right). An empirical distribution of the putatively neutral substitutions can be used to define a threshold
r on the false positive rate that, in turn, can be used to accept/reject the null hypothesis on new
substitutions. The area shaded in green represents the P-value threshold (corresponding to the score r)
that is used by MutPred to hypothesize molecular cause of disease. A particular area under the right tail
of the neutral distribution is referred to as the property score.

score < 0.05; (3) very confident hypotheses: MutPred score > 0.78 AND property score < 0.01,

where 0.78 corresponds to specificity 0.95 in HGMD data set.

We applied MutPred to 203,899 nsSNPs deposited in the dbSNP (build 135) and examined

the score distribution and frequent hypotheses behind predicted deleterious mutations. In

general, 35 percent of mutations were predicted with scores higher than 0.5; thus, we classified

them as disease-associated (Figure 6). Of these deleterious mutations, 19.6 percent got at

least one functional or structural hypothesis of possible molecular mechanism. The top

three hypotheses all pointed to structural changes: gain of disorder (9.7 percent), loss of

stability (8.5 percent), and loss of disorder (6.2 percent). This result agrees with [28]–at least

in the sense that these changes are the most frequently seen. On the other hand, common

functional alterations involved in disease included loss of MoRF binding (6.0 percent), gain of

methylation (5.9 percent), and gain of catalytic residue (5.6 percent).

5. Conclusion

Understanding mutation data generated in biomedical research stimulates the development

of computational methods. Previous studies have revealed structural and functional impacts

on underlying proteins from variants, and research has proven that these impacts can

differentiate between disease-associated and neutral mutations. Most current prediction tools

have taken advantage of these characteristics, along with evolutionary information readily

available from sequence alignment. Such tools have demonstrated impressive classification
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Figure 6. The distribution of MutPred scores for nsSNPs from dbSNP (left), and the top ten hypotheses
for disease-associated mutations (right). The density on the left is a normalized frequency to ensure a
total area in the bar plot equals one.

accuracy in monogenic disease-associated mutations but have performed less well for cancer

somatic mutations. One explanation from an evolutionary perspective for this descrepency

is that cancers usually arise late in life, so they are subjected to less purifying selection.

This makes conservation information in cancers less useful than in monogenic diseases [56].

This field faces two immediate challenges: (1) How can we improve these tools to improve

performance with somatic mutations? If the consensus opinion holds that tools depending on

evolutionary knowledge are less effective than when applied to monogenic-disease-related

mutations, it seems that research should explore other avenues. Inclusion of the mutation

context in the model–e.g., pathways containing disease proteins–might offer a starting point

for new directions. (2) How can we more accurately elucidate the molecular mechanisms for

predicted deleterious mutations? MutPred has demonstrated this concept through definitions

of gain/loss of individual properties. Similar features should be considered once they prove

capable of reliably discriminating between disease-associated and neutral mutations. By

continuously improving our computational tools, we can obtain better and more accurate

understandings of biology and human health.
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