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1. Introduction

Extensive research has been carried out in recent years on the use of FRP composites in
strengthening of RC structures. Concrete elements strengthened with FRP undergo signifi‐
cant improvement of strength, ductility and resistance to electrochemical corrosion. More‐
over, strengthening concrete member with FRP has the advantages of decreased installation
costs and repairs, less stiffness and weight in comparison with steel. The increase in stiffness
of the structural elements is undesirable in seismic prone areas. Structural members can be
strengthened with FRP jackets provided along the whole length of the member or in regions
of maximum straining actions. FRP strengthening can, also, be provided on one face of the
structural member as in the case of stiffening the tension fibers of a beam.

For FRP retrofitting problem, the confinement model describing the behavior of rectangular
concrete columns retrofitted with externally bonded FRP material and subjected to axial
stress was presented by Chaallal et al. [1]. Other researchers investigated the effect of FRP in
seismic strengthening of concrete columns, Tastani and Pantazopoulou [2] and Ozcan et al.
[3]. They found that FRP retrofitting remarkably increased the strength and ductility of the
strengthened members. Some researchers proposed simplified equations for FRP retrofit de‐
sign of difficient rectangular columns, Ozcan et al. [4].

Other researchers studied reinforced concrete members externally bonded with FRP fabric
using commercial software ANSYS, Kachlakev et al. [5], Li et al. [6]. Yan et al. [7] developed
an analytical stress-strain model. Purushotham et al. [8] studied piles in berthing structures
under uniaxial bending. Kaba and Mahin [9] presented the concept of fiber method in their
refined modeling of RC columns for seismic analysis under uniaxial bending.
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distribution, and reproduction in any medium, provided the original work is properly cited.



Some searches were conducted to the problem of biaxial bending. Bresler [10] and Bernardo
[11] studied biaxial bending for unretrofitted short rectangular columns.

At early stage of the use of layered beams, full interaction (perfect bond) was assumed in the
design. It was until the mid-fifties that Newmark and his co-authors [12] pointed the influ‐
ence of partial interaction on the overall elastic behavior of steel-concrete composite beams.
They derived the governing equations and solved the equilibrium equations expressed in
terms of the axial force. Since then, several studies have been conducted to study the prob‐
lem of bond-slip, Arizumi et al. [13], Daniel and Crisinel [14], Salari et al. [15]. Gara [16] and
Ranzi [17] adopted the displacement based finite element formulation to include the vertical
slip. Salari et al. [18] also Valipour and Bradford [19] adopted one-dimensional element
force-based element to solve the relevant problem. Other researchers [20] and [21] adopted
the mixed-procedure, displacement-based together with force-based, to solve the problem.
Moreover, nonlinear geometric effects were introduced to the problem by Girhammar and
Gopu [22], Girhammar and Pan [23], Čas et al. [24] and Pi et al. [25]. Krawczyk and the co-
authors [26,27], Battini et al. [28] developed a corotational formulation for the nonlinear
analysis of composite beams with interlayer slip. Nguyen et al. [29], Sousa et al. [30] imple‐
mented a finite element model to solve a composite beam column with interlayer slip.

Figure 1. A typical interaction diagram of RC columns

In practice, many RC columns are subjected to biaxial bending. The analysis of such prob‐
lems are difficult because a trial and adjustment procedure is necessary to find the inclina‐
tion and depth of the neutral axis. The problem becomes more complicated when the
slenderness effect is included. A typical interaction diagram for biaxially loaded column is
shown in Fig. 1. Case a and case b are the uniaxial bending about the z axis and y axis re‐
spectively. The interaction curves represent the failure envelope for different combinations
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of the axial load and bending moments. Case c represents the case of a RC column with
biaxial bending.

The material nonlinearity is considered to account for concrete cracks and the change of the
stress-strain relationship of the different materials. The material nonlinearity is thus intro‐
duced by using the FMM together with the incremental iterative solution. The geometric non‐
linearity is considered in the present study to account for the deformations occurring due to
excess bending moments developed by the effect of axial load. The geometric nonlinearity,
thus, considers the slenderness effect of the column. The bond-slip effect is considered by in‐
troducing the bond properties of the epoxy resin applied to adhere FRP to the RC column.

The method adopted is accomplished by dividing the column into segments along the mem‐
ber axis to introduce the FEA for the skeletal segments. At each end of the segment, the
cross-section is divided into concrete, steel and FRP fibers to introduce the FMM. The prop‐
erties of a cross-section is calculated by summing up the properties of all the fibers or ele‐
mental areas of the particular section. The column segment properties are considered as the
average properties of the its end cross-sections. The segment and cross-section discretization
are detailed in section 2.

The load is applied incrementally until the maximum allowed strains are reached. An incre‐
mental iterative method is employed to solve the problem. After each iteration, the proper‐
ties of each cross-section are computed according to the material changes occurring and
governed by the stress-strain relationship for each material. The properties of each column
segment is considered as the average between its end section properties. Those properties
are then introduced to the tangential linear stiffness matrix. The geometric nonlinearity is
accounted for through the geometric stiffness matrix. Also, the bond-slip effect is considered
by the addition of the bond-slip stiffness matrix.

It is, therefore, the aim in this study to adopt the FEA to formulate the linear, geometric and the
bond-slip stiffness matrices of composite members subjected to biaxial bending together with
axial forces. The model is developed within an updated Lagrangian incremental formulation.

The assumptions of the present analysis are: 1)only longitudinal partial interaction is consid‐
ered. Axial relative displacement occurs between different elements while the vertical dis‐
placement is the same for all elements. 2)small strains and moderate rotations are
considered. This assumption represents a rigorous simplification applicable to many prob‐
lems. 3) Both layers, referred to as elements in the present study, followed the Euler-Ber‐
noulli beam theory. This considers that plane cross-sections remain plane after deformations
and perpendicular to the axis of the beam. 4) Shear and torsional deformations are neglect‐
ed. 5) Effect of the column weight is neglected.

2. Fiber method modelling of frp confined beam columns

The cross-section is divided into concrete, steel and FRP fibers to introduce The FMM is in‐
troduced herein to compute the properties of each fiber, thus achieving the properties of the
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a cross-section by summing up the properties of all its fibers or elemental areas. The mesh‐
ing is given in Fig. 2(a). The column segment properties are considered as the average prop‐
erties of its end cross-sections.

The same derivation in the companion paper [31] for columns under biaxial bending is
adopted herein after the necessary modifications to solve the column under the effect of slip.

The strain distribution is defined by the maximum compressive strain εm, together with the
depth of the neutral axis, Zn. The strains are shown in Fig. 2(b).

Figure 2. Cross-section

The following section parameters are then computed

εm =εo +
b
2 ϕy +

h
2 ϕz (1)

ϕ = ϕy2 + ϕz2 (2)

zn =
εm
ϕ

(3)

Ψ =tan−1
ϕz
ϕy

(4)

where φy and φz are the curvatures along the y-axis and z-axis respectively and εo is the
strain at point "O".

The elemental strain is computed as:
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ε =εm(1−
Z
Zn

) (5)

where Z is the distance from the maximum strain to the element measured perpendicular to the
N.A. After determining the strain of each fiber from eq.5, the corresponding elemental modulus
of elasticity, G, is determined as detailed in section 4. The elemental properties are computed
and summed up to obtain the cross-section properties as shown in the following equations:

E Aα =∑
i=1

nfib
(Gi)ΔAi (6a)

E Iy =∑
α=1

n
∑
i=1

nfib
(zi)2(Gi)ΔAi (6b)

E Iz =∑
α=1

n
∑
i=1

nfib
(yi)2(Gi)ΔAi (6c)

E I yz =∑
α=1

n
∑
i=1

nfib
(yi)(zi)(Gi)ΔAi (6d)

(ESy)α =∑
i=1

nfib
(zi)(Gi)ΔAi (6e)

(ESz)α =∑
i=1

nfib
(yi)(Gi)ΔAi (6f)

where α is the counter of an arbitrary element. In the present study, element 1 is the RC sec‐
tion and element 2 is the FRP. n is the total number of elements and is equal to 2 in the
present study, i is the counter of fibers, nfib is the total number of fibers of element α, ΔA i is
the area of each fiber, y i, z i are distances from the center of the considered fiber to the z and
y axes respectively. Those symbols are shown in Fig. 2a. It should be noted that the proper‐
ties EA, ES y and ES z are given separately for each element, while the properties EI z, EI y and
EI yz are the summation of the corresponding properties of both elements. The reason for this
is that the axial displacement is different for each element due to the slip effect while both
elements undergo the same curvatures about the z-axis and the y-axis.

3. Displacement-based fiber model with bond-slip

A one dimensional finite element analysis is adopted to solve the column segments. The seg‐
ments are considered to be of unsymmetric cross-section caused by the inclination of the
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N.A. The finite element formulation given by Yang and McGraw [32] to solve the thin-wal‐
led, i.e. bare-steel columns, is introduced herein after applying the necessary modification to
include the concrete, FRP and bond-slip.

3.1. Displacements and strain fields

The axial displacement of an arbitrary point of an element (α ) in the cross-section is given in
terms of the displacements of a constant point “c” on the same element as follows

x xc zc ycu u zu yua ¢ ¢= - - (7)

where u xcα is the axial displacement of the element α, y and z are the vertical and horizontal
distances, respectively from the centroid of any follower element α to the centroid of the pa‐
rent element having α=1. In the present study, the concrete section and the FRP are consid‐
ered to be the parent and the follower elements respectively. And u ′

ycandu ′
zc  are the

derivatives of the transverse displacements u yc and u zc.

y=yα-y1 and z=zα-z1 however, for simplicity, the reference axes are chosen such that y1=0 and
z1=0, Fig.3 (a).

Figure 3. Column Segment

It should be noted that the transverse displacements, u yc and u zc, are considered to be the
same for all elements of the beam with respect to the axis of the beam. For simplicity, the
symbol “c” is dropped out from the r.h.s. of the equations. The relevant linear strain field
can, then, be obtained from the displacement field given by eq. 7 by differentiating the men‐
tioned equation w.r.t. the beam coordinates as
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,( )x x x x y zu u yu zua a ae ¢ ¢¢ ¢¢= = - - (8)

while the nonlinear strain field is given by

2 2 2
, , ,

1 ( )
2xx x x y x z xu u uh = + + (9)

and u x,x is ignored as usual practice. The slip satisfying the compatibility relation with the
displacements of element 1 and element 2 is given as

uxb =ux2−ux1 =ux2−ux1 + zuz
′ + yuy

′ (10)

3.2. Forces

In general, the the normal stress f x shown in Fig. 3 (a) is expressed as

( )x x z yf E u zu yua a¢ ¢¢ ¢¢= - - (11)

Following the integrations at the cross-section, the stress resultant are expressed as

x x y x z x
A A A

F f dA M f zdA M f ydA= = = -ò ò ò (12)

( )( ) ( )( )x x y z z yF EAu E S u E S u¢ ¢¢ ¢¢= - - (13a)

( )( ) ( )( )y y z y x yz yM EI u E S u E I u¢¢ ¢ ¢¢= - + - (13b)

( )( ) ( )( )z z y z x yz zM EI u E S u E I u¢¢ ¢ ¢¢= - + (13c)

where the elemental properties are previously given in section 2.

3.3. Degrees of freedom and nodal forces

The local coordinates are shown in Fig. 3(b and c).

The displacement vector <u>is given by:

x1A yA        zA       yA       zA x2A x1B yB zB       yB zB x2u u     u   u        u     u     u     u           uq q q q< >=< >B (14)
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where θy and θz are the angles of rotation of the section about y and z axis respectively.

While the vector of the nodal forces <f> is given by:

x1A yA zA yA zA x2A x1B yB zB yB zB x2B    f F    F    F   M    M    F    F    F   F   M    M   F     < >=< > (15)

3.4. Virtual work

The partial interaction problem is solved using the principle of virtual work. This is accom‐
plished by equating the work of internal stresses to the work of external stresses in an incre‐
mental form. The principle of virtual work will be adopted to deduce:

-the linear and nonlinear stiffness matrices of a beam element which consist of an assem‐
blage of two different

elements connected by deformable interface.

-the bond-slip stiffness matrix.

The equilibrium condition for the entire beam-column is then expressed by assembling the
vectors and matrices defined for each segment according to the principle of finite elements.

The details are given below.

3.4.1. For the beam with FRP

∫
v

(E1exxδ1exx)1dV + ∫
v

( f xδ1ηxx)1dV =1
2 R−1

1 R (16)

in which 1exx and 1ηxx are the linear and non-linear incremental strain respectively, fx denotes
the stress at C1, E is the modulus of elasticity of the cross-section and 2 1R and 1 1R are the
external virtual work at C2 and C1 respectively but both being measured at C1 and 2 2R = the
external virtual work expression

substituting equations 8 into eq.16, we get

2 2 2 2 1
, , ,

1 1( ( ) ( ( )2 2x x x y x z x
v

E u dV f u u dV R Rd d+ + = -ò ò (17)

A linear displacement field is adopted for the axial displacement, ux, and a cubic displace‐
ment field for other displacements. The incremental displacements are expressed as:

ux = ≺n1≻ {ū x}uy = ≺n3≻ {ū y}uz = ≺n3≻ {ūz} (18)

where

Fiber Reinforced Polymers - The Technology Applied for Concrete Repair210



≺n1≻ = ≺1− i         i≻ (19a)

≺n3≻ = ≺1−3i 2 + 2i 3      i −2i 2 + i 3      3i 2−2i 3      i 3− i2≻ (19b)

in which i is given by the value 
x
l  .

The nodal degrees of freedom ie., the ends A and B of the column segment are given by:

{u− x}α = ≺uxAα uxBα≻ (20a)

{u− y}= ≺uyA lθzA uyB lθzB≻ (20b)

{u−
z
}= ≺uzA − lθyA uzB − lθyB≻ (20c)

where l is the length of the segment.

3.4.1.1. The linear part

The linear part taken from eq. 17 is

{ } 2
,

1

1[ ] ( ( )2
n

e x x
v

u K u E u dV
a

d d
=

é ù
= ê ú

ë û
å òp f (21)

in which α is the counter of the considered elements and n is their total number.

{ } 2

1

1[ ] ( ( )2
n

e x y z
v

u K u E u yu zu dVa a
a

d d
=

é ù
¢ ¢¢ ¢¢= - -ê ú

ë û
å òp f (22)

applying the properties of the cross-section given in eqs 6, the previous expression becomes

{ } ( )

( )

2 2

1 0 0

2

0

2 2

0 0 0

1[ ] [ ( ) ( )2

( ) ( )

1 1 ( ) ( ) ( ) ( ) ]2 2

l ln

e x z y x

l

y z x

l l l

z y y z yz y z

u K u E A u dx E S u u dx

E S u u dx

E I u dx E I u dx E I u u dx

a a a a a a
a

a a a

a a a a a a

d d d

d

d d d

=

¢ ¢¢ ¢= + -

¢¢ ¢+ -

¢¢ ¢¢ ¢¢ ¢¢+ + +

å ò ò

ò

ò ò ò

p f

(23)

Substituting the interpolation functions in eq. 18, the following equation applies
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{ } { } { } { } { }

{ } { } { } { }

1 1

1 1 3 33
1 10 0

3 1 1 32 2
1 10 0

2
1

[ ]

( ) ( )

( )

n n
y

e x x z z

l ln n
z z

y x x y

n
y

z

E IE Au K u u n n di u u n n di u
l l

E s E su n n di u u n n di u
l l

E s
u

l

a aa a
a a

a a

a a a a
a a

a a

a a

a

d d d

d d

d

= =

= =

=

é ù é ù
¢ ¢ ¢¢ ¢¢= +ê ú ê ú

ë û ë û
é ù é ù- -¢¢ ¢ ¢ ¢¢+ +ê ú ê ú
ë û ë û

-
¢¢+

å åò ò

å åò ò

å

p f p f p f p f p f

p f p f p f p f

p f { } { } { } { }

{ } { } { } { }

{ } { }

3 1 1 32
10 0

3 3 3 33 3
1 10 0

3 33
1 0

( )

( ) ( )

( )

l ln
y

x x z

l ln n
y z

z z y y

ln
yz

z y y

E s
n n di u u n n di u

l

E I E Iu n n di u u n n di u
l l

E I
u n n di u u

l

a a
a a

a

a a a a

a a

a a

a

d

d d

d d

=

= =

=

-é ù é ù
¢ ¢ ¢¢+ê ú ê ú

ë û ë û
é ù é ù

¢¢ ¢¢ ¢¢ ¢¢+ +ê ú ê ú
ë û ë û
é ù

¢¢ ¢¢+ +ê ú
ë û

åò ò

å åò ò

å ò

p f p f p f

p f p f p f p f

p f p f p { } { }3 33
1 0

( )
ln

yz
z

E I
n n di u

l
a a

a=

é ù
¢¢ ¢¢ê ú

ë û
å òf p f

(24)

3.4.1.2. The nonlinear part

The nonlinear part taken from eq. 17 is

{ } 2 21[ ] [ ( ) ( ) ]2g x y z
V

u K u f u u dVd d d¢ ¢= +òp f (25)

when several elements participate in the nonlinear virtual work, the previous eq becomes

≺δu≻ Kg {u}=∑
α=1

n ∫
0

l
F xα
2 δ(u ′

y)2 + δ(u ′
z)2 dx (26)

in which α is the counter of the considered elements and is their total number.

{ } { } { } { } { }3 3 3 3
1 10 0

[ ]
l ln n

x x
g y y z z

F Fu K u u n n di u u n n di u
l l
a a

a a

d d d
= =

é ù é ù
¢ ¢ ¢ ¢= +ê ú ê ú

ë û ë û
å åò òp f p f p f p f p f (27)

when n=2, as in the general case, then ∫
0

l

∑
α=1

n F xα
l {n ′

3}≺n ′
3≻di  becomes

∫
0

l
(F x1 + F x2)

l {n ′
3}≺n ′

3≻di ].  The linear and nonlinear stiffness matrices are obtained after

performing the integrations in eqs 24 and 27 and are given in the appendix.

3.4.2. For bond-slip

The bond-slip expression given in eq.10 is substituted in the linear portion of the virtual
work expression given in eq. 17 and the expression thus becomes
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{ } 2 2 1
1 2

1[ ] [ ( ) ] [{ } { }]2b b x y z x
v

u K u E u yu zu u dV u f fd d d¢ ¢= - + + + = -òp f p f (28)

{ }

( )

( )

2 2
1 2 1 2

0

1 2
0

22
1 2

0 0

22

0

1[ ] ( ) ( ) 2 ( )2

1 2 ( ) 2 ( )2

1 12 ( ) 2 ( )2 2

1 1 2 ( )2 2

l

b b b x x x x

l

b b x y x y

l l

b b x z x z b b y

l

b b z b b y z

u K u E A u u u u dx

E A y u u u u dx

E A z u u u u dx E A y u dx

E A z u dx E A yz u u

d d d d

d d

d d d

d d

é ù= + -ë û

é ù¢ ¢+ - +ë û

é ùé ù¢ ¢ ¢+ - + +ë û ê úë û

é ù é¢ ¢ ¢+ + ëê úë û

ò

ò

ò ò

ò

p f

0

l

dxùûò

(29)

{ } { } { } { } { }

{ } { } { } { }

{ } { } { }

1 1 1 1 2 1 1 2
0 0

2 1 1 1 1 1 1 2
0 0

1 1 3 3 1
0 0

[ ]
l l

b x b b x x b b x

l l

x b b x x b b x

l l

x b b y y b b x

u K u u lE A n n di u u lE A n n di u

u lE A n n di u u lE A n n di u

u E A y n n di u u E A y n n di u

d d d

d d

d d

é ù é ù
= +ê ú ê ú

ë û ë û
é ù é ù

- -ê ú ê ú
ë û ë û
é ù é ù

¢ ¢- -ê ú ê ú
ë û ë û

ò ò

ò ò

ò ò

p f p f p f p f p f

p f p f p f p f

p f p f p f p f { }

{ } { } { } { }

{ } { } { } { }

{ } { } { } { }

1

2 1 3 3 1 2
0 0

1 1 3 3 1 1
0 0

2 1 3 3 1 2
0 0

l l

x b b y y b b x

l l

x b b z z b b x

l l

x b b z z b b x

y

u E A y n n di u u E A y n n di u

u E A z n n di u u E A z n n di u

u E A z n n di u u E A z n n di u

Eu

d d

d d

d d

d

é ù é ù
¢ ¢+ +ê ú ê ú

ë û ë û
é ù é ù

¢ ¢- -ê ú ê ú
ë û ë û
é ù é ù

¢ ¢+ +ê ú ê ú
ë û ë û

+

ò ò

ò ò

ò ò

p f p f p f p f

p f p f p f p f

p f p f p f p f

p f { } { } { } { }

{ } { } { } { }

1 12 2

3 3 3 3
0 0

1 1

3 3 3 3
0 0

( )

( )

b b
y z z

b b
z y y z

y E zn n di u u n n di u
l l

E zy E zyu n n di u u n n di u
l l

d

d d

é ù é ù
¢ ¢ ¢ ¢+ê ú ê ú

ë û ë û
é ù é ù

¢ ¢ ¢ ¢+ +ê ú ê ú
ë û ë û

ò ò

ò ò

p f p f p f

p f p f p f p f

(30)

where A b is the area of the FRP per unit length of the segment.

The bond-slip matrix is obtained after performing the integrations in eq 30 and is given in

the appendix.

Eqs.(24, 27 and 30) can be combined to give:

Analysis of Nonlinear Composite Members Including Bond-Slip
http://dx.doi.org/10.5772/51446

213



{ } { } { } { }

{ } { }

{ } { } { } { }

{ }

1 11 1
1 1 1 1 1 1 32

0 0

1 1
1 1 32

0

1 1 1 1 1 1 1 2
0 0

1 1 3
0

( )

( )

l l
z

x x x y

l
y

x z

l l

x b b x x b b x

l

x b b

E SE Au n n di u u n n di u
l l

E S
u n n di u

l

u lE A n n di u u lE A n n di u

u E A z n n di

d d

d

d d

d

é ù é ù-
¢ ¢ ¢ ¢¢+ê ú ê ú

ë û ë û
-é ù

¢ ¢¢+ ê ú
ê úë û
é ù é ù

+ -ê ú ê ú
ë û ë û

¢-

ò ò

ò

ò ò

p f p f p f p f

p f p f

p f p f p f p f

p f p f { } { } { }1 1 3
0

2 2 1 1
1 1 1 1 1[ ]

l

z x b b y

T T
x x A x B x A x B

u u E A y n n di u

u F F F F

d
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And upon simplification, the equilibrium equations (31a to 31d) are written in the form

Ke {u} + Kg {u} + Kb {u}= { f2 }− { f1 } (32)

in which Ke  , Kg  and Kb  are the linear, geometric and bond-slip stiffness matrices re‐

spectively, {u} is the incremental displacement vector and { f1 } and { f2 } are the segment no‐
dal forces at the beginning and the end of the incremental step.

The very simple form of the equilibrium equations is

Kt {u}= { f } (33)

in which

Kt = Ke + Kg + Kb (34)

The given procedure can be applied to problems with complete bond by combining elemen‐
tal properties of the elements 1 and 2 and dropping out the bond-slip stiffness matrix. In this
case each K  will be of order 10*10 instead of 12*12.

4. Stress-strain curves

The constitutive relations for concrete, steel, FRP and bond are schemetically shown in Fig.4.

4.1. Stress strain relationship for FRP

The stress-strain relationship for FRP is considered linear as shown in Fig.4.a

the incremental stress-strain relationship is given by
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δ f f =Gf δεf (35)

where Gf is the elemental FRP modulus of elasticity and is expressed as

Gf =
f fu
ε fu

= Ef    when     0≤εf ≤ε fu (36)

in which ff and εf  are the FRP stress and strain respectively, ffu and εf  u are the ultimate FRP

stress and strain respectively and Ef is the modulus of elasticity of FRP.

Figure 4. Stress-strain curves

4.2. Stress strain relationship for steel

For simplicity, the stress-strain relationship for the steel bars is considered to be an elastic-
perfectly plastic curve neglecting steel hardening. The relationship is shown in Fig. 4.b.

The incremental stress-strain relationship is

δ f s =Gsδεs (37)

where Gs is the incremental steel modulus of elasticity and is expressed as
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Gs =
f y
εy

= Es                    when−εy ≤εs ≤εy (38a)

Gs =0                       whenεs≻εyorεs≺ −εy (38b)

in which fs and εs are the steel stress and strain respectively, fy and εy are the yield stress and
yield strain respectively and Es is the modulus of elasticity of steel.

4.3. Stress strain relationship for concrete

For unconfined concrete, the relationship adopted by Al-Noury and Chen [33] was chosen
to express the first portion of the compressive stress-strain curve for concrete as a third-de‐
gree polynomial. The second portion is considered to be perfectly plastic as shown in Fig.
4.c. The incremental stress-strain relationships is expressed as:

δ f c =Gcδεc (39)

where

2
1 1 12 32 (3 2 ) 3 ( 2)     when   0.0c c c

c c c c c
c c c

f f fG g g e g e e e
e e e
¢ ¢ ¢

¢= + - + - £
¢ ¢ ¢

p (40a)

0.0       when       c c cG e e ¢= f (40b)

in which

1     ,     0.002      and       30000c c
c c c

c

E E f
f
eg e
¢

¢ ¢= = =¢ (41)

Ec= modulus of elasticity of concrete computed in t/m2 while fc’ and εc’ are the maximum un‐
confined concrete compressive strength and the corresponding strain respectively.

The stress-strain behavior of FRP-confined concrete is largely dependent on the level of FRP
confinement. The bilinear stress-strain relationship suggested by Wu et al. [34] is shown in
Fig. 4(c) and is adopted herein. The stress-strain curve of concrete confined with sufficient
FRP displays a distinct bilinear curve with a second ascending branch as shown in Fig. 4(c).
A minimum ratio of FRP confinement strength to unconfined concrete compressive strength
f l/f’c of approximately 0.08 is provided to ensure an ascending second branch in the stress-
strain curve. Confinement modulus (E1) and confinement strength (f l) are considered to be
the two main factors affecting the performance of FRP-confined columns. The two factors
are given as:
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E1 =
1
2 ρf Ef (42a)

f l =
1
2 ρf f f (42b)

where ρ f is the volumetric ratio of FRP to concrete, which can be determined for a rectangu‐
lar section as to a circular section with an equivalent diameter taken as the length of the di‐
agonal of the rectangular section as follows:

ρf =
4ntf

h 2 + b 2
(43)

where h and b are the bigger and smaller dimensions of the cross-section respectively, n is
the number of FRP layers and tf is the thickness of each layer.

The maximum FRP-confined concrete compressive strength and the ultimate axial strain of
the FRP-confined concrete compressive stress-strain are given by Rocca et al. [35] as

f cc′ = f c′ + 3.3ka f l (44a)

εccu =εc′(1.5 + 12kb
f l
f c′ (

ε fe
εc′ )

0.45
)≤0.01 (44b)

where ka and kb are efficiency factors that account for the geometry of the cross-section. In
the case of rectangular columns, they depend on the effectively confined area ratio Ae/Ac

and the side-aspect ratio h/b. These factors are given by the following expressions:

ka =
Ae
Ac

( b
h )2

(45a)

kb =
Ae
Ac

( b
h )0.5

(45b)

Ae
Ac

=
1− ((b / h )(h −2r)2 + (h / b)(b−2r)2) / (3Ag)−ρg

1−ρg

2
(46)

where Ag is the total cross-sectional area, ρ g is the ratio of the longitudinal steel reinforce‐
ment to the cross-sectional area of a compression member and r is the corner radius of the
cross-section.

Fiber Reinforced Polymers - The Technology Applied for Concrete Repair218



The slope of the second branch E2 is computed from the following equation considering the in‐
tercept of the second portion with the stress axis equal to f c’ for simplicity, Rocca et al. [35].

E2 =
f cc′− f c′

εccu
(47)

The transition stress f t and transition strain ε t are given by the following equations

1(1 0.0002 )t cf E f ¢= + (48a)

1(1 0.0004 )t cEe e ¢= + (48b)

The maximum exerted confining pressure f lu is attained when the circumferential strain in the
FRP reaches its ultimate strain εfu corresponding to a tensile strength f fu [36] and Eq. (42b) be‐
comes

f lu =
1
2 ρf f fu =

2 f funtf

h 2 + b 2
=

2ntf Ef ε fe

h 2 + b 2
(49)

where h 2 + b 2 is the equivalent diameter for non-circular cross-sections. The following equa‐
tions express the elemental modulus of elasticity for confined concrete in terms of strain.

The effective strain εfe is computed as the product of an efficiency factor Ke and the ultimate
FRP tensile strain εfu. The factor Ke is to account for the difference between the actual rup‐
ture strain observed in FRP-confined concrete specimens and the FRP material rupture
strain determined from tensile coupon testing, Wu et al. [34]. The factor ranges from 0.55 to
0.61 and is taken 0.586 in this study.

Gc = Ec    when    0≤εc ≤εt  (50a)

Gc = E2    when     εt≺εc ≤εccu (50b)

4.4. Stress strain relationship for FRP-Concrete Bond

The relationship is shown in Fig. 4.d.

The incremental stress-strain relationship is

δτb =Gbδub (51)

where Gb is the incremental steel modulus of elasticity and is expressed as
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Gb =
τb
ub

= Eb    when    0≤ub≤ubu (52)

in which τb and ub are the steel stress and strain respectively, τb and ub are the yield stress
and yield strain respectively and Eb is the bond elastic stiffness.

5. Steps of solution followed by the developed program

The mixed procedure is utilized to solve the nonlinear problem. This procedure utilizes a
combination of the incremental and iterative (Newton-Raphson) schemes. The load is ap‐
plied incrementally and after each increment successive iterations are performed. Steps of
the solution are then introduced.

Figure 5. Incremental-iterative method

The mixed procedure is utilized herein to solve the nonlinear problem. This procedure uti‐
lizes a combination of the incremental and iterative (Newton-Raphson) schemes. The load is
applied incrementally and after each increment successive iterations are performed. The
method is illustrated in fig.5.

The combined method is summarized in the following steps:

1. Apply the first increment of load {f} and compute [Ko] assuming no cracks and full
bond between the concrete element and the FRP element at the beginning. Compute the
displacements {u1} by solving the equation Ko {u1}={ f }
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2. Compute [K1] based on the displacement {u1} then compute the load {f} from the equa‐
tion { f ′}= K1 {u1}

3. Compute {Δf} as the difference between the applied load {f} and the deduced load { f ′} .
Then compute the corresponding displacements {u2} by solving the equation
K1 {u2}={Δf }

4. Repeat steps 2 and 3 until {Δf} becomes very small.

5. Repeat all steps again for the next increment.

6. Numerical examples

Two examples  are  given below.  The first  example considers  a  rectangular  column fully
confined with FRP. Complete bond is considered. The second example is a beam strength‐
ened  with  FRP on  the  tension  side.  In  this  example  the  slip  between  the  two  ele‐
ments  is  considered.

Example 1: The verification of the method is plotted in Fig.6 against experimental results
given by Chaallal and Shahawy [1]. The column has across-section of 0.35*0.2 m2 and length
2.1m. The concrete has a compression strength 25 MPa and the column is reinforced with 4
grade 60 steel bars of diameter 19 mm each. The steel bars are of 406 MPa yield stress and
206 GPa modulus of elasticity. The specimens are confined with 1mm of carbon fiber rein‐
forced polymer of tensile strength 530 MPa and tensile modulus of elasticity 44 GPa. This
gives a confinement ratio, f l /f c ’=0.103. The present procedure of analysis was adopted to
the same specimens and interaction diagrams were plotted. The present results show great
accordance with the previous work.

A slight difference in results is observed. It is owed to the provision of corbels in the speci‐
mens of Chaallal and Shahawy. They provided large corbels at the ends of the specimens to
receive a single load source applied eccentrically thus simulating the combined stress effects
in columns. The corbels increased the overall stiffness of the beam column and thus the ca‐
pacity of loads.

It should be noted that all wraps were characterized by a bidirectional oriented fibers
(00/900) applied along the entire height of the columns. As recommended by ACI 440.2R-02
[37]. The enhancement is only of the significance in members where compression failure is
the controlling mode Nanni [38]. This strength enhancement is due to the confining effect of
the FRP. When the column is subjected to axial load Fx and moment Mz such that their coor‐
dinates lie below the balanced point, the column is considered to be unconfined. This is ow‐
ed to the limited value of Fx which is considered insufficient to dilate the concrete in the
hoop direction thus failing to activate the FRP wrapping effect to confine the concrete. In the
present analysis where the wraps are of bidirectional fibers, the point of pure bending is
computed accounting for the FRP in the longitudinal direction and its contribution to the
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flexural capacity according to ACI440.2R-02 [37]. This case was also set by Chaallal and Sha‐
hawy [1]. Fig.7shows the plots of the column subjected to uniaxial bending Mz and My.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18

Bending Moment Mz (mt)

A
xi

al
 F

or
ce

 F
x 

(t
)

Present Unconfined Shahawy Confined

Present Confined Shahawy unconfined

Figure 6. Verification against Shahawy
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Figure 7. Uniaxial Moments About z and y axes

As expected, the capacity of the about the about the y-axis is less than that about the z-axis.
The same model was also subjected to biaxial bending at two axial load levels, namely: Fx=0
and Fx=0.7. The plots of the contour lines of the confined and unconfined columns are given
in Figs.(8 and 9).
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Example 2:The problem of bond-slip was verified against Aprile et al.[39]. A simply sup‐
ported  rectangular  beam  of  length  2.9m  loaded  by  two  forces,  each=F  at  the  middle
third  of  the  beam.  The  cross-section  is  0.3*0.2  m2.  Top  reinforcement  is  226  mm2,  bot‐
tom reinforcement  is  339  mm2.  the  beam is  strengthened at  the  bottom by carbon FRP
of  width  50  mm  and  1.2  mm thickness.  The  concrete  has  a  compression  strength  25
MPa.  The  steel  bars  are  of  460  MPa  yield  strength  and  210  GPa  modulus  of  elastici‐
ty. The carbon fiber reinforced polymer is of tensile strength 2400 MPa and tensile mod‐
ulus  of  elasticity  150  GPa.  The  epoxy  resin  is  of  100  MPa  compressive  strength  and
12.8 GPa modulus of  elasticity.  The concrete element is  considered supported on a roll‐
er  at  one  end  and  hinged  at  the  other  end.  While  the  FRP element  is  considered  to
be supported on rollers  at  both ends.  Fig.10  shows the  verification of  the  present  anal‐
ysis  if  the  beam considering bond-slip  against  Aprile.  The curves  are  plots  of  the  mid-
span deflection of the beam against the applied force (2F). A slight difference is observed
between  the  two  curves.  Also,  a  plot  of  the  reference  beam,  with  no  FRP was  plot‐
ted  as  reference  beam.  Another  plot  of  the  beam  with  full  bond  between  the  concrete
and the  FRP was  plotted.  At  the  maximum deflection  of  the  beam with  bond-slip,  the
reference beam shows nearly 15% decrease in the load capacity while the beam with com‐
plete  bond  achieves  nearly  20%  increase  in  the  load  capacity.  In  addition,  the  later
beam undergoes greater deflection and the highest capacity. The curves show two points
of  remarkable  change  in  slope  indicating  remarkable  loss  of  strength  in  the  beam.  The
lower  point  indicates  concrete  cracking  in  the  middle  third  of  the  beam,  at  the  loca‐
tion  of  the  applied  concentrated  load.  The  upper  point  indicates  the  start  of  yield  of
the  bottom  steel  reinforcement.
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7. Summary and conclusions

The FEA together with the FMM were utilized to solve the problem of RC strengthened with
FRP. The structural member solved can be of any slenderness ratio, under any loading and
can have any end conditions. The FRP wraps can be totally or partially bonded to the con‐
crete member. The elastic, geometric and bond-slip stiffness matrices of the member in the
three-dimension were deduced and given in an appendix.
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Appendix 3. Bond-slip Stiffness Matrix [Kb]

Two examples were studied. The first example considers a rectangular column fully con‐
fined with FRP. Complete bond was considered. Contour lines can be plotted at any load
level. The second example is a beam strengthened with FRP on the tension side. In this ex‐
ample the slip between the two elements was considered. Load-deflection diagrams show
that there exist two points of drop in stiffness, the first is due to concrete cracking under the
concentrated loads and the second is due to the yield of steel. Extensive research is required
to study the effect of the aspect ratio of the concrete cross-section, the strength of the con‐
crete, the strength of FRP, the thickness of FRP and the properties of the epoxy resin used.

Author details

Manal K. Zaki*

Address all correspondence to: manalzaki64@yahoo.com.

Department of Civil and Construction Engineering, Higher Technological Institute, 6th Oc‐
tober Branch, Guiza Egypt

References

[1] Challal, O., Shahawy, M., & Hassan, M. (2003). Performance of axially loaded short
rectangular columns strengthened with carbon fiber-reinforced polymer wrapping. J
Comp Const, ASCE, 7(3), 200-208.

Fiber Reinforced Polymers - The Technology Applied for Concrete Repair226



[2] Tastani, S. P., & Pantazopoulou, S. J. (2008). Detailing procedures for seismic rehabil‐
iation of reinforced concrete members wiyh fiber reinforced polymers. Engineering
Structures, 2, 450-461.

[3] Ozcan, O., Binici, B., & Ozceke, G. (2008). Improving seismic performance of dificient
reinforced concrete columns using carbon fiber reinfored polymers. Engineering
Structures, 30(6), 1632-1646.

[4] Ozcan, O., Binici, B., & Ozceke, G. (2010). Seismic strengthening of rectangular rein‐
forced concrete columns using fiber reinfored polymers. Engineering Structures, 32(4),
964-973.

[5] Kachlakev, D., Thomas, M., & Yim, S. (2001). Finite element modeling of reinforced
concrete structures strengthened with frp laminates. Report for Oregon Department of
Ransportation Salem.

[6] Li, G. K., Su-Seng, P. S., Helms, J. E., & Stukklefield, M. A. (2003). Investigation into
frp repaired RC columns. J Comp. Struct, 62, 83-80.

[7] Yan, Z., Pantelides, C. P., & Reaveley, L. D. (2006). Fiber reinforced polymer jacketed
and shape-modified compression members: I-experimental behavior. Struct J, ACI,
103(6), 885-893.

[8] Purushotham, B. R., Alagusundaramoorthy, P., & Sundaravalivelu, R. (2009). Retro‐
fitting of RC piles using GFRP composites. Journal of Civil Engineering, KSCE, 13(1),
39-47.

[9] Kaba, S. A., & Mahin, S. A. (1984). Refined modeling of reinforced concrete columns
for seismic analysis. Report No. UBC/EERC-84/3. Ca: University of California, Berkeley.

[10] Bresler, B. Design criteria for reinforced columns under axial load and biaxial bend‐
ing. ACI J. (1960). , 32(5), 481-490.

[11] Bernardo, A. L. (2007). Investigation of biaxial bending of reinforced concrete col‐
umns through fiber method modeling. Journal of Research in Science, Computing and
Engineering, 4(3), 61-73.

[12] Newmark, M. N., Siess, C. P., & Viest, I. M. (1951). Tests and analysis of composite
beams with incomplete interaction. Proceedings of the Society for Experimental Stress
Analysis, 9, 175-92.

[13] Arizumi, Y., Hamada, S., & Kajita, T. (1981). Elastic-plastic analysis of composite
beams with incomplete interaction by finite element method. Comp. Struct.

[14] Daniel, B. J., & Crisinel, M. (1993). Composite slab behavior and strength analysis.
Part I: Calculation procedure. J. Struct. Engrg., ASCE, 119(1), 16-35.

[15] Salari, M. R., Spacone, E., Shing, P. B., & Frangopol, D. M. (1997). Behavior of compo‐
site structures under cyclic loading. Build. To Last, Proc., ASCE Struct.Congr. VX,
Kempner Jr. L and Brown CB, eds., ASCE, New York, 1.

Analysis of Nonlinear Composite Members Including Bond-Slip
http://dx.doi.org/10.5772/51446

227



[16] Gara, F., Ranzi, G., & Leoni, G. (2006). Displacement-based formulations for compo‐
site beams with longitudinal slip and vertical uplift. Internat J Numer Methods Engrg.,
65(8), 1197-220.

[17] Ranzi, G., Gara, F., & Ansourian, P. (2006). General method of analysis for composite
beams with longitudinal and transverse partial interaction. Computers and Structures.

[18] Salari, M. R., & Spacone, E. (2001). Finite element formulations of one-dimensional
elements with bond-slip. Eng Struct., 23, 815-26.

[19] Valipour, Goudarzi. H., & Bradford, M. M.A.(2012). A new shape function for ta‐
pered three-dimensional beams with flexible connections. Journal Of Constructional
Steel Research , 70, 43-50.

[20] Dall’Asta, A., & Zona, A. (2004). Three-field mixed formulation for the nonlinear
analysis of composite beams with deformable shear connection. Finite Elem Anal De‐
sign, 40, 425-48.

[21] Ayoub, A., & Filippou, F. C. (2002). Mixed formulation of nonlinear steel-concrete
composite beam element. J Struct Eng, 126(3), 371-81.

[22] Grihammar, U. A., & Gopu, V. K. A. Composite beam-columns with interlayer slip-
Exact analysis. J Struct Eng. ASCE (1993).

[23] Grihammar, U.A.P. (2007). Exact static analysis of partially composite beams and
beam-columns. Int J mech Sci, 49, 139-55.

[24] Čas, B., Sage, M., & Planinc, I. (2004). Non-linear finite element analysis of composite
planar frames with interlayer slip. Comput Struct., 82, 1901-12.

[25] Pi, Y. L., Bradford, M. A., & Uy, B. (2006). second order nonlinear inelastic analysis of
composite steel-concrete members. I: Theory. J Struct Eng., ASCE, 132(5), 751-61.

[26] Krawczyk, P., Frey, F., & Zielinsky, A. P. (2007). Large deflections of laminated
beams with interlayer slips Part 1: Model development. Eng comput., 24(1), 17-32.

[27] Krawczyk, P., & Rebora, B. (2007). Large deflections of laminated beams with inter‐
layer slips Part 2: finite element development. Eng comput., 24(1), 33-51.

[28] Battini, J. M., Nguyen, Q. H., & Hjiaj, M. (2009). Non-linear finite element analysis of
composite beams with interlayer slip. Comput Struct., 87, 904-12.

[29] Nguyen, Q. H., & Hjiaj, M. (2011). Exact finite element model for shear-deformable
two-layer beams with discrete shear connection. Finite Elements in Analysis and De‐
sign, 47, 718-727.

[30] Sousa Jr., J. B. M., Oliveira, C. E. M., & da Silva, A. R. (2010). Displacement-based
non-linear finite element analysis of composite beams with partial interaction. Journal
of constructional Steel Research., 66, 772-779.

[31] Zaki, M.K. (2011). Investigation of FRP strengthened circular columns under biaxial
bending. Engineering Structures, 33(5), 1666-1679.

Fiber Reinforced Polymers - The Technology Applied for Concrete Repair228



[32] Yang, Y. B., & Mc Graw, W. (1986). Stiffness Matrix for Geometric Nonlinear Analy‐
sis. Journal of Structural Engineering, ASCE, 112, 853-877.

[33] Al-Noury, S. I., & Chen, W. F. (1982). Behavior and design of reinforced and compo‐
site concrete sections. Journal of Structural Division, ASCE, 17169, 1266-1284.

[34] Wu, G., Lu, Z. T., & Wu, Z. S. (2006). Strength and ductility of concrete cylinders con‐
fined with FRP composites. Construction and Building Materials, 20, 134-148.

[35] Rocca, S., Galati, N., & Nanni, A. (2009). Interaction diagram methodology for desgin
of FRP-confined reinforced concrete columns. Construction and Building Materials, 23,
1508-1520.

[36] Wu, G., Lu, Z. T., & Wu, Z. S. (2003). Stress-strain relationship for FRP-confined con‐
crete cylinders. Proceedings of the 6th international symposium on FRP reinforcement for
concrete structures (FRPRCS), Singapor, 552-560.

[37] American Concrete Institute. (2002). ACI440.2R, Guide for the design and construc‐
tion of externally bonded FRP systems for strengthening of concrete structures. Farm‐
ington Hills, MI, USA: American Concrete Institute.

[38] Nanni, A., & Bradford, N.M. (1995). FRP jacketed concrete under uniaxial compres‐
sion. Constr. and Build. Mat., 9(2), 115-124.

[39] Aprile, A., Spacone, E., & Limkatanyu, S. (2001). Role of bond in RC beams strength‐
ened with steel and FRP plates. Journal of Structural Division, ASCE, 22694,
1445-11452.

Analysis of Nonlinear Composite Members Including Bond-Slip
http://dx.doi.org/10.5772/51446

229




