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1. Introduction 

Invertebrate preparations have proven to be valuable models for studies addressing 
fundamental mechanisms of nervous system function (Clarac and Pearlstein 2007). In 
general the nervous systems of invertebrates contain fewer neurons than those of 
vertebrates, with many of them being re-identifiable in the sense that they can be recognized 
and studied in any individual of the species. The large diameter of many invertebrate 
neurons makes them amenable for study with intracellular recording techniques, allowing 
for characterization of synaptic properties and connections, leading to circuit diagrams of 
neuronal networks. Further, there is often a rather straight-forward connection between 
neuronal networks and the relatively simple behaviors that they produce. For example, 
years of experimentation on the nervous systems of leeches, sea-slugs and crabs/lobsters 
have led to significant advances in the understanding of how small neuronal networks 
produce a variety of different behaviors (Harris-Warrick and Marder 1991; Hawkins et al. 
1993; Katz 1998; Kristan et al. 2005). For the most part, these investigations have been carried 
out using sharp electrode recordings from about three to four neurons at a time (although 
see (Briggman and Kristan 2006)). Intracellular recording has been a very productive and 
fruitful technique for revealing details of neuronal connectivity and for studying synaptic 
changes caused by modulators or by simple forms of learning. However, since even simple 
behaviors are produced by the activity of populations of dozens to hundreds of neurons, the 
limited view offered by recording from only four neurons at a time makes it an inadequate 
technique for understanding larger-scale, network level phenomena that underlie behavior.  

In order to understand how populations of neurons produce behaviors, methods are needed 
to simultaneously monitor the spiking activity of large numbers (dozens to hundreds) of 
individual neurons. Voltage-sensitive dye (VSD) imaging is a technique for accomplishing 
precisely this. However, after a promising start showing the immense power and potential 
of VSD imaging for understanding invertebrate neuronal networks (London et al. 1987; Wu 
et al. 1994a; Wu et al. 1994b; Zecevic et al. 1989), the technique has not been widely adopted 
by the field. This is possibly due to the difficulties inherent to the technique - the optical 
signals of interest are extremely small and are often mixed, redundant and noisy. These 
factors make it difficult to track the activity of individual neurons from recording trial to 
trial based solely on the raw optical data. Previous researchers used a spike-template 
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matching technique to uncover single neuron spiking traces from VSD imaging data, but 
this method was very time consuming and involved substantial human judgment (Cohen et 
al. 1989). Automated, accurate and fast methods are thus needed to reliably and quickly 
extract single neuron spiking activity from such complex data sets.  

In this chapter, we demonstrate the utility and accuracy of Infomax ICA for extracting single 
neuron spiking activity (i.e. spike-sorting) from VSD imaging data of populations of 
neurons located in the central ganglia of two invertebrate preparations, Tritonia diomedea 
and Aplysia californica, that are models for topics such as learning, modulation, pattern 
generation and pre-pulse inhibition (Brown et al. 2001; Cleary et al. 1998; Frost et al. 1998; 
Frost et al. 2006; Frost et al. 2003; Getting 1981; Katz and Frost 1995; Katz et al. 1994; Lennard 
et al. 1980). We also demonstrate certain features of the optical data sets that strongly 
influence the ability of ICA to return maximal numbers of components that represent the 
spiking activity of individual neurons (neuronal independent components or nICs).  

2. Methods 

2.1 Preparation  

Tritonia diomedea central ganglia consisting of the bilaterally symmetric cerebral, pleural and 
pedal ganglia, and Aplysia californica central ganglia consisting of the cerebral, pleural and 
pedal ganglia, were dissected out and pinned onto the bottom of a Sylgard (Dow Corning) 
lined Petri dish containing Instant Ocean artificial seawater (Aquarium Systems). The thick 
connective tissue covering the ganglia and nerves was removed with fine forceps and scissors 
(for intracellular recording experiments the thin protective sheath covering the neurons was 
also removed). The preparation was then transferred and pinned to the Sylgard-lined 
coverslip bottom of the recording chamber used for optical recording (PC-H perfusion 
chamber, Siskiyou). In many experiments, to increase the number of neurons in focus, the 
ganglion to be imaged was flattened somewhat by pressing a cover slip fragment down upon 
it that was held in place with small blobs of Vaseline placed on the recording chamber floor.  

2.2 Optical recording  

Imaging was performed with an Olympus BX51WI microscope equipped with either 10x 
0.6NA or 20x 0.95NA water immersion objectives. Preparation temperature was maintained 
at 10 – 11°C for Tritonia and 16 – 17°C for Aplysia, using Instant Ocean passed through a 
feedback-controlled in-line Peltier cooling system (Model SC-20, Warner Instruments). 
Temperature was monitored with a BAT-12 thermometer fitted with an IT-18 microprobe 
(Physitemp, Inc) positioned near the ganglion being imaged. For staining, the room was 
darkened and the perfusion saline was switched to saline containing the fast voltage 
sensitive absorbance dye RH-155 (Anaspec). Staining was carried out in one of two ways: 
either 5 min of 0.3 mg/ml or 1.5 hr of 0.03 mg/ml RH-155 in saline. Preparations were then 
perfused with 0.03 mg/ml RH-155 or dye-free saline throughout the experiment. Trans-
illumination was provided with light from a 100W tungsten halogen lamphouse that was 
first passed through an electronic shutter (Model VS35 Vincent Associates), a 725/25 
bandpass filter (Chroma Technology), and a 0.9 NA flip top achromat Nikon condenser on 
its way to the preparation. 100% of the light from the objective was directed either to an 
Optronics Microfire digital camera used for focusing and to obtain an image of the 
preparation to superimpose with the imaging data, or to the parfocal focusing surface of a 
464-element photodiode array (NeuroPDA-III, RedShirtImaging) sampled at 1600 Hz.  
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2.3 Sharp electrode recordings  

Intracellular recordings were obtained with 15-30 MΩ electrodes filled with 3M KCl or 3M 

K-acetate connected to a Dagan IX2-700 dual intracellular amplifier. The resulting signals 

were digitized at 2 KHz with a BioPac MP 150 data acquisition system.  

2.4 Data analysis  

Optical data were bandpass filtered in the Neuroplex software (5 Hz high pass and 100 Hz 

low pass Butterworth filters; RedShirtImaging), and then processed with ICA in MATLAB 

to yield single neuron action potential traces (independent components), see (Hill et al. 2010) 

for details. ICA run on 60 s of optical data typically takes about 5 minutes on a computer 

equipped with an Intel I7 processor. Statisical analyses were performed in Sigmaplot.  

3. Results 

We bath applied the VSD RH-155 to the central ganglia of Tritonia diomedea and Aplysia 

californica, and used a 464-element photodiode array to image the action potential activity of 

populations of neurons on the surface of various ganglia during two rhythmic motor 

programs: escape swimming in T. diomedea, and escape crawling in A. californica. Here we 

show examples of ICA’s ability to extract single neuron activity from mixed, redundant and 

noisy raw optical data in both T. diomedea (Fig. 1) and A. californica (Fig. 2) and we 

demonstrate the ability of ICA to return maps of the neurons’ locations in the ganglia (based 

on the inverse weight matrix).  

3.1 Validation of the accuracy of ICA 

We previously demonstrated the accuracy of ICA spike-sorting by performing simultaneous 

intracellular and optical recordings in both Tritonia and Aplysia (Hill et al. 2010): in 34 out of 

34 cases, one of the independent components returned by ICA matched up perfectly spike-

for-spike with the intracellularly recorded data. Figure 3 shows an intracellular recording 

from a Tritonia pedal ganglion neuron while simultaneously recording the optical activity of 

many neurons in the same ganglion. The activity of the intracellularly recorded neuron was 

detected by many diodes (Fig. 3Ai). ICA returned 50 nICs, one of which matched up 

perfectly spike-for-spike with the intracellularly recorded neuron (Fig. 3Aii, iii and 3B). 

Plotting the data points for the intracellular and matching component traces against each 

other reveals a strong positive correlation (Fig. 3C; R2 value = 0.631). Another of the nICs 

burst in the same phase of the swim motor program as did the intracellularly recorded 

neuron (Fig. 3D), however plotting the values of the intracellular and non-matching 

component against each other revealed no correlation whatsoever (Fig. 3E). Figure 4 

shows an intracellular recording from an Aplysia buccal ganglion neuron while 

simultaneously recording the optical activity of many neurons in the same ganglion. The 

activity of the intracellularly recorded neuron was detected by many diodes (Fig. 4Ai). 

ICA returned 10 nICs, one of which matched up perfectly spike-for-spike with the 

intracellularly recorded neuron (Fig. 4Aii, iii and 4B). Plotting the data points for the 

intracellular and matching component traces against each other revealed a strong positive 

correlation (Fig. 4C; R2 value = 0.629). 
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Fig. 1. ICA returns single neuron traces from noisy, redundant, and mixed raw optical data 
of a Tritonia diomedea swim motor program. 
A The subset of diodes shown in black superimposed over an image of the pedal ganglion 
(inset) detected the spiking activity of many pedal ganglion neurons. The optical signals are 
redundant in the sense that many diodes detect the activity of the same neurons, and mixed 
in the sense that many diodes detect the activity of more than one neuron. Note that diode 
traces shown in blue redundantly detected the activity of the same neuron, as did the diode 
traces shown in red. Experimental set-up shown below the optical traces. Ce = cerebral,  
Pl = pleural, Pd = pedal ganglion, and pdn 3 = pedal nerve 3. B 123 of the 464 independent 
components returned by ICA represented the activity of single neurons (47 shown here). 
The redundancy of the optical data was eliminated by ICA – note that the blue and red 
independent components represent the activity of the two neurons that were detected by 
multiple diodes in A. C The maps returned by ICA show the ganglion locations of the 
neurons whose spiking activity is shown in blue and red in A and B. Arrows – stimulus to 
pedal nerve 3 to elicit swim motor program (10 V, 10 Hz, 2 s).  
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Fig. 2. ICA extracts the activity of individual pedal ganglion neurons from noisy, redundant, 

and mixed raw optical data of an Aplysia californica locomotion motor program. 

A The neural activity of many pedal ganglion neurons was detected by a subset of the 464 

diodes shown in black (inset, diode array superimposed over an image of the pedal 

ganglion). Note that diode traces shown in green detected the activity of the same neuron,  

as did the diode traces shown in blue. Experimental set-up showing the region of the pedal 

ganglion imaged shown in the inset. Bc = buccal, Ce = cerebral, Pl = pleural, and Pd = pedal 

ganglion. B 95 of the 464 independent components returned by ICA represented the activity 

of single neurons (45 shown here). Note that the redundancies shown in A were eliminated 

by ICA. C The maps returned by ICA show the ganglion locations of the neurons whose 

spiking activity is shown in green and blue in A and B. Arrows – stimulus to pedal nerve 9 

to elicit the locomotion motor program (10 V, 1 Hz, 155 s). 
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Fig. 3. Validation of the accuracy of ICA in Tritonia diomedea.  
A Simultaneous intracellular recording from a pedal ganglion neuron and VSD imaging 
from the same ganglion of T. diomedea during a swim motor program. Ai Many of the diode 
traces contained the spiking of activity of the intracellularly recorded neuron. Aii, Aiii After 
performing ICA on the entire data set (464 filtered optical traces), one of the independent 
components returned by ICA matched up exactly spike-for-spike with the intracellular 
trace. B Expanded view of the traces shown in Aii and Aiii (dashed boxes). C Plotting the 
values of the intracellular recording trace versus the matching component revealed a 
positive correlation between the data points. D Another of the components returned by ICA 
appeared similar to the intracellular recording trace in that it burst in the same phase of the 
motor program. E Plotting the values of the intracellular recording trace versus the non-
matching component showed no correlation at all between the data points. Arrows – 
stimulus to pedal nerve 3 (10v, 10 Hz, 2 s). 
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Fig. 4. Validation of the accuracy of ICA in Aplysia californica. 

A Simultaneous intracellular recording from a buccal ganglion neuron and VSD imaging 

from the same ganglion of A. californica. Current pulses were injected into the impaled 

neuron to make it to fire trains of action potentials. Ai Many of the diode traces contained 

the spiking of activity of the intracellularly recorded neuron. Aii, Aiii After running ICA on 

the entire data set, one of the independent components returned by ICA matched up exactly 

spike-for-spike with the intracellular trace. B Expanded view of the traces shown in Aii and 

Aiii (dashed boxes). C Plotting the values of the intracellular recording trace versus the 

matching component revealed a positive correlation between the data points.  

3.2 Certain features of the data sets influence the number of nICs returned by ICA 

Next we discuss our findings that certain features of the optical data sets strongly influence 

the number of nICs returned by ICA. First, we found that simply increasing the number of 

data points in the optical recording greatly increases the number of nICs returned by ICA 

(Fig. 5A). This could be due to the fact that with longer files, ICA is simply given more 

information, and is thus better able to determine which components are independent of each 

other. Increasing the file length only continues to increase the number of nICs returned by 

ICA up to a certain point though, usually around 45 s (for our data sets). Increasing file 

length also greatly decreases the variability of the number of nICs returned by ICA (Fig. 

5A). We have also found that including spontaneous spiking activity (at least 10 s) 

preceding the Tritonia escape swim motor program greatly increases the number of nICs 

returned by ICA (Fig. 5B, C). For example, for seven preparations we found that when ICA 

was performed on 40 s of optical data including 10 s of spontaneous firing data preceding 

the swim motor program it returned a mean of 68.8 nICs, while ICA returned a mean of 

only 44.5 nICs when it was run on 40 s optical files that didn’t include any spontaneous 
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firing preceding the motor program (Fig. 5C). Presumably neurons are more independent of 

each other when they are firing spontaneously than when they are bursting in near 

synchrony during the swim motor program. Thus, this period of greater independence is 

important for ICA to return maximal numbers of nICs. 

 
 

 
 
 
 

Fig. 5. Increasing file length and including spontaneous firing data improve the performance 

of ICA.  

A Increasing file length leads to an increase in the number of nICs returned by ICA. The 

points on the graph show the average number of nICs returned by ICA for each data length. 

Note that with the shorter data lengths there is a fairly large variance in the number of nICs 

returned by ICA run on the exact same data set. This variance decreases greatly with 

increasing file length. After a certain point (~ 45 s) having more data points didn’t increase 

the number of nICs returned by ICA. B Including spontaneous spiking data preceding the 

rhythmic swim motor program data is important for ICA to return a maximal number of 

nICs. The points on the graph show the average number of nICs returned by ICA for each 

data length. Without the spontaneous firing data (10 s) included before the swim motor 

program, ICA returned fewer nICs even with longer files (same data set as in A). C In seven 

preparations, including 10 s of spontaneous firing data preceding the swim motor program 

significantly increased the average number of nICs returned by ICA for optical files of equal 

length (With spont firing = 10 s spontaneous firing + 30 s motor program, Without spont 

firing = 40 s motor program; paired t-test, * = p < 0.05).  

3.3 Pre-filtering the data also strongly influences the number of nICs returned by ICA 

Finally, we have found that filtering the optical data prior to running ICA to remove high 

frequency (100 Hz LP) and low frequency noise (5 Hz HP) consistently increases the number 

of nICs returned by ICA, and increases the signal-to-noise ratio of the nICs. Figure 6 shows 

an example of the effect of pre-filtering on the number of nICs returned by ICA. Without 

pre-filtering, ICA returned 34 nICs (Fig. 6A) whereas after pre-filtering it returned 73 nICs 

(Fig. 6B). Removing the low frequency noise in particular should make the components 

more independent of each other. 
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Fig. 6. Pre-filtering the optical data prior to performing ICA increases the number of  
nICs returned.  
A ICA run on unfiltered optical data returned 34 nICs. B After pre-filtering the same data 
set (5 Hz HP, 100 Hz LP), ICA returned 73 nICs. Additionally pre-filtering the optical data 
increased the signal-to-noise ratio of the nICs. Arrows – stimulus to pedal nerve 3 (10 V, 10 
Hz, 2 s).  
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4. Conclusions 

ICA is an ideal technique for quickly and accurately extracting single neuron spiking 
activity from noisy, mixed and redundant VSD imaging data. The lack of a technique such 
as ICA has possibly hindered widespread use of fast VSD imaging as a tool to study 
invertebrate neuronal networks. Here we have shown examples of ICA’s ability to extract 
single neuron spiking activity from optical files of escape motor programs in Tritonia and 
Aplysia. Additionally, we have demonstrated the accuracy of ICA with simultaneous 
intracellular and optical recording in the two molluscan species. We have also demonstrated 
that features of the optical data sets such as file length and the inclusion of spontaneous 
firing data are important for ICA to return a maximal number of components that represent 
the activity of individual neurons. Finally, we have shown that pre-filtering the optical data 
to remove high and low frequency noise is also beneficial for ICA to return maximal 
numbers of components that represent the activity of individual neurons.  

5. Future directions 

The combination of fast VSD imaging and ICA may lead to a resurgence in the use of fast 
VSDs for deciphering how invertebrate neuronal networks operate and are modified with 
experience. While the combination of VSD imaging and ICA makes it possible to monitor 
the activity of well over one hundred neurons during various motor programs, methods are 
now needed to reveal how sub-groups or ensembles of neurons within these datasets 
behave during the production of various behaviors. Fortunately, many researchers have 
developed methods that do precisely this. For example, a recently developed spike-train 
correlation analysis method called the Functional Clustering Algorithm (Feldt et al. 2009) 
reveals clusters of neurons that fire spikes together in a statistically significant manner. 
Using the FCA, we have examined how functional clusters of neurons in the Tritonia pedal 
ganglion change with the transition from escape swimming to post-swim crawling (Hill et 
al. 2011). Finally, since ICA can be performed rapidly, during the course of an experiment, it 
will be possible to identify neurons of interest and then to impale those neurons with sharp 
electrodes and determine their roles in network function.  
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