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1. Introduction 

Bone is an important organ performing three essential physiological functions: mechanical 
support, mineral homeostasis (such as calcium and phosphate) and support of 
haematopoiesis. In fact, bone diseases in the elderly are associated with high morbidity and 
increased mortality. Osteoporosis and related skeletal complications are amongst the most 
important diseases impacting both the quality of life of our aging population and 
contributing costs to our health care system. 

These different physiological functions of bone involve complex regulatory mechanisms at 
different spatial and temporal scales. For example, calcium and phosphate homeostasis is 
controlled on the whole organism scale and involves several organs such as parathyroid 
glands, gut, kidney and bone (Figure 1). On the other hand, bone structure and its 
mechanical properties are controlled on the tissue scale by the processes of bone modelling 
and bone remodelling. Bone modelling enables bones to adapt their shape during growth 
and in response to the prevailing mechanical loads. Bone remodelling removes micro-
damage accumulating in the bone matrix during repeated mechanical loading. In this book 
chapter, we will focus on the implications of bone cell interactions in the control of bone 
remodelling and in the development of its disorders. 

The renewal of bone during bone remodelling is achieved by a sequence of bone resorption 
and bone formation (Figure 2). This process both enables the repair of microcracks in the 
bone matrix and the balance between resorption and formation can be modulated for mineral 
homeostasis. The main cell types participating in bone remodelling are osteoblasts (bone 
forming cells), osteoclasts (bone resorbing cells) and osteocytes (load-sensing cells). During 
remodelling, these cell types are spatially and temporally organised in functional structures 
called basic multicellular units (BMUs). The remodelling sequence operated by a BMU 
follows well-defined phases. It starts with an activation phase consisting of recruitment 
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Figure 1. Schematic representation of whole body calcium regulation and local bone tissue regulation 
via bone remodelling (figure from Peterson and Riggs 2010, reproduced with permission). 

of precursor cells. This is followed by a resorption phase characterised by active osteoclasts 
(OCas) removing bone matrix and a formation phase where active osteoblasts (OBas) lay 
down osteoid which then becomes mineralised to form new bone matrix. After completion 
of the local renewal of the bone matrix, bone cells become quiescent (resting phase) until a 
new remodelling event is initiated.  

Over the past decades, a large number of regulatory factors produced by hormonal glands 
(such as parathyroid-  and thyroid glands), lymphocytes, bone cells involved in sensing the 
mechanical environment (such as osteocytes and lining cells), and even tumour cells, have 
been shown to influence the bone remodelling sequence. These regulatory factors are 
essential components of the cell-cell signalling network between the bone-resorbing and 
bone-forming cells, and will be briefly reviewed in Section 2. Many bone disorders such as 
osteoporosis, Paget’s disease and cancer-related bone diseases are related to disruptions in 
the biochemical or cellular components of this signalling network. These disruptions lead to 
imbalances between bone resorption and bone formation in the BMU remodelling sequence, 
and/or to changes in bone turnover as expressed by the activation frequency of BMUs (Riggs 
and Parfitt 2005).  
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Figure 2. Bone remodelling sequence executed by different bone cell types within Basic Multicellular 
Units (BMUs).  

Bone diseases are often multifactorial and can exhibit high inter-individual variability. It is of 
paramount importance to characterise and treat these diseases in a patient-specific way. 
Different patients exhibit different temporal evolutions of bone mass and bone cell 
populations. These differences can be used to define a patient-specific “disease signature”, for 
example by the quantitative characterisation of both bone resorption rate and bone formation 
rate (Figure 3). The quantitative definition of such a signature is of prime importance for 
mathematical modelling. Mathematical modelling in biology in the next decades is expected 
to develop into clinical tools to help predict the evolution of a disease in an individual and to 
find its optimum treatment regimes. In this contribution, a mathematical model of bone cell 
interactions during bone remodelling is presented. This model is applied to simulate a 
catabolic bone disease (e.g. osteoporosis) and to investigate various treatment strategies. 

A major challenge in bone biology is to understand the spatio-temporal mechanisms of action of 
cell-cell signalling and the interdependence between the bone structure and the bone cells 
actively modifying this structure at different time and length scales. Cell-cell and cell-structural 
interactions are complex, forming various feedback loops that are essential for bone 
homeostasis. Disruption of cell-cell and cell-structure feedback loops can lead to bone fractures 
(Chavassieux, Seeman et al. 2007). In osteoporosis for example, an important signalling 
pathway (i.e., the RANK-RANKL-OPG pathway – see Section 2) is strongly activated, leading 
to an excess of resorption over formation during remodelling (Vega, Maalouf et al. 2007). 
Growth factors released from the bone matrix during bone resorption further stimulate the 
resorptive (catabolic) pathway in a positive feedback loop, which increases remodelling activity 
and bone loss. To maintain bone homeostasis, formative (anabolic) pathways need to be 
stimulated to counterbalance the bone catabolic responses, and so to maintain skeletal integrity.  
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Figure 3. Rate of bone formation [%/day] versus rate of bone resorption [%/day] diagram: utilized to 
represent bone disease signature; red area indicates catabolic regimes while blue area indicates anabolic 
regimes; points on diagonal indicate bone homeostasis and rate of bone turnover.   

A systems approach to bone remodelling can help advance our current understanding of the 
complex system formed by the bone cells and their signalling network (Cassman, Arkin et 
al. 2005; Smallwood 2011). Many cellular and bio-molecular behaviours have been 
discovered by purely experimental research. This has led to a ‘profusion’ of biological data, 
summarised in detailed “component network models”. However, bone remodelling is a 
highly dynamic system with interdependent regulatory controls operating on multiple 
components. These interconnections form feed-forward and feedback controls and may lead 
to system behaviours that cannot be easily predicted from the behaviour of the individual 
components (e.g. non-linear bifurcations, instabilities, snap-through behaviours) (Strogatz 
2001). Understanding how this biological system functions as a whole requires a 
quantitative analysis of its dynamic network behaviour by mathematical and computional 
modelling. 

Computational approaches provide a powerful integrative methodology to investigate the 
complex system behaviour of bone remodelling, enabling quantitative systematic testing of 
various experimental and theoretical hypotheses in-silico (Pivonka and Komarova 2010; 
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Webster and Müller 2011). As such, computational modelling can be considered an 
additional methodology to improve our understanding of bone biology in the same way as 
in-vitro cell culture experiments and in-vivo animal models are experimental methodologies. 
In biology, in-vitro and in-vivo models are used as controlled simplifications of the studied 
processes. Most experimental systems investigate physiological extremes such as maximal 
inhibition of specific pathways, complete ablation of a gene, or multi-fold gene over-
expression. The relevance of the data obtained in these experimental manipulations for 
human physiology relies on the assumptions that a) the modeled processes are 
fundamentally similar to those occurring in humans; b) the role of the quantities of interest 
that are studied or manipulated is more important than the role of the quantities that are 
kept constant or that are not measured; and c) the effects of extreme changes reflect normal 
physiology.  

The main drawbacks and limitations of mathematical modelling are due to the complexity 
of the biological systems under investigation, which requires sophisticated models. Various 
classes of mathematical models can be used depending on the length and time scales to 
investigate. As a general rule, an increase in model complexity is associated with an increase 
in the number of model parameters. This raises the important question of calibrating and 
validating a mathematical model (Babuska and Oden 2004). Many parameters introduced in 
mathematical models have not yet been measured or are out of experimental reach using 
currently available methods. For these reasons, these mathematical models are often 
qualitative. The development of more quantitative models will rely on the collaborative 
efforts of experimental biologists and applied mathematicians/bioengineers.  

This book chapter is organized as follows: In Section 2, a brief overview of bone biology is 
presented, with emphasis on the biochemical regulation of bone remodelling, bone diseases 
and currently available therapeutic interventions. In Section 3, we first present a general 
approach to modelling a system of cell interactions mediated by signalling molecules based 
on receptor-ligand binding reactions. This approach is then used to present a comprehensive 
bone cell population model for bone remodelling. In Section 4, we apply this model to 
simulate a catabolic bone disease (osteoporosis) and investigate different in-silico treatment 
strategies. In particular, we apply the receptor-ligand binding reaction scheme to include the 
effect of the drug denosumab, a monoclonal antibody to RANKL. Finally, we provide a 
summary and conclusions in Section 5. 

2. Bone biology background 

Bone has multiple functions within the body with the most important being to provide 
support to muscles, ligaments, tendons and joints to enable movement. For this function the 
bone needs to maintain structure, strength, and rigidity without compromising lightness. 
Secondly bone provides a readily accessible store of calcium to support calcium homeostasis. 
Other roles include providing a protected environment for bone marrow and support for a 
haematopoietic stem cell niche (Calvi, Adams et al. 2003), and acting as an endocrine organ 
regulating energy metabolism, perhaps through osteocalcin (Clemens and Karsenty 2011).   
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To achieve the above functions a number of cellular processes are required. For the 
structural demands, there is a need for a control system for the detection of bone strain and 
microdamage, and signalling systems for an appropriate reparative response, which would 
involve the directed induction of bone resorption to remove damaged bone and new bone 
formation to replace it (Kidd, Stephens et al. 2010). To maintain the structural integrity of 
bone, signalling processes are required for the coordination of bone resorption and bone 
formation. In fact, on the inner endosteal surfaces of bone and within Haversian systems 
within cortical bone, there is strong spatial and temporal coupling of bone resorption and 
bone formation. Bone resorption is initially induced and bone formation follows such that, 
by the end of this remodeling cycle, an approximate balance is achieved between the 
amounts of bone removed and replaced (Jaworski 1984). In contrast on periosteal bone 
surfaces where the main function is modelling bone, bone resorption tends to be associated 
with growth related shaping of the bone, and intermittent cycles of bone formation 
contribute to a gradual expansion in total bone diameter without the requirement for prior 
bone resorption.  

Bone contributes also to calcium and phosphate homeostasis as an accessible internal store 
for these essential minerals. To fulfill the body’s calcium homeostatic demands for a tightly 
controlled blood level of calcium ions, three organs respond to systemic hormones to 
provide complementary mechanisms for increasing or decreasing blood calcium levels. The 
loss of calcium from the kidney in urine can be altered by changing the rate of calcium 
reabsorption from the renal tubules. The proportion of calcium and phosphate absorbed 
from food can be changed, and the calcium and phosphate flux in and out of bone can be 
altered. Parathyroid hormone (PTH) is secreted by the parathyroid gland when blood 
calcium levels are low and acts on the kidney to increase calcium reabsorption from the 
distal tubules to decrease loss of calcium in the urine. Simultaneously it decreases phosphate 
reabsorption resulting in increased urinary phosphate loss. PTH also acts on bone to 
increase bone resorption by osteoclasts and may also induce a calcium and phosphate flux 
from labile calcium phosphate within bone and in particular that deposited around 
osteocytes (Parfitt 1976; Talmage and Mobley 2008). PTH also acts to induce activation of 
vitamin D in the kidney to produce 1,25 dihydroxyvitamin D which acts primarily as a 
hormone to increase calcium and phosphate absorption from the gut, and can increase bone 
resorption by osteoclasts to increase calcium and phosphate release from bone. Calcitonin is 
produced by the thyroid gland in response to elevated blood calcium levels and acts directly 
on osteoclasts to inhibit their activity thus reducing calcium and phosphate release from 
bone by osteoclasts though this effect is reversible (Chambers 1982). It also may be 
important in protecting the skeleton during prolonged bone stress due to pregnancy and 
lactation (Hurwitz 1996; Woodrow, Sharpe et al. 2006).  

As conflicting structural and homeostatic signals may be concurrently present, there is a 
requirement for the ability to integrate multiple signals such that responses are tailored to 
the particular local bone environment; for example less structurally important bone should 
be targeted for calcium mobilization during times of high calcium demand as observed as 
preservation of trabecular rods seen in the maternal skeleton during lactation (Liu, 
Ardeshirpour et al. 2012). 
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To achieve these diverse requirements there are three highly specialized bone cells present 
in bone:  

1. Osteocytes reside within the bone matrix and interact with bone and communicate to 
adjacent osteocytes via a dense and interconnecting canaliculae network containing 
osteocyte cell processes. Osteocytes orchestrate the detection and cellular responses to 
microdamage, fracture and changing bone strain and are the bone cells present in by far 
the largest numbers , comprising 90% of all bone cells (Lanyon 1993).  

2. Osteoblasts are cells of mesenchymal origin which line the surface of bone and are 
capable of bone formation by progressive bone matrix deposition and subsequent 
mineralization. Cells of this lineage have receptors for PTH and 1,25 dihydroxyvitamin 
D and a number of local regulatory factors (Rodan and Martin 1981). After completion 
of their role in bone formation, the final fate for these cells is either cell death or further 
differentiation to osteocytes, which occurs concurrently with encasement within bone 
matrix.  

3. Osteoclasts are large multinucleated cells of haematopoietic origin able to resorb bone 
by adhering to bone surfaces, secreting acid to demineralise the bone and proteolytic 
enzymes to break down the collagenous bone matrix. However, they are typically 
unable to respond directly to pro-resorptive hormones and require the presence of 
osteoblast lineage cells to locally regulate their differentiation and activity. 

Communication between osteocytes, osteoblasts and osteoclasts enables a spatially and 
temporally coordinated and directed response through the integration of multiple catabolic 
and anabolic signals leading to skeletal responses to both physiological demands and 
pathological challenges.  

2.1. Control of bone resorption 

Cells of the osteoblast lineage maintain a pool of osteoclast precursors through the 
constitutive secretion of M-CSF which is a differentiation and survival factor for early 
osteoclast precursors which express the m-CSF receptor c-fms (Wiktor-Jedrzejczak, Bartocci 
et al. 1990). This pool of cells is then available for recruitment to the osteoclast population 
when needed to provide capability for either bone modeling (sculpting of bone shape), or 
remodeling (renewal of bone) or for initiating bone resorption to release calcium.  

2.1.1. RANK-RANKL-OPG pathway 

The regulation of bone resorption is through integration of multiple pro- and anti-resorptive 
stimuli with convergence of output into a dominant mediating pathway. Cells of the 
osteoblast lineage integrate multiple pro-and anti-resorptive signals, including hormonal, 
mechanical and pathological signals, with output through the changing balance of their 
expression of a cytokine, receptor activator of NFkappaB ligand (RANKL) (Yasuda et al 
1998, Lacey et al 1998), and its inhibitor, osteoprotegerin (OPG) (Simonet, Lacey et al. 1997; 
Tsuda, Goto et al. 1997). RANKL is expressed as either a membrane bound cytokine or 
released in a soluble form by cells of the osteoblast lineage. Osteocytes, osteoblasts and 
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osteoblast precursors can express RANKL and there is at present some controversy 
regarding which predominates. Selective knockdown of RANKL in osteocytes produces an 
apparently moderately severe osteopetrosis in mice indicating a significant role for 
osteocytes as a source for RANKL (Nakashima, Hayashi et al. 2011). RANKL binds to its 
receptor RANK (Nakagawa, Kinosaki et al. 1998) on the surface of osteoclast precursors 
inducing a number of intracellular signalling pathways to drive differentiation to an 
osteoclast phenotype, activating osteoclastic bone resorption and increasing osteoclast 
survival. OPG is a decoy receptor for RANKL, and if secreted in excess by cells of the 
osteoblast lineage, will bind RANKL and prevent its association with RANK, thereby 
inhibiting osteoclast differentiation and activity and promoting osteoclast apoptosis. Thus 
excess expression of RANKL relative to OPG will promote bone resorption and an excess of 
OPG relative to RANKL will inhibit bone resorption (http://www.rankligand.com/). 

Typically, pro-resorptive hormones such as PTH and calcitriol will increase RANKL 
expression and decrease OPG expression within bone leading to increased bone resorption, 
while bone protective agents such as estradiol and testosterone tend to increase the 
expression of OPG relative to RANKL thus reducing bone resorption (Horwood, Elliott et al. 
1998; Michael, Härkönen et al. 2005). Further, PTHrP, IL-1 and TNFα are examples of local 
regulatory factors which increase RANKL expression by cells of the osteoblast lineage 
during pathological bone loss related to cancer (PTHrP) or inflammation (IL-1 and TNFα). 
Local regulatory factors such as Mechanical signals, in contrast to hormones, are locally 
expressed and alter RANKL and OPG expression in a spatially restricted manner. Reduced 
bone strain or the presence of microfractures or fatigue damage, increase expression of 
RANKL relative to OPG, while increased bone strain tends to decrease the expression of 
RANKL, relative to OPG expression, by osteocytes (Kulkarni, Bakker et al. 2010). The pro-
resorptive hormones and other local regulatory factors increase RANKL by binding to their 
own specific receptors in osteoblasts, activating the specific signalling pathways associated 
with these receptors, leading, through transcriptional activation of the RANKL promoter, to 
increased RANKL expression.  

While RANKL/RANK signalling is necessary and dominant in the regulation of bone 
resorption, other modulating signalling molecules can signal directly to osteoclasts to 
magnify or diminish their responses to RANKL. Examples are inflammatory cytokines 
which can magnify osteoclast responses (Lam, Takeshita et al. 2000) and the systemic 
hormone calcitonin which is a potent but reversible direct inhibitor of osteoclast activity via 
activation of the calcitonin receptor on mature osteoclasts (Chambers 1982). Other sources of 
RANKL are also possible in bone but these tend to contribute to the regulation of bone 
resorption during disease. Activated t-cells in particular secrete RANKL and can induce 
bone resorption during infection or chronic inflammation (Teng, Nguyen et al. 2000). 

2.1.2. Current therapeutic interventions of bone resorption – anti-resorptive drugs  

There are a number of treatments currently clinically available and in development for 
inhibiting bone resorption. These target the osteoclast with different treatments inhibiting 
osteoclast differentiation, osteoclast function, osteoclast survival or a combination of these. 
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The bisphosphonate family of drugs have been available for many years and act by binding 
tightly to bone mineral, being internalized by osteoclasts by endocytosis during bone 
resorption where they act to inactivate osteoclast function and to induce osteoclast 
apoptosis. Bisphosphonate treated bone is characterized by reduced numbers of osteoclasts, 
most of which are withdrawn from the bone surface, and many of which are undergoing 
apoptosis (programmed cell death). The later nitrogen containing bisphosphonates such as 
zoledronate are highly potent and long acting inhibitors of osteoclast function, with dosing 
frequency of up to one year being effective (Kavanagh, Guo et al. 2006).    

Calcitonin has also been available for many years and acts by reversibly inactivating 
osteoclasts, however it lacks the sustained activity to be effective where the pathological 
stimuli for bone resorption are present such as when metastatic cancer foci are present in 
bone, though it is used as a treatment for postmenopausal osteoporosis or when rapid 
suppression of bone resorption is required (Mazzuoli, Passeri et al. 1986 ).  

A recently approved treatment for osteoporosis and metastatic bone disease is the 
RANKL/RANK signalling inhibitor denosumab, which is a monoclonal antibody to RANKL 
which mimics the action of OPG by binding RANKL to prevent its association with RANK. 
This protein acts to prevent osteoclast differentiation as RANKL signalling is an essential 
requirement for osteoclast formation. It also acts to reduce osteoclast survival as RANKL is 
an important survival factor for osteoclasts. Histologically bone treated with denosumab is 
characterized by a marked reduction in osteoclast numbers (McClung, Lewiecki et al. 2006).  

There are a number of treatments in development which target osteoclast function. 
Inhibitors of the protease cathepsin K inhibit the ability of osteoclasts to break down bone 
collagen and thus inhibit their function. Bone of animals treated with cathepsin K inhibitors 
are characterized by the presence of many osteoclasts, and shallow resorption lacunae lined 
by a layer of demineralised matrix reflecting the ability of osteoclasts to demineralise bone 
but not to break down the matrix (Eastell, Nagase et al. 2011). 
 

Systemic or local 
factor 

Effect on RANKL 
expression 

Effect on OPG 
expression 

Effect on bone 
resorption 

PTH ↑↑ ↓↓ ↑↑↑ 
1,25(OH)2D3 ↑↑ ↓↓ ↑↑↑ 

Glucocorticoids ↑ ↓↓↓ ↑↑ 
Estradiol  ↑ ↓ 

Testosterone  ↑ ↓ 
Interleukin-1β ↑↑ ↓↓ ↑↑↑ 

TNFα ↑↑ ↓↓ ↑↑↑ 
Prostaglandins ↑↑ ↓↓ ↑↑↑ 

Table 1. Regulation of the relative expression of RANKL and OPG by a selection of systemic and local 
factors (from (Horwood, Elliott et al. 1998), (Tsukii, Shima et al. 1998), (Lee and Lorenzo 1999), 
(Hofbauer, Dunstan et al. 1998), (Brändström, Jonsson et al. 1998), (Hofbauer, Gori et al. 1999), 
(Hofbauer, Khosla et al. 1999), (Hofbauer, Lacey et al. 1999), (Vidal, Sjögren et al. 1998), (Michael, 
Härkönen et al. 2005)) 
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2.2. Control of bone formation 

In contrast to the regulation of osteoclasts, regulation of osteoblasts and bone formation is 
more complex with evidence of extensive signal duplication and redundancy. To control 
bone formation there are a large number of growth factors with a range of actions on cell 
behaviour. There are several classes of growth factors with a range of potent actions on 
osteoblasts and their precursors, and each class typically having multiple members and 
receptors, and a significant number of signalling inhibitors/enhancers. The regulatory 
functions of these can be divided into the following:  

1. Inducing proliferation of the osteoblast precursor population.  
2. Directing lineage commitment of pluripotent mesenchymal stem cells into the 

osteoblast lineage. 
3. Inducing differentiation of osteoblast precursors into mature osteoblasts. 
4. Regulation of osteoblast activity including both collagen deposition and matrix 

mineralization. 
5. Directing further differentiation of osteoblasts to osteocytes with concurrent 

encasement in the bone matrix. 

Regulation of bone formation occurs through the sequential action of growth factors 
favouring these functions in a signalling cascade characterized by feed forward and feed 
back paracrine and autocrine signalling.  

2.2.1. Proliferative agents 

Proliferative agents act as priming agents to increase the population of precursors available 
differentiate into functioning osteoblasts. Important proliferative growth factors include 
transforming growth factor beta (TGF-ß) (Dallas, Rosser et al. 2002), fibroblast growth 
factors (FGF), particularly FGF-1 and FGF-2 (Dunstan, Boyce et al. 1999), and platelet 
derived growth factors (PDGF) particularly PDGF-BB (Caplan and Correa 2011). These 
factors induce proliferation of osteoblast precursors in bone but tend to inhibit osteoblast 
differentiation. Thus their role is important in the early stages of osteoblast generation when 
the critical requirement is to generate a sufficiently large pool of osteoblast precursors from 
the relatively small number of mesenchymal stem cells present. Levels of these agents are 
thus increased transiently in the bone environment during bone resorption and after 
fracture, but progressive differentiation of precursors through to fully mature osteoblasts 
requires reduction in their levels. 

The source of these factors in bone varies depending on the site and the nature of the 
stimulus for bone formation. Bone injury leads to infiltrates in the bone of inflammatory 
cells which are the source of PDGF-BB, which in turn is essential to expand the 
mesenchymal precursor pool for effective fracture repair. In contrast, in endosteal bone in 
which bone formation is required to balance bone removed by osteoclasts recruited for bone 
remodeling, a primary source of proliferative signals is the bone matrix itself. Osteoblasts, 
when forming bone, produce growth factors that are sequestered within the bone matrix. In 
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the case of TGF-β this is as an inactive pro-form of the protein. However osteoclasts activate 
and release TGF-β during bone resorption, enabling it to be available to induce the 
proliferation of osteoblast precursors (Dallas, Rosser et al. 2002).   

FGF’s which are highly proliferative, and IGF’s and BMP’s which have limited proliferative 
activity but are stimulators of osteoblast differentiation are also sequestered in bone with 
potential for release during bone resorption.  

2.2.2. Lineage commitment factors 

The wnt family of growth factors and their respective receptors, co-factors and inhibitors 
provide one source of regulation of lineage commitment of mesenchymal stem cells and the 
population of osteoblast precursors expanded by the proliferative agents above. There is 
evidence that mature osteoblasts can produce and secrete Wnt’s and these can act on early 
mesenchymal precursors to induce commitment to differentiation in the osteoblast lineage. 
Determining the details of wnt action has been complicated by the presence of 19 wnt 
ligands, 10 wnt receptors not to mention multiple wnt receptor co-factors and inhibitors 
(Kawano and Kypta 2003). BMP’s which are produced by osteoblast lineage cells are 
sequestered in bone matrix may also contribute to lineage commitment for osteoblast 
precursors (Abe, Yamamoto et al. 2000), though this is difficult to separate from their 
differentiation activity. During the inflammation such as occurs during fracture repair, 
transient exposure to TNF-α may influence commitment of mesenchymal stem cell to the 
osteoblast lineage (Lu, Wang et al. 2012). 

2.2.3. Differentiation factors 

The BMP’s, particularly BMP2, BMP4 and BMP7, are particularly potent differentiation 
agents with only limited proliferative activity.  IGF1 acts to increase osteoblast activity and 
to increase survival and is also found in bone matrix. The activity of IGF’s is modulated by 
various binding proteins while that of BMP’s can be modulated by specific inhibitors such 
as noggin, chordin and gremlin. They are sourced in bone from osteoblastic cells as 
autocrine and paracrine factors, and are released from bone matrix during bone resorption. 
They have an important role directing the differentiation of osteoblast precursors into 
mature bone forming osteoblasts (Gazzerro and Canalis 2006). This involves migration of 
precursors to the bone surface, polarization of the cell, activation of expression of collagen 
type 1 and other bone matrix proteins and the development of extensive intracellular 
machinery for protein manufacture and secretion. Parathyroid hormone related protein 
(PTHrP) is a paracrine factor produced predominantly by early osteoblast precursors which 
acts to induce osteoblast differentiation and survival and also acts as a survival factor for 
osteocytes (Martin 2005; Michael, Härkönen et al. 2005). PTHrP can also mimic PTH actions 
to increase RANKL expression and thus also increase bone resorption. When PTHrP is 
produced in excessive amounts by cancer cells, it can cause profound bone loss (Suva, 
Winslow et al. 1987). Regulation of further differentiation of osteoblasts to osteocytes is not 
currently well understood, but presumably is also closely regulated by paracrine or 
autocrine differentiation signals. 
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Growth factor 
family 

Effect on 
osteoblast 

lineage 
commitment 

Effect on 
proliferation

Effect on 
differentiation

Sources 
Signalling 
inhibitors/ 

modulators 

Wnts 
 

↑↑ ↑ ↑ 
Osteoblasts 
lineage cells 

DKK-1, 
DKK2, sFRP, 
sclerostin etc 

FGF’s 
 

↑ ↑↑↑ ↓↓ 
Bone matrix, 
Osteoblast 

lineage cells 
 

PDGF’s ? ↑↑↑ ↓↓ 
Inflammatory 

cells 
 

TGF-β 
 

↑ ↑↑↑ ↓↓ Bone matrix  

IGF’s 
 

↑ ↑↑ ↑↑ 
Osteoblasts, 
Bone matrix 

IGF binding 
proteins 

BMP’s 
 

↑ ↑ ↑↑↑ 
Osteoblasts, 
Bone matrix 

Noggin, 
chordin, 
gremlin 

Prostaglandins 
 

? ↑↑ ↑↑ Osteocytes  

PTHrP   ↑ 
Osteoblast 
precursors 

 

Table 2. Families of growth factors active in osteoblast regulation (from (Li, Hassan et al. 2008), (Rodda 
and McMahon 2006), (Zhou, Mak et al. 2008), (Abe, Yamamoto et al. 2000), (Tanaka, Ogasa et al. 1999), 
(Kawaguchi, Pilbeam et al. 1995), (Dallas, Rosser et al. 2002; Martin 2005; Miao, He et al. 2005)) 

Regulation of the differentiation of periosteal osteoblasts is likely to differ with regards to 
growth factors involved compared to those for osteoblasts in Haversian systems or on 
endosteal surfaces as the formation of periosteal osteoblasts is not preceded by osteoclastic 
bone resorption and thus growth factors stored in the bone matrix are not released to prime 
the osteoblast precursor population.   

2.2.4. Current therapeutic agents to stimulate bone formation – anabolic drugs  

There are a number of treatments that have been found to promote bone formation but it 
has been found essential that treatments preserve bone material properties and structure in 
order for improvement in bone strength. Fluoride is a potent anabolic factor used clinically 
for many years treating osteoporosis but was found to cause the formation of bone in which 
bone matrix was disorganized and poorly mineralized, and trabeculae were lacking in 
normal architecture. Its use significantly increased bone mineral density but was actually 
associated with increased fracture rates (Gutteridge, Price et al. 1990; Gutteridge, Stewart et 
al. 2002). Currently the most effective anabolic factor is parathyroid hormone (teriparatide) 
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which fulfils the requirement for a factor which, at the doses used, induces the formation of 
new bone which retains both its normal lamellar structure and trabecular architecture and is 
treatment is associated with decreased risk of fracture (Paschalis, Glass et al. 2005). 
Interestingly, PTH is catabolic if continually present, but anabolic when given intermittently 
(by daily injection) (Onyia, Helvering et al. 2005). Strontium has been claimed to be a 
modestly anabolic factor when given orally as strontium ranelate and is approved for the 
treatment of osteoporosis due to it fracture prevention effects (Reginster 2002). However the 
mechanism of this action is not well determined.  

Anabolic treatments in development include a sclerostin neutralizing antibody which in 
early trials promoted bone formation and increased bone mineral density (Padhi et al 2011). 
Presumably this antibody treatment acts by reducing the osteocyte mediated down-
regulation of bone formation through the expression of the Wnt signalling inhibitor 
sclerostin. Interestingly one of the actions of intermittent PTH is to reduce osteocyte 
production of sclerostin and so PTH and the sclerostin neutralizing antibody may work in 
part by similar stimulatory actions on Wnt signalling (Keller and Kneissel 2005).  

3. Mathematical model of bone cell interactions 

The above review of some of the most important signalling pathways involved in the 
coupling of bone resorption and bone formation in bone remodelling indicates the 
complexity of the communication network between bone cells. While rapid advancement of 
experimental testing techniques generates large amounts of information on bone 
remodelling, a challenging problem is to integrate this experimental data into an 
understanding of system behaviour and to connect observations made at different time and 
length scales. In the following, an overview of mathematical models employed to integrate 
this different experimental information into a systems understanding of bone regulation is 
provided. The complexity of biological systems such as bone is characterized by the 
respective spatial and temporal scales involved. Due to the large variation of spatio-
temporal scales involved in bone remodelling only subsets of these scales are generally 
investigated depending on the biological questions addressed. Mathematical modelling has 
been applied at the following scales:  

On the subcellular scale one may be interested in signal transduction mechanisms such the 
NF-κB signalling pathway that becomes activated once RANKL binds to its receptor RANK 
expressed on osteoclastic cells and so triggers gene expression and consequently osteoclastic 
activity and cell survival. NF-κB signalling plays a pivotal role in the pathogenesis of 
osteolytic bone disorders. The NF-κB signalling pathway is regulated to maintain bone 
homeostasis by cytokines such as RANKL, TNF-α and IL-1. NF-κB activation involves 
stimulus-induced degradation of its inhibitor IkB, which allows for its translocation to the 
nucleus. Several mathematical models have been developed aimed at understanding how 
NF-κB translocation and IkB association/dissociation rate constants keep the majority of NF-
κB in an inactive state in resting cells (Kearns, Basak et al. 2006).  
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At the cell and single BMU scale one is concerned with modelling different cell behaviour 
such as resorption and formation properties of bone cells and respective features of the 
BMU such as resorption speed, number, type and distribution of cells in the cutting and 
closing cone, blood vessel, etc.. A number of mathematical models have been developed to 
investigate single BMU behavior using either discrete (agent-based) approaches 
(Cacciagrano, Corradini et al. 2010; Buenzli, Jeon et al. 2012) or continuous approaches 
based on partial differential equations (Ryser, Komarova et al. 2010; Buenzli, Pivonka et al. 
2011). 

On an even larger scale in the following referred to as tissue scale one may want to 
characterize how bone mass changes with time during osteoporosis and other bone diseases. 
Such data can readily be obtained using micro-computed tomography (micro-CT) which 
relates measured quantities such as bone volume, bone surface area, trabecular numbers 
and spacing to a certain representative volume of bone tissue (such as 2x2x2 mm3). Such as a 
volume generally contains several BMUs and through serial sectioning histology the 
number of bone cells in that volume can be estimated. In mathematical terms the size of the 
chosen volume is crucial for defining average quantities (both mechanical and biological). A 
volume size where a continuous mathematical description is possible is generally denoted 
as representative volume element (RVE). The characterisation of an RVE requires a 
separation of scales between microscopic constitutive elements or components and the scale 
of interest at which properties are represent as continuous quantities. For example 
estimating the local mechanical stiffness of bone requires that the RVE contains sufficiently 
many pores and bone matrix, yet is small enough to represent spatial inhomogeneities (such 
as due to local bone morphology) and to be considered infinitesimal at this scale. In this 
context, different mathematical models of bone cell dynamics have been proposed by 
Komarova et al. (Komarova, Smith et al. 2003), Lemaire et al. (Lemaire, Tobin et al. 2004) and 
Pivonka et al (Pivonka, Zimak et al. 2008).  

On the whole organ scale, i.e., the skeletal scale one may be interested in the action of muscles 
on bones during locomotion. These types of models are commonly referred to as 
musculoskeletal models and allow analyzing the forces produced in bones, cartilage and 
ligaments due to contraction and extension of muscles together with establishing in-vivo 
loading conditions (Shelburne and Pandy 1997; Shim, Hunter et al. 2011). 

On the largest scale, i.e., the whole organism scale one may be concerned with understanding 
mineral homeostasis. As has been pointed out in Section 2 bone plays an important role as a 
reservoir of calcium and phosphate. Several mathematical models have been proposed to 
describe calcium and phosphorous homeostasis considering different hormonal regulators 
such as PTH and calcitonin (Raposo, Sobrinho et al. 2002; Peterson and Riggs 2010).    

The following applications are concerned with temporal aspects of bone cell interactions 
using a representative volume element containing several BMUs. Using this scale of 
representation we investigate changes in bone matrix (volume fraction) and bone cell 
numbers over time both under pathological conditions and using different therapeutic 
interventions.    
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3.1. Modelling cell-cell interactions and cell responses 

Receptor-ligand binding, cell signalling and cell response 

Bone balance and bone turnover during remodelling are critically dependent on the 
coordination between osteoclasts and osteoblasts. This coordination is carried out by cell–
cell interactions mediated by several signalling molecules summarized in Section 2. In this 
section, we present a generic approach to modelling such cell–cell communication. This 
approach is based on fundamental chemical reaction principles of material balance and 
mass action kinetics, and can be applied to other biological systems (Lauffenburger and 
Linderman 1996; Lemaire, Tobin et al. 2004; Pivonka, Zimak et al. 2008).  

Extracellular ligands (e.g. systemic hormones, autocrine and paracrine factors, growth 
factors etc.) modulate cell behaviour by binding to specific receptors on cells and activating 
intracellular signalling pathways. Intracellular signalling mechanisms can be complex and 
may include a cascade of interconnected downstream pathways involving protein 
trafficking, translocation to the nucleus, gene transcription factors, protein synthesis, etc. 
These intracellular mechanisms lead to an overall cell response, such as cell differentiation, 
proliferation, apoptosis or the expression of signalling molecules or receptors (see Figure 4). 
Both extracellular and intracellular signalling mechanisms are governed by the chemical 
reaction principles of material balance and mass action kinetics (Lauffenburger and 
Linderman 1996). To focus on the modelling of cell-cell interactions mediated by 
extracellular signalling molecules, the approach followed in this book chapter will treat 
extracellular and intracellular signalling differently. Extracellular signalling will be 
modelled explicitly by considering receptor–ligand binding reactions governed by mass 
action kinetics. By contrast, intracellular signalling will be modelled phenomenologically by 
assuming that it leads to an overall relation between the "input signal" perceived by a cell 
via extracellular receptor-ligand binding  and the cell response (Figure 4). 

 
Figure 4. Modelling of cell responses using receptor ligand binding reactions; phenomenological 
response functions can either promote (πact) or repress (πrep) a certain cell response; relationship between 
input signal and output signal can be linear (α=1) or non-linear (α≠1).    
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Extracellular signalling: competitive binding of receptors and ligands 

Receptors enable a cell to sense its local biochemical environment. If a ligand binds to a cell 
surface receptor and particularly if it becomes endocytosed (e.g. activating intracellular 
signalling mechanisms), that ligand becomes unavailable to signal to the other cells. We 
refer to this effect as "competitive binding". Competitive binding influences the amount of 
ligand binding to a single cell in presence of other cells, and so influences the "input signal" 
that a cell may perceive from its micro-environment. An advantage of considering explicit 
extracellular receptor–ligand binding reactions in a mathematical model is to account for 
such competitive binding in a systematic way. Competitive binding may occur either 
amongst identical receptors (e.g. RANKL binding RANK on several osteoclasts), or amongst 
different kinds of receptors binding the same ligand (e.g. RANKL binding either RANK or 
OPG). In the following, we first consider a simple receptor–ligand chemical reaction to 
illustrate the concept of competitive binding amongst identical receptors. We will then 
present a more general situation applicable to the RANK–RANKL–OPG signalling system, 
where there may be competitive binding between several types of RANKL (e.g. expressed 
on osteoblasts, on osteocytes, or in soluble form) and several types of receptors, (e.g. RANK, 
OPG and denosumab). 

We first consider a single ligand L, assumed to be produced at rate PL and degraded at rate 
DL. This ligand may bind to a single receptor R, produced at rate PR and degraded at rate DR 
(production and degradation may include the generation and apoptosis of cells expressing 
the ligand or receptor). After binding, the receptor and ligand form a bound complex, which 

we denote by RL . We consider that this complex may either unbind (reverse reaction) or 

may be endocytosed, in which case both the receptor and the ligand become unavailable for 
further extracellular reactions. This case effectively corresponds to a disappearance of the 
bound complex from the extracellular environment. The chemical reaction flows 
corresponding to this receptor-ligand binding situation can thus be summarised as:  

 
↓ ↓

↓ ↓

+ ⎯⎯⎯⎯⎯→∅ (endocytosis)

fR L
RL RL

r
RL

R L

P P
k D

k
D D

R L RL  (1) 

where , 0f r
RL RLk k > are the forward and reverse binding reaction rates and RLD is the rate at 

which the bound complex is degraded from the extracellular environment by endocytosis. 
Assuming first order reaction rates (i.e. rates proportional to the amount of reactant) and the 
law of mass action, the rate equations corresponding to this receptor–ligand binding 
situation are: 
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where the symbols R, L and RL  denote the free (unbound) receptor, free ligand and bound 
complex concentrations (number of molecules per unit volume, e.g. mol/L). Receptor–ligand 
binding reactions occur on a fast time scale compared to characteristic times of cell 
behaviours. Local concentrations of receptors and ligands quickly converge to a quasi-
steady state (Lemaire, Tobin et al. 2004; Pivonka, Zimak et al. 2008; Buenzli, Pivonka et al. 
2012). This steady-stated is determined by setting time derivatives to zero in the system of 
ordinary differential equations (ODEs) Eqs. (2), which leads to the following system of 
algebraic equations: 

 = = =
+ +

1, ,
RL RL RL

RL RL

st
st st st stR L

st st
R L

D D k

k k

P P
R L RL R L

D L D R
    (3) 
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RL f
RL

k D
k

k

+
=      (4) 

is a parameter specific to the binding reactions (1). Equation (3) indicates that competitive 
binding effects only occur if there is a degradation of the bound complex, i.e. if DRL > 0. 
Indeed, if DRL = 0 (no degradation of the bound complex by endocytosis), then the steady-
state concentration of free receptors is independent of the amount of free ligands and the 
steady-state concentration of free ligands is independent of the amount of free receptors. In 
fact, without bound complex endocytosis, the assumed production and degradation of the 
receptors and ligands act as "equilibrating reservoirs". This also explains why the steady-
state concentrations do not depend on the initial amount of reactants. 

The above description can be generalised to a situation in which a number of different kinds 
of receptors R = R1,R2,... may bind a number of different kinds of ligands L = L1, L2, ... . The 
binding reactions (1) hold for all R and L and lead to the following system of algebraic 
equations for the steady-state concentrations of receptors, ligands and bound complexes 
(dropping the steady-state superscript "st" from the notation): 

 = = = ⋅
+ + 

1, ,
RL RL RL

RL RL

R L

R L

D

L R

D k

k k

P P
R L R
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R
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for all R = R1,R2,... and L = L1, L2, ... . As before, competitive binding effects may occur provided 
the bound complexes are degraded (i.e. DRL > 0). Indeed, in that case the existence of several 
receptors to bind the same ligand lowers the free ligand concentration and the existence of 
several ligands to bind the same receptor lowers the free receptor concentration. We note here 
that the production and degradation rates of the ligands and receptors may depend 
themselves on the concentrations of ligands and receptors in the above formulas, to account 
for example for saturation or self-limiting mechanisms whereby production of a receptor or 
ligand stops if they are already available in sufficient amounts (see below the production rates 
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of RANKL and OPG). A closed form or analytical solution of the system of equations (5) is not 
always possible and a numerical solution is often needed. For example, substituting the first 
equation into the second in (5) leads to a system of equations involving only the ligand 
concentrations L. If there is only one ligand type, this reduces to a single polynomial equation 
in L whose order is equal to the number of receptors binding that ligand plus one. 

Intracellular signalling and cell response 

The raw "input signal" communicated to a cell by extracellular signalling depends on the 
number of receptors on the cell that are bound to a ligand (occupied receptors). It is 
convenient to take as input signal the fraction RLν  of occupied receptors on the cell, equal to 

 
 

ν =
++

= = ,
tot RL

RL

RL RL L

R k LR RL
 (6) 

where Rtot is the concentration of both free and bound receptors. The fraction of occupied 
receptors on a cell only depends on the concentration of extracellular free ligand L and a 
single binding parameter kRL. In absence of bound complex degradation (i.e. if DRL=0), kRL is 
the so-called dissociation binding constant (Lauffenburger and Linderman 1996). 

Cells may behave in several different ways in response to extracellular signalling molecules. 
A signalling molecule may either "activate" or "repress" a certain cell response, such as 
differentiation, proliferation, apoptosis, or the expression of other signalling molecules and 
receptors (see e.g. Tables 1 and 2). In a mathematical model, these cell responses are 
associated with certain model parameters. An effective way of modelling the response of a 
cell to a signalling molecule is to specify a phenomenological relation between the strength 
of the input signal to that cell (its fraction of occupied receptors) and the model parameter 
representing the cell response. This relation integrates potentially complex intracellular 
signalling mechanisms that are not explicitly modelled, and so is of phenomenological 
nature. In fact, such a relation is prone to experimental determination, and has been 
measured experimentally in other contexts.1 In the following, "activation" or "repression" of 
a cell response by a ligand will always be represented by modulating the model parameter 
associated with that cell response with a function of the fraction of occupied receptors. To 
this effect, we introduce two classes of functions of RLν : activator functions act( )RLαπ ν  and 
repressor functions rep( )RLαπ ν , where α is a shape parameter (see Figure 4). These activator 
and repressor functions are defined as follows: 

 act rep act
(1 )

( ) , ) 1 ( ) , 0.
( (

(
1 ) 1 )

α αα ν α ν
π ν π ν π ν α

α ν α ν α ν
−

= = − = >
+ − + −

  (7) 

                                                                 
1 For example, in the context of human fibroblasts stimulated by epidermal growth factor (EGF), the mitogenic 
response of the fibroblasts has been shown to depend linearly on the fraction of occupied EGF receptors 
Lauffenburger, D. A. and J. J. Linderman (1996). Receptors: Models for Binding, Trafficking, and Signaling Oxford, 
Oxford University Press., Fig. 6-7, p.249. 
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For example, if D is a model parameter representing a rate of cell differentiation, its 
"activation" by a signalling molecule L will be represented by act )( RLD απ ν , whereas its 
"repression" by L will be represented by rep )( RLD απ ν . Since receptor occupancy only 
depends on the free ligand concentration, one can also directly write the overall relation 
between free ligand concentration and the strength of the cell response from Eqs. (6) and (7): 

 ( ) ( )act repact rep( ) ( ) w e
1

h  , er,L L

RL R
RL RL RL RL

L

L L k
L

L L
α απ π ν π ν κ απ

κ κ
≡ = ≡ ==

+ +
 (8) 

These functions have the same form as the fraction of occupied receptors RLν  and the 
fraction of unoccupied receptors 1 RLν−  (see Eq. (6), except that the parameter RLκ  
corresponds to a rescaling of the binding parameter RLk  by the shape parameter α . In this 
way, a cell is able to respond to a same receptor stimulus with different potencies in 
different behaviours. In the bone cell population model presented below, we will use the 
activator and repressor functions in the form (8). Table 3 in the appendix lists both the 
receptor-ligand binding parameters kRL and the parameters κRL involved in the 
phenomenological relations between receptor occupancy and cell response. 

3.2. Bone cell population model 

In this section we give a summary of the bone cell population models developed by our 
group (Pivonka, Zimak et al. 2008; Pivonka, Zimak et al. 2010; Buenzli, Pivonka et al. 2012). 
The presented model takes into account the RANK-RANKL-OPG signalling pathway 
between bone cells, the action of TGF-β on different types of bone cells and pre-osteoblast 
proliferation. A revised formulation of competitive binding reactions in the RANK-RANKL-
OPG system is presented, which is used to also include the effect of the anti-resorptive drug 
denosumab. A schematic picture of the model is presented in Figure 5. 

Changes in porosity and bone matrix fraction due to cell activity 

The activity of osteoclasts and osteoblasts leads to the removal and deposition of new bone. 
This activity modifies the volume fraction of bone matrix in the bone tissue (fbm=Vbm/VRVE), or 
equivalently the bone porosity (fvas=Vpores/VRVE=1-fbm). Osteoblasts deposit osteoid, a collagen-
rich substance which later mineralizes into new bone. Primary mineralisation of osteoid is 
fast, i.e., 70% of the maximum mineral density is reached within a few days in humans 
(Parfitt 1983). Given the much larger time spans involved in evolution of bone diseases, we 
assume that osteoblasts “instantaneously” deposit “fully” mineralised new bone matrix as a 
first approximation. We further assume that the resorption rate of bone matrix kres by an 
individual active osteoclast (in volume per unit time) and the formation rate of new bone 
matrix deposition kform by an individual osteoblast (in volume per unit time) are constant. 
The evolution of the bone matrix volume fraction is thus given by 

 bm form a res a= OB OCt f k k∂ ⋅ − ⋅   (9) 
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where OBa and OCa denote the density of active osteoblasts and active osteoclasts 
respectively (number of cells per unit volume). These densities are determined by 
biochemical and cellular processes such as differentiation from precursor cell types and 
apoptosis under the control of several signalling molecules. Such processes are governed in 
general by the material balance equation expressed for each cell type. The equations 
governing the evolution of the bone cell densities are presented in the following. 

Governing equations for bone cell densities 

From the osteoblastic lineage the following cell types are taken into account: uncommitted 
osteoblasts (OBu) (representing a constant pool of mesenchymal stem cells or bone marrow 
stromal cells), osteoblast precursor cells (OBp), and active osteoblasts (OBa). From the 
osteoclastic lineage the following cell types are taken into account: osteoclast precursor cells 
(OCp), and active osteoclasts (OCa). The material balance of each cell type (in the 
representative volume element under consideration) is determined by specifying their 
production rate (source term) and elimination rate (sink term). The production and 
elimination of cells considered here are schematically represented in Figure 5 as flows 
between the different cell types. Cell differentiation accounts both for an elimination 
(outflux) from the pool of precursor cells and for a production (influx) into the pool of 
differentiated cells. In our model, OBus differentiate into OBps in presence of TGF-β, but the 
differentiation of OBps in to OBas is repressed by TGF-β. Osteoclasts become active upon 
RANKL binding to their receptor RANK. The availability of RANKL is in turn determined 
by the concentration of OPG and of the systemic hormone PTH (see below). The material 
balance equations for the densities of OBp, OBa and OCa thus take the form of a system of 
rate equations with first-order production and elimination rates (i.e. rates proportional to 
the densities of cells) to account for the population size:  

 
u p ppu O

TGF-β TGF-β
p OB u p OB pact,OB rep,OB BOB OB OB OBt D Dπ π∂ = ⋅ ⋅ + ⋅ − ⋅ ⋅  (10) 

 
p ap

TGF-β
a OB p OB arep,OBOB OB OBt D Aπ∂ = ⋅ ⋅ − ⋅       (11)  

 
p p a a

TGF-βRANKL
a OC p act,OC OC a act,OCOC OC OCt D Aπ π∂ = ⋅ ⋅ − ⋅ ⋅   (12) 

where DOBu, DOBp and DOCp denote the differentiation rates of uncommitted osteoblast 
progenitors, osteoblast precursor cells, uncommitted osteoclast progenitors and osteoclast 
precursor cells, respectively. 

pOB is the proliferation rate of osteoblast precursor cells, 
assumed to be self-limited by the current population of OBps: 

p p

sat
OB OB p p(1 OB / OB )P= −  

(Buenzli, Pivonka et al. 2012). AOBa and AOCa denote the apoptosis rates of active osteoblasts 
and active osteoclasts. Note that OBus and OCps are assumed to be constant and so are not 
part of the state variables. In the above equations, the signalling molecules TGF- β and 
RANKL influence cell differentiation and apoptosis through the activator and repressor 
regulatory functions introduced in Eq. (8). In particular, 

u p

TGF-β TGF-β
act,OB rep,OB, ,π π and 

a

TGF-β
act,OCπ  
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represent an activation or repression by TGF-β of osteoblast differentiation and osteoclast 
apoptosis, whereas

p

RANKL
act,OCπ  represents the activation by RANKL of osteoclast differentiation. 

 
Figure 5. Mathematical model of bone cell interactions taking into account different bone cell types and 
biochemical regulatory mechanism including the RANK-RANKL-OPG signaling pathway, proliferation 
of osteoblast precursor cells and action of TGF-β on bone cells.    

Binding reactions in the RANK-RANKL-OPG system 

We now exemplify the general approach presented earlier for modelling competitive 
binding reactions between receptors and ligands in the RANK–RANKL–OPG system, 
including also the anti-resorptive drug denosumab. To simplify, we only consider one type 
of RANKL, expressed on the membrane of OBps. However, we consider that RANKL may 
bind with three kinds of receptors, i.e. RANK (bound to the membrane of OCps), OPG and 
denosumab (soluble molecules). The equations (5) governing the steady-state concentration 
of RANKL, RANK, OPG and denosumab are fully determined once the production rate 
PRANKL of RANKL, as well as the production rate of its receptors, PR, R=RANK, OPG, 
denosumab are specified. All degradation rates (DRANKL and DR) are assumed constant (see 
Table 3 in the appendix). The formulation of the equations governing the binding reactions 
in the RANK-RANKL-OPG system presented below differs from the formulation used in 
(Lemaire, Tobin et al. 2004) and (Pivonka, Zimak et al. 2008; Pivonka, Zimak et al. 2010). In 
these previous works, competitive binding was only partially implemented.2 A fully 
consistent approach is considered here instead. 

The expression of RANKL on OBp is known to be increased by the systemic hormone PTH 
(see Table 1). Accordingly, we assume that PTH is activating the production rate RANKL

OBpβ of 
RANKL by OBps.3 To account for a limited space per cell where RANKL can be expressed 
(i.e. a limited carrying capacity), the production rate of RANKL is also multiplied by a 

                                                                 
2 For example, while the concentration of RANKL was dependent on that of OPG, the concentration of OPG was not 
dependent on that of RANKL. 
3 In Lemaire et al. 2004 and Pivonka et al. 2008 regulation by PTH was assumed to limit the so-called 'carrying capacity' 
of RANKL on a cell instead, but there is no biological evidence for this fact. A more direct regulatory effect of PTH is 
assumed here. 
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saturation function such that production stops when the number 
p

RANKL
OBN of RANKL 

molecules on the OBp reaches a maximum number, 
p ,ma

R L
O x

ANK
BN . Finally, to account for the 

population size of OBp expressing RANKL, the production rate of RANKL is multiplied by 
the density of OBp cells, such that: 
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              (13) 

where the total number of RANKL ligands (free and bound) present on the membrane of an 

OBp cell, RANKL
OBpN , is given by  
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The expression of OPG by OBas is known to be inhibited by PTH (see Table 1). Accordingly, 
we assume that PTH is repressing the production rate of OPG per OBa cell, OPG

OBaβ . Following 
(Pivonka, Zimak et al. 2008), the endogeneous production of OPG is also assumed to be self-
limited, and so the production rate of OPG is multiplied by a saturation function, such that 
production stops when the concentration of OPG reaches a maximum concentration OPGmax. 
Finally, to account for the population size of OBa expressing OPG, the production rate of 
OPG is multiplied by the density of OBa cells. Hence: 

 
OPG PTH

OPG OBa rep a
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OPG
1 OB

OPG
P β π

 
= −  

 
 (15) 

Following Refs (Lemaire, Tobin et al. 2004; Pivonka, Zimak et al. 2008), the receptor RANK 
is assumed be present on OCps in constant numbers. Thus the production rate of RANK is 
proportional to that of OCp cells: 

 
RANK

RANK OCp OCpP N P=     (16) 

where RANK
OCpN is the number of RANK receptors per OCp cell and POCp is the production rate 

of OCps. The degradation rate of RANK receptors (whether free or bound) corresponds here 
to the differentiation rate of OCps into OCas, DOCp (in the model, active osteoclasts are not 
assumed to express RANK receptors for simplicity). Therefore, one has 

pRANK RANK,RANKL OCD D D= = in the first equation in (5) such that only the ratio PRANK/DRANK 
occurs in that equation. With Eq. (14), this ratio is equal to: 
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since the density of OCps is equal to POCp/DOCp. 
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The production rate of denosumab dosing
denosumabP  will be set as given function of time according 

to the chosen dosing regime of the drug. All the binding and degradation properties of 
denosumab are assumed identical to those of OPG. In summary, the equations governing 
the concentrations of RANKL, RANK, OPG and denosumab are: 
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 (18) 

where PRANKL and POPG are given by Eqs. (13)–(15) and all the parameters values are listed in 
Table 3 in the appendix. A closed form solution for these equations is not possible. 
Equations (10)–(12) governing the evolution of the cell populations and Eqs (18) form a 
system of differential algebraical equations (DAE) that need to be solved numerically. 

4. Numerical simulations of bone diseases and therapeutic interventions  

In this section we outline how bone diseases and drug treatments can be investigated in a 
computational modelling framework such as the bone cell population model of bone 
remodelling presented in Section 3. We refer to these computational experiments as “in-
silico disease modelling” and “in-silico drug treatment modelling”. We will then exemplify 
such in-silico experiments in our bone cell population model by considering a simple case of 
an osteoporotic condition, modelled by a decrease in the endogeneous OPG production rate. 
While osteoporosis is often associated with dysregulations in several pathways or 
components, such as increased osteocyte apoptosis due to reduced estrogen levels in post-
menopausal osteoporosis, a decrease in endogeneous OPG production in our model leads to 
a high turnover rate with a catabolic bone imbalance, which is characterisitic of the first 
stage of age-related osteoporosis. Simple treatments of this disease will be first simulated by 
prescribing constant changes in model parameters in an attempt to restore bone volume 
(Section 4.1). The discussion of these simple in-silico treatments is largely based on the work 
by (Pivonka, Zimak et al. 2010). Finally, we will investigate a temporal in-silico treatment 
mimicking the anti-resorptive action of the drug denosumab with different dosing regimes 
(Section 4.2). 

To model a disease in-silico, it is important that the computational model contains suitable 
parameters associated with the known pathophysiology of the disease. This emphasises the 
importance of including a comprehensive set of signalling molecules between bone cells 
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when modelling osteoporosis and other disorders of bone remodelling. As has been pointed 
out in Section 2, many catabolic bone diseases are associated with disruptions in the RANK-
RANKL-OPG pathway. However, several model parameters are involved in this pathway 
and so several model parameters may be modified to model such a disease. While this 
complicates the modelling of in-silico diseases, it also opens up the possibility for patient-
specific disease modelling. The measurements of different bone properties from a patient, 
such as the temporal evolution of the bone matrix fbm from micro-CT scans, bone turnover 
rates from histological estimates of bone cell numbers in biopsies or from serum levels of 
turnover markers, can be used to estimate the evolution of model parameters required to 
simulate the evolution of the disease in this particular patient (e.g. using optimisation 
algorithms). Often, however, the time evolution of such properties cannot be known with 
precision. In a situation where for example only two time points are known in a single bone 
property of a patient, one may assume a constant change in a single model parameter by 
lack of further information. This is the situation considered in the model of osteoporosis 
simulated below, where it is assumed that the bone matrix volume fraction is known only at 
the onset of the disease (t0) and at one further time point after disease progression and 
before treatment (t1) (see Figure 6). An in-silico therapy is then applied in a second step 
starting from the time point t1 to treat the disease. The effect of this therapy is checked at a 
later time point (t2). 

To model realistic in-silico therapies, is it crucial to identify the specific action of a 
therapeutic drug on the various biochemical or cellular components of the system, and to 
know the pharmacokinetic properties of that drug, such as the rapidity of its clearance from 
the system. Similarly to a disease, a drug may affect a single component or multiple 
components in a biological system. Numerically simulating the effect of a drug can help 
understand the overall action of the drug, especially when responses of different 
characteristic times are involved in different affected components. However, simpler in-
silico therapies, in which the effect of a constant change in a model parameter is studied in a 
sensitivity analysis, are also worthwhile to investigate. Such theoretical treatments can give 
insights into the most effective therapeutic strategies and potential drug targets. 

The identification of successful treatment strategies is critical for the development of clinical 
applications of in-silico therapies. Bone therapeutic guidelines currently classify therapeutic 
agents into anabolic or anti-resorptive drugs based on their effect on bone volume (or bone 
mass) and bone turnover (see (Riggs and Parfitt 2005) and Section 2 for more details). Using 
the terminology of (Riggs and Parfitt 2005) anti-resorptive drugs (such as bisphosphonates 
and denosomab) increase bone volume, but lead to low bone turnover, whereas anabolic 
drugs (such as intermittent PTH) strongly increase bone volume while producing high bone 
turnover. Depending on the current bone volume and bone turnover state of a particular 
patient, a treatment regime combining both types of drugs may thus be advised. 
Optimisation algorithms could help a clinician find the "optimal" treatment regime for that 
patient. In Figure 6, three therapeutic treatments are schematically shown to successfully 
restore bone volume and bone turnover rate (bone cell numbers), however with different 
efficiencies. The "ideal" treatment (red curve) recovers all of the bone lost and normal cell  
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Figure 6. Schematic representation of catabolic bone diseases and applied therapy: (a) volume fraction 
of bone matrix [%] vs. time [years] and (b) normalized bone cell numbers [-] vs. time [years] (t0 = onset 
of bone disease; t1 = start treatment; t2 ... end treatment; ideal therapy ... red curve; ‘‘example’’ therapy ... 
blue curve; therapy error ... gray shaded area between ideal therapy and typical therapy, Figure 
modified from Pivonka et al 2010). 

numbers instantaneously. Clearly this is impossible, and realistic treatments (blue and green 
curves) may only restore the normal state after some period of time. However, different 
treatments will usually exhibit different time courses for bone volume and cell numbers. 
These differences may be used in the search for optimal treatment regimes. For example, 
one may want to minimise the area between the "ideal treatment" curve and the actual 
treatment curve, i.e. to minimise the "therapy error" (gray area in Figure 6). Weighted 
combinations of several criteria, for example involving turnover rate and cell numbers, can 
also be used to define an objective "therapy error" to minimise. 

4.1. Simple in-silico treatment of osteoporosis in the bone cell population model: 

constant changes in parameter values  

In this subsection we extend some of the results presented in (Pivonka, Zimak et al. 2010) 
using the improved model of bone cell interactions presented in Section 3, which includes 
proliferation of osteoblast precursor cells (Buenzli, Pivonka et al. 2012) and competitive 
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receptor-ligand binding reactions in the RANK-RANKL-OPG system. In (Pivonka, Zimak et 
al. 2010), we showed that many bone disorders that act via the RANK-RANKL-OPG system 
induce more pronounced osteoclast responses than osteoblast responses. This indicates that 
targeting the RANK-RANKL-OPG pathway is not very effective at triggering bone 
formative responses. Furthermore, it was shown in this study that the severity of catabolic 
bone diseases strongly depended on how many components of the RANK-RANKL-OPG 
pathway were assumed to be affected. Changes of single parameters in the RANK–RANKL–
OPG system led to less severe bone loss compared to multiple concurrent changes of 
parameters. In a subsequent study we have also shown that bone disorders related to 
excessive bone formation (such as van Buchem disease and sclerosteosis) may act through a 
different pathway, with the Wnt pathway being a major candidate (Buenzli, Pivonka et al. 
2012). Regulation of osteoblast differentiation and proliferation by Wnt were shown to be 
very effective mechanisms to induce bone formative responses.  

As mentioned above, modifying the value of a model parameter as an in-silico therapeutic 
treatment does not represent a realistic drug treatment scenario. However, evaluating the 
sensitivity of the bone response to such changes provides insights into the general 
mechanism of action of a potential therapeutic agent and can help identify the most effective 
pathways that should be targeted for disease intervention, even if such treatments may not 
currently exist. In Figure 7, we apply such constant changes in model parameters to restore 
the bone loss induced by a simulated osteoporotic condition. This osteoporotic condition is 
simulated by a reduction in endogeneous OPG production (i.e. a reduction in the value of 
the model parameter 

a

OPG
OBβ ) assumed to develop instantaneously at time t0=0 from a healthy 

state. The evolution of the bone volume fraction fbm is followed in a representative volume 
element located in cortical bone with initial bone volume fraction fbm(t0)=95%. The reduction 
in OPG production is chosen such that a 5% of bone volume fraction is lost after one year, 
i.e. at t1=365 days. At time t1, different in-silico treatments are commenced by changing 
single model parameters with the objective to restore bone volume over a period of four 
years (i.e., at time t2=(1+4)·365=1825 days). Changes in the model parameters DOBu, POBp, 
DOBp, AOBa (targeting osteoblast development), in AOCa and in the binding parameter between 
RANK and RANKL, kRANK-RANKL (targeting osteoclast development) have been investigated.  

The numerical results shown in Figure 7 clearly show that model parameters associated 
with osteoblast development have a strong potential to restore bone volume within the 
prescribed treatment period of four years. In fact, the numbers of OBas and OCas are 
increased in these situations (not shown) while bone balance is positive. The combination of 
high bone turnover rate and positive bone balance enables a quick restoration of bone 
volume. According to the classification by (Riggs and Parfitt 2005), these model parameters 
can therefore be characterised as having a pro-anabolic potential.  

On the other hand, parameters associated with osteoclast development (including 
parameters associated with the RANK-RANKL-OPG pathway) have a weak potential to 
restore bone volume. Increasing osteoclast apoptosis AOCa (which can be associated with the 
action of a bisphosphonate) or reducing the binding affinity between RANK and RANKL  
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Figure 7. Single constant parameter therapies for treatment of catabolic bone disease due to constant 
reduction in OPG production rate leading to 5% bone loss over one year: (a) bone matrix volume 
fraction [%] vs. time [days] and (b) normalized cell numbers [-] vs. time [days] (DOBu=differentiation of 
uncommitted osteoblasts, POBp=proliferation of osteoblast precursors, AOBa=apoptosis of active 
osteoblasts, AOCa=apoptosis of active osteoclasts, kD,RANK-ARNKL=dissociation binding constant RANK-
RANKL, DOBp=differentiation of osteoblast precursors).  

via the parameter kRANK-RANKL fail to restore bone volume within the prescribed treatment 
period of four years. In fact, the numbers of OBas and OCas are significantly reduced in these 
situations. Thus, although bone balance is positive, bone turnover rate is too low for this 
positive bone balance to build up bone volume fast enough. According to the classification 
by (Riggs and Parfitt 2005), these parameters can be characterised as having an anti-
resorptive potential. The initial strong formative response is due to an immediate reduction 
of active osteoclasts without corresponding reduction in active osteoblasts. After a period of 
about 60 days, this initial reduction in active osteoclasts leads to a marked depletion of TGF-
β and so to decreased osteoblastogenesis. This depletes RANKL which further enhances the 
initial reduction of active osteoclasts and leads to a low bone turnover state in the second 
part of the bone response. 

According to the definition of “therapy error” presented in Figure 6, the most effective 
treatment is achieved via manipulation of the differentiation rate of osteoblast precursor 
cells (DOBp). However, the ability of DOBp to restore bone volume depends strongly on the 
proliferative potential of pre-osteoblasts, i.e. on the ratio POBp/DOBu (Buenzli, Pivonka et al. 
2012). At low ratios POBp/DOBu, an increase in DOBp depletes the pool of pre-osteoblasts 
enough to lead to a low bone turnover state unable to restore bone volume within the four 
years treatment period (data not shown). At higher ratios POBp/DOBu, this depletion occurs at 
higher values of DOBp and bone volume can still be restored within the treatment period as 
shown in Figure 7. The results of Figure 7 suggest that an alternative efficient treatment 
minimising therapy error in the evolution of bone volume may consist of first using an anti-
resorptive treatment during the first few months, followed by a pro-anabolic treatment. 
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4.2. In-silico treatment of osteoporosis by denosumab in the bone cell 

population model 

Finally, we investigate a therapeutic strategy that mimicks the effect of the anti-resorptive 
drug denosumab on the simulated osteoporotic condition of Section 4.1. Although a 
realistic model of denosumab treatment should take into account pharmacokinetic 
properties, here, we simply assume that denosumab is produced in the bone compartment 
according to its dosing regime and that it is eliminated at a constant rate (see Eq (18)). The 
explicit consideration of denosumab as a new biochemical component of the system 
associated with its own dynamics enables to investigate temporal dosing regimes 
consistently. Moreover, the explicit consideration of denosumab enables competitive 
binding effects between denosumab, RANK and OPG to bind RANKL to be fully 
accounted for.  

Three different dosing regimes of denosumab are shown in Figure 8, all commencing at time 
t1=365 days. In Figure 8a and 8b, a continuous infusion is assumed, i.e. the production rate 
Pdenosumab of denosumab is constant. The influence of the infusion rate ("dose", in 
concentration per unit time) on the evolution of the bone volume fraction is shown in Figure 
8a. The influence of the infusion rate for the bone volume fraction reached after four years of 
treatment is shown in Figure 8b. As one may expect, the lowest infusion rate (3 pM/day) has 
the least effect to restore bone loss. Interestingly, a medium infusion rate (7 pM/day) is more 
efficient to restore bone loss than lower or higher infusion rates, an effect that would be 
difficult to predict without computational modelling. The similarity of the evolution of the 
bone volume fraction in Figure 8a and those seen in Figure 7 when modifying anti-
resorptive parameters is due to the fact that denosumab acts via the RANK-RANKL-OPG 
pathway.     

In Figure 8c, a single injection of denosumab is simulated. This situation is modelled by 
specifying the production rate Pdenosumab(t) as a function having a single peak at time 
t1=365 days. The height of the peak is taken as a measure of the dose (in concentration 
per unit time) and the width of the peak at half height is taken to be two days. The 
dosing rate is seen to influence both the maximum bone volume fraction attained and 
the final gain in bone volume compared to the untreated case (dotted line). Higher 
denosumab doses lead to larger bone gain and reduce bone loss for a longer period, 
although a saturation of the dose dependence is quickly reached from about 100 
pM/day upwards. 

Finally, dosing regimes made of multiple injections spaced by regular time intervals are 
shown in Figure 8d. Each injection of these dosing regimes is simulated by the case 100 
pM/day of Figure 8c. The dosing regime with a small administration interval (every 5 days) 
is comparable to constant denosumab infusion. Administration of denosumab every 10 days 
still has the potential to inhibit significant bone loss. However, an administration interval of 
30 days at the same dose is not sufficient to efficiently inhibit bone loss.  
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Figure 8. Single time dependent parameter therapy mimicking pharmacokinetic action of denosumab  
for treatment of catabolic bone disease due to constant reduction in OPG production rate leading to 5% 
bone loss over one year: (a) bone matrix fbm [%] vs. time [days] for constant denosumab doses, (b) bone 
matrix fbm [%] vs. denosumab infusion rate [pM/day], (c) bone matrix fbm [%] vs. time [days] for singe 
injections of denosumab and (d) bone matrix fbm [%] vs. time [days] for multiple injections of 
denosumab at a dose of 100 pM/day.  

5. Summary and conclusions 

In this contribution we presented a mathematical model describing bone remodelling taking 
into account complex bone cell interactions. A general approach to modelling cell-cell 
signalling and cell behaviour was proposed. This approach considers explicit extracellular 
signalling mechanisms and receptor-ligand binding reactions governed by the law of mass 
action and material balance, while intracellular signalling mechanisms are assumed to be 
captured by phenomenological response functions. We highlighted the fact that different 
patients may exhibit different bone disease patterns which can be captured in a so-called 
bone disease signature diagram. Within the presented framework patient specificity can be 
accounted for via adjustments of model parameters.  

As an application of the model, we simulated an osteoporotic condition associated with a 
disruption in the RANK-RANKL-OPG pathway and considered various 'in-silico' 

(a) (b)

(c) (d)
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therapeutic treatments. The notion of "therapy error" was introduced to identify the most 
efficient ways to restore normal bone mass and bone turnover from a diseased condition. In 
these therapeutic interventions, we could identify two groups of model parameters: (i) anti-
resorptive parameters characterised by low bone turnover and (ii) pro-anabolic parameters 
characterised by high bone turnover. Anti-resorptive parameters corresponded to 
parameters of the RANK-RANKL-OPG pathway and parameters associated to osteoclast 
developement. Pro-anabolic parameters corresponded to parameters associated with 
osteoblast development. 

Finally, temporal treatment regimes were investigated using a simple model mimicking the 
action of the drug denosumab. Competitive binding effects between denosumab, RANK and 
OPG to bind RANKL could be fully accounted for by the specification of explicit receptor-
ligand binding reactions in the RANK-RANKL-OPG system. For constant administration 
regimes, there is an intermediate optimal dose leading to maximum bone gain. For the 
single and multiple injection regimes bone gain was stronger with higher doses or higher 
administration frequencies, however, the dose and administration frequency dependences 
of the bone response were seen to saturate quickly. 

Future advancement of bone biology research will strongly rely on how well experimental 
and theoretical groups are able to communicate and collaborate with each other. A 
prerequisite for such collaborations is the mutual understanding of research methodologies 
employed. We hope that this chapter will provide some guidance on how theoretical tools 
such as mathematical modeling can be used in biomedical research in general, and 
particularly in bone biology research. 

Appendix 
 

Symbol Value Description

OCp 1x10-3 pM pre-osteoclast density 
OBu 1x10-3 pM uncommitted osteoblast progenitors density 
kres 200 pM-1day-1 daily volume of bone matrix resorbed per osteoclast 
kform 40 pM-1day-1 daily volume of bone matrix formed per osteoblast 

bone
TGF-n β  1x10-2 pM concentration of TGF-β stored in the bone matrix 

DOCp 2.1/day 
p aOC OC→ differentiation rate parameter 

AOCa 5.65/day OCa apoptosis rate parameter 
DOBu 0.7/day 

u pOB OB→ differentiation rate parameter 

DOBp 0.166/day 
p aOB OB→  differentiation rate parameter 

POBp 0.054/day OBp proliferation rate parameter 
AOBa 0.211/day OBa apoptosis rate 

aOB ,PTHκ  150 pM Response parameter for RANKL activation by PTH on OBa 

pOB ,PTHκ  0.2226 pM Response parameter for OPG repression by PTH on OBp 
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pOC ,RANKLκ  16.65 pM Response parameter for activation of OCp differentiation by RANKL 

uOB ,TGF-βκ  5.63x10-4 pM Response parameter for activation of OBu differentiation by TGF-β 

pOB ,TGF-βκ  1.75x10-4 pM Response parameter for repression of OBp differentiation by TGF-β 

p

RANK
OCN  10000 Number of RANK receptors on an OCp cell 

OPGmax 2x10+8 pM Concentration at which endogeneous production of OPG stops 

a

RANKL
OBN  2.7 10+6 Carrying capacity of RANKL on an OBa cell 

PTHβ  250 pM/day Systemic production rate of PTH  

a

RANKL
OBβ  1.64245x10+5/day Production rate of RANKL by an OBa cell 

p

OPG
OBβ  1.625x10+8/day Production rate of OPG by an OBp cell 

DPTH 86/day Degradation rate of PTH 
DTGFb 1/day Degradation rate of TGF-β 
DRANKL 10.1325/day Degradation rate of RANKL 
DOPG 0.35/day Degradation rate of OPG 
Ddenosumab 0.35/day Degradation rate of denosumab 
DRANK,RANKL 10.1325/day Degradation rate of the bound complex RANKRANKL  

DOPG,RANKL 10.1325/day Degradation rate of the bound complex OPGRANKL  

Ddenosumab,RANKL 10.1325/day Degradation rate of the bound complex denosumabRANKL  

kRANK,RANKL 29.3 pM Binding parameter between RANK and RANKL 
kOPG,RANKL 1000 pM Binding parameter between OPG and RANKL 
kdenosumab,RANKL 1000 pM Binding parameter between denosumab and RANKL 

Table 3. Parameters of the model 
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