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1. Introduction 

Construction of the neural netwoks depends largely on precise contacts between neurons 

and non-neuronal cells. Numerous studies have described different types of adhesive 

interactions between cells in the nervous system. These include adhesive contacts between 

neural cell bodies, axonal attachments to glial cells, axon fasciculation, connection between 

pre- and postsynaptic specializations as well as to cells outside the nervous system. 

Although some of the molecules that mediate each of these types of neural adhesive contacts 

have been characterized, some remain unknown. 

Neuronal synapses can be considered as a specialized type of cell-cell interaction that 

mediates communication between neurons and their target cells. It involves the interaction 

between two asymmetric partners, the presynaptic specialization, where the synaptic 

vesicles release neurotransmitters and the postsynaptic density, which contains receptors 

and adapter scaffold proteins that transduce the neurotransmitter signal [1]. As at other cell-

cell junctions, such as epithelial tight junctions or the immune synapse, synaptically-

localized neural cell adhesion molecules are not merely static structural components but are 

often dynamic regulators of synapse function. 

In the last years numerous studies provide new insights into the role of adhesion molecules 

in the formation, maturation, maintenance, function and plasticity of synaptic contacts. 

Several cell adhesion molecules have been involved in synapse development, including, 

cadherins, proteocadherins, integrins, NCAM, L1, Fasciclina, Syg, Sidekicks, SynCam, 

Neurexin-Neuroligin, LRRTM, GDNF/GFRα, Neurexin/Cbl1/GluRδ2, between others [2]. 

Trans-synaptic cell adhesion molecules are particularly attractive candidate mediators of 

synapse formation because of their potential to bidirectionally coordinate functional and 

morphological synapse differentiation [3,4].  
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During neuronal development, specific synaptic circuits are generated by synapse formation 

between the appropriate pre- and postsynaptic partners and aberrant connectivity can lead 

to nervous system disorders. The accuracy of synapse formation is fundamental for the 

normal brain development and depends in part on the controlled spatial and temporal 

expression of selective adhesion molecules on neuronal surface. 

2. Adhesion at the synapses 

Many cell adhesion molecules are localized at synaptic sites in neuronal axons and 

dendrites. These molecules bridge pre- and postsynaptic specializations but do far more 

than simply provide a mechanical link between cells, they are important elements in the 

trans-cellular communication mediated by synapses. During the last years, some adhesion 

complexes, which are involved in the formation, maintenance and modulation of synaptic 

contacts, have emerged. Three particularly interesting molecular systems of pre- and 

postsynaptic partners that interact in trans across the synaptic cleft, have been described: 

Neurexin-Neuroligin, LRRTM and SynCam. 

2.1. Neurexins and neuroligins 

Neurexins (Nrxns) and Neuroligins (Nlgns) are the best characterized synaptic cell adhesion 

system. Neurexins were originally discovered as receptors for α-latrotoxin, a vertebrate-

specific toxin present in the black widow spider venom that binds to presynaptic receptors 

and induces massive neurotransmitter release [5]. There are two types of Nrxns, a longer α-

Nrxn (α-Nrxn) and a shorter β-Nrnx (β-Nrxn) isoforms. While α-Nrxn have six extracellular 

LNS domains (Laminin/ Neurexin/ Sex hormone-binding globulin-domain) with three 

intercalated EGF-like domains, β-Nrxn only contains a single LNS domain [6,7,8]. 

Immunofluorescence and subcellular fractionation analysis indicate that Nrxns are located 

on presynaptic terminals [6,9]. 

Mammals contain three Nrxn genes (Nrxn1-3), each of which directs the transcription of α- 

and β-Nrxns from independent promoters [10]. Neurexins are evolutionary conserved and 

pan-neuronally expressed [10,11]. Homologues of neurexin genes have been described in 

low vertebrates such as Danio rerio [12], and invertebrates such as Drosophila melanogaster, 

Caenorhabditis elegans, honeybees and Aplysia [10,13,14,15]. In mammals, alternative splicing 

of Nrxns can generate thousands of alternatively spliced mRNA transcripts. The ectodomain 

of α-Nrxns contains five sequences that can be alternatively spliced (S1-5), two of which are 

also present in β-Nrxns (S4 and S5) [10,11]. Some of these splice sites are localized in the 

Nrxn binding domain. Interestingly, Nrxn alternative splicing is regionally regulated during 

development and by neural activity [11,16], and plays an important role in modulating its 

function at synapses. Indeed, Nrxn distribution to excitatory and inhibitory synapses seems 

to be regulated by alternative splicing. It has been reported that β-Nrxn without the S4 

sequence (-S4) induce differentiation of excitatory synapses while β-Nrxn containing the S4 

insert (+S4) promote differentiation of inhibitory synapses [17,18]. Furthermore, α-Nrxn also 

strongly promotes differentiation of inhibitory synapses [17]. 
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Neuroligins have been identified as endogenous Nrxns ligands [19,20]. As Nrxns, 

Neuroligins (Nlgns) are type I membrane proteins that consist of an extracellular region, 

involved in trans-synaptic interactions, a single transmembrane sequence and a small 

cytoplasmic domain that contain a PDZ-domain binding sequence that recruits PSD-95 and 

other PDZ-domain proteins [21]. The extracellular region contains a domain homologous to 

acetylcholinesterase, without its enzymatic activity. All Nlgns are enriched in postsynaptic 

densities. The human genome expresses five Nlgns isoforms (Nlg1-5), and rodent genome 

contains only 4 isoforms (Nlg1-4). Homologues of Nlgns have been identified in 

invertebrates including Drosophila melanogaster [22,23], honeybees [13,24], Caenorhabditis 

elegans [25] and Aplysia [14,15]. In mammals, Nlgns contains two alternative splice sites 

referred to as SA (in Nlgn1-3) and SB (in Nlgn-1) [20,26]. In contrast to Nrxns, Nlgns are 

specifically localized to particular synapses. Several studies revealed that Nlgn1 and Nlgn2 

are exclusively localized to excitatory and inhibitory synapses respectively. Nlgn3 has been 

described to be present at both inhibitory and excitatory synapses in hippocampal cells 

[27,28,29,30,31], while Nlgn4 appears to be localized to inhibitory synapses in some tissues 

such as, retina, spinal cord, and several lower brain regions; and to excitatory synapses in 

some tissues such as, hippocampus and cortex [27]. 

Nrxn-Nlgn complex has been involved in the formation, maturation and function of 

vertebrate synapses. The evidence indicates that Nrxn-Nlgn bind each other by their 

extracellular domain to promote adhesion between pre- and postsynaptic specializations, 

recruiting pre- and postsynaptic molecules to form a functional synapse. Cell based assays 

of synapse assembly showed that contact of dissociated neurons with Nlgn-expressing 

fibroblasts can induce the formation of functional presynaptic specializations by recruiting 

components of the presynaptic machinery in co-cultured neurons [32], while contact of 

neurons with Nrxn expressing non-neuronal cells can induce postsynaptic differentiation 

and clustering of postsynaptic receptors in contacting dendrites [31,33].  

Recent studies indicate that alternative splicing of Nrxn and Nlgn mRNA may play an 

important role modulating the assembly and synapse properties of Nrxn-Nlgn complex [26]. 

As it has been previously mentioned, Nrxns and Nlgns contain sequences that can be 

alternatively spliced. Some of these splice sites are localized in the Nrxn-Nlgn binding 

interface, placing them in a relevant position to modulate Nrxn-Nlgn engagement. It has 

been proposed that alternative splicing of Nrxns underlies an adhesive code and/or 

synapse-specific functions [18,34,35]. The evidence indicates that the sequence S4 of Nrxn 

and insert B of Nlgn have a crucial role in the Nrxn-Nlgn interactions. It has been described 

that the presence of the insert S4 in β-Nrxn (+S4) strongly reduces binding to Nlgn1 

containing the insert B (+B) [26], indicating that Nlgn1(+B), the most common form of Nlgn1, 

interacts preferentially with β-Nrxn (-S4). Moreover, the presence of insert B inhibits the 

binding of Nlgn1 to α-Nrxns [36]. On the other hand, the alternative splicing of the segment 

S4 in Nrxn controls interactions with other Nrxn ligands, such as leucine-rich repeat 

proteins (LRRTMs) and the Cbln1-GluδR2 complex (See bellow). 

The trans-synaptic Nrxn-Nlgn complex promotes the assembly and maturation of pre-and 

postsynaptic machinery. Although the presynaptic signaling events induced by Nrxns are 
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currently not clear, the evidence indicates that neurexins bind directly to the presynaptic 

scaffolding proteins CASK, MINT1 and to protein 4.1; and could therefore recruit elements of 

the presynaptic release machinary [37,38]. In agreement with this, it has been shown that RNA 

interference (RNAi)-mediated supression of the Nlgn-1, -2, -3 in neuronal cultures reduces the 

number of excitatory and inhibitory synapses [18]. Conversely, Nlgn1 overexpression in 

neurons has been found to increase the formation of mature presynaptic boutons, enhace the 

size of the pool of recycling synaptic vesicles and the rate of synaptic vesicle endocytosis 

[39,40]. Regarding to the postsynaptic consequences of Nrxn-Nlgn interaction, it was described 

that in excitatory synapses, this adhesion complex is able to capture AMPA receptors through 

PSD-95 scaffolding proteins [41]. NMDARs are also recruited to Nrxn-Nlgn complex, but this 

recruitment does not depend on the presence of PSD-95 [42]. On the other hand, studies on 

Nrxn-Nlgn interaction at inhibitory synapses indicates that the contact between α-Nrxn and 

Nlgn2 induces clustering of Nlgn2 and recruitment of the post-synaptic scaffolding protein 

Gephyrin to inhibitory synapses [31]. Complex formation between Nlgn2, Geophyrin and a 

brain specific GDP/GTP exchange factor, Collybistin, recruits GABA and Glycine receptors to 

nascent inhibitory synapses. Interestingly, deletion of Nlgn2 in mice perturbs GABAergic and 

glicinergic synaptic transmission and leads to a loss of postsynaptic specializations specifically 

at inhibitory synapses [43]. 

Although the in vitro evidence indicates that Nrxn-Nlgn complex induces synapse 

formation, the analysis of different Nlgn and Nrxn knockout mice are controversial. In vivo 

deletion of all Nrxn or of Nlgn1-3 do not substantially affect synapse formation [30,44], but 

impair synapse function, suggesting that α-Nrxn and Nlgns are cell adhesion molecules that 

play an essential role in synapse maturation but are not essential for synapse formation. 

2.2. LRRTM 

The LRRTM gene family was first described in 2003 [45]. The LRRTM family has four 

members (LRRTM 1-4) that share similar domain structure with an extracellular domain 

containing ten extracellular leucine-rich repeats that mediate protein-protein interactions, 

followed by a single transmembrane domain and a short c-terminal sequence containing a 

class I PDZ-domain-binding motif. Human and mouse LRRTMs are highly conserved and 

orthologous genes exist in other vertebrates, but not in invertebrates [45]. 

In situ hybridization, RT-PCR and immunofluorescence analysis showed that LRRTMs are 

predominantely expressed in the nervous system and that each LRRTM present a specific 

and partially overlapping expression pattern [45,46,47]. The four LRRTM are expressed in 

neurons of the hippocampus, cerebral cortex and in the striatum. LRRTM1 and LRRTM2 are 

also highly expressed in the thalamus. In contrast, neither LRRTM3 nor LRRTM4 are 

expressed in these structures. The structural similarities and expression patterns of LRRTMs 

indicates a possible functional redundancy between them [45]. 

All four LRRTMs family members are post-synaptic localized and when expressed in non-

neuronal cells co-cultured with hippocampal neurons they can induce presynaptic 

differentiation in contacting axons. LRRTM1 and LRRTM2 selectively promote excitatory, 



 
Ligand-Induced Cell Adhesion in Synapse Formation 127 

but not inhibitory presynaptic differentiation [46]. In addition, Wit et al (2009) demonstrated 

that LRRTM2 can interact with the post-synaptic protein PSD-95 and regulate surface 

expression of AMPA receptors [48].  

Independent studies have shown that post-synaptic LRRTM1 and LRRTM2 bind specifically 

to presynaptic α and β-Nrxn lacking an insert at S4 [49]. Thus, whereas Nlgns bind Nrxn 

containing or lacking an insert in splice site S4, LRRTMs bind only Nrxns lacking an insert 

in this splicing site [48,50]. This ability to regulate interaction Nrxn-Nlgn and Nrxn-LRRTM 

provides an intringuing mechanism for regulating synaptic specificity.  

Consistent with the effects of LRRTM on neuronal connectivity, deletion of LRRTM1 in mice 

revealed altered distribution of the vesicular glutamate transporter vGlut1 in vivo [46]. 

Furthermore, it was demonstrated that lentivirus-mediated knockdown of LRRTM2 in vivo 

decreases the strength of glutamatergic synaptic transmission. Conversely, LRRTM2 

overexpression resulted in an increase of excitatory synapses [48,51]. 

2.3. SynCAM 

The SynCAM (Synaptic Cell Adhesion Molecule) family comprises four genes encoding 

proteins (SynCAM1-4) with three inmuonoglobulin (Ig)-like domains, a single 

transmembrane region, and a short cytosolic tail with a PDZ type II motif. SynCAM proteins 

are predominantly expressed in the brain and localize to pre- and postsynaptic sites [52,53]. 

All SynCAMs are expressed mostly by neurons during the peak period of synaptogenesis 

around the second postnatal week and remains expressed throughout adulthood in the 

hippocampus [52].  

SynCAM proteins are present at presynaptic and postsynaptic specializations and are involved 

in homophilic and heterophilic interactions via the extracellular (Ig)-like domains. Interestingly, 

SynCAM1, 2 and 3, but not SynCAM4, can associate in trans by homophilic interactions. 

However, the evidence indicates stronger heterophilic interactions of SynCAM1/2 and 

SynCAM3/4 more than homophilic adhesion between each other [54]. It has been shown that 

heterophilic adhesion complex of SynCAM1/2 drives presynaptic terminal formation in cultured 

neurons, increasing the number of excitatory synapses [54]. In agreement with a functional role 

of SynCAM1 in neuronal connectivity, it has been demonstrated that elevated expression of 

SynCAM in a transgenic model increases functional excitatory synapse number [55]. Conversely, 

SynCAM1 knockout mice exhibited fewer excitatory synapses. Interestingly, SynCAM1 can alter 

the plasticity of synapses once they are formed. Thus, SynCAM1 overexpression has been shown 

to abrogate long term depression (LTD), while it loss increased LTD [55]. 

3. Control of synapse formation by ligand-induced cell adhesion 

molecules (LICAM) 

During the last years, a novel mechanism of ligand-induced cell adhesion has been 

described. Unlike other cell adhesion systems, which involve the simple encounter of 
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membrane associated cell adhesion molecules in trans, ligand-induced cell adhesion is 

mediated by membrane-associated proteins but is dependent on the presence of its soluble 

ligand. This feature may allow a more dynamic response to external stimulus involved in 

synapse development. 

3.1. GDNF and GFRα1 

The Glial cell-line Derived Neurotrophic Factor (GDNF) and its 

glycosylphosphatidylinositol (GPI)-anchor receptor, GFRα1, represent the first example of 

this new mechanism of cell-adhesion [56]. In this system, GDNF, is able to mediate trans-

homphilic cell adhesion between cells expressing its receptor, GFRα1. The receptor involved 

in this process, the GFRα1, can be considered as a ligand-induced cell adhesion molecule 

(LICAM). The molecular bases underlying trans-homphilic interaction mediated by GDNF 

and GFRα1 is not clear yet. The domains of GFRα1 underlying its LICAM activity have been 

analyzed using deletion mutants of the receptor. This study revealed that the GFRα1-

mediated cell adhesion requires the presence of an intact ligand-binding domain in both 

interacting partners. In principle, GDNF, as a dimeric protein could promote trans-

homophilic interactions between receptor-expressing cells. On the other hand, GDNF could 

act through an allosteric mechanism.  

During the last years, numerous studies have shown that GDNF-family ligands contribute 

to synapse development and maturation [57,58]. The developmental expression pattern of 

GFRα1 and its ligand, GDNF, during the period of hippocampal synaptogenesis as well as 

its subcellular localization at pre- and postsynaptic specializations indicated a possible role 

of GDNF-GFRα1 complex in the formation of neuronal synapses by inducing trans-synaptic 

homophilic cell adhesion. Indeed, microspheres containing GFRα1, mimicking its 

postsynaptic localization, were able to induce presynaptic differentiation on hippocampal 

and cortical neurons cultured in the presence of GDNF. This effect was evidenced by 

recruitment of vesicle-associated synaptic protein, neurotransmitter transporters and 

activity-dependent vesicle recycling on the hippocampal axons at the sites of contact [56]. 

Intringuinly, the presynaptic maturation triggered by GDNF and GFRα1 was independent 

of the canonical receptor Ret and only partially dependent on the neural cell adhesion 

molecule, NCAM, indicating the existence of an additional signaling molecule involved in 

this process (Figure 1A)[56,57,59,60]. Whether postsynaptically localized GFRα1 may 

contribute to postsynaptic maturation remains to be explored. Thus, the ability of GDNF to 

trigger trans-homophilic interactions between GFRα1 molecules represents the first example 

of regulated cell-cell interactions and a new synaptogenic mechanisms that combines 

soluble and membrane bound molecules by inducing conformational changes that reorient 

and expose determinants involved in trans-homphilic binding [56,57].  

3.2. Cerebelin-GluRδ-neurexin 

More recently another example of ligand-induced trans-synaptic adhesion interaction has 

been described. Uemura et al (2010) described that the postsynaptic glutamate receptor 
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(GluR)δ2 interacts with the presynaptic β-Nrnx through the presynaptically secreted 

glycoprotein, Cerebelin 1 precursor protein (Cbln1) [61]. 

Based on its amino acid sequence, GluRδ2, is a member of the ionotrophic glutamate receptor 

family, which plays an essential role in cerebellar Purkinje cells (PC) synapse formation 

[61,62]. The synaptogenic activity induced by GluRδ2 can be reproduced in vitro using 

primary cultures of cerebellar granule cells (GC) and the extracellular N-terminal domain of 

GluRδ2 [61] indicating that this domain is critical for its synaptogenic activity. Binding 

studies demonstrated that postsynaptic GluRδ2 interacts with presynaptic Nrxns, which are 

known to play a crucial role in presynaptic organization. But this interaction is established 

through the presynaptically secreted glycoprotein Cbln1. Interestingly, the synaptogenic 

activity of GluRδ2 is abolished in cerebellar primary cultures from Cbln1 knockout mice and 

is restored by recombinant Cbln1. In agreement with this, Cbln1-null mice show similar 

behavioral and physiological phenotypes to those of GluRδ2-null mice confirming that Cbln1 

and GluRδ2 are involved in a similar signaling pathway [63]. Direct binding experiments 

demonstrated that Cbln1 acts as a divalent ligand for postsynaptic GluRδ2 and presynaptic 

Nrxns, representing a new example of ligand induced trans-heterophylic synaptic adhesion. 

The resulting complex, Nrxn/Cbl1/GluRδ2, mediates synapse formation between cerebellar 

granule cells and Purkinje cells (Figure 1B). In accordance with this, the amino terminal 

domain of GluRδ2 and the extracellular domain of β-Nrxn1 suppressed the synaptogenic 

activity of Cbln1 in cerebellar primary cultures in vivo indicating that the interaction of 

GluRδ2, Cbln1 and Nrxn is essential for cerebellar synapse formation [61].  

The evidence indicates that Cbln1 interacts with different subtypes of β-Nrxn and α-Nrxn 

containing the S4 insert, but not to subtypes lacking the S4 insert, to induce synaptogenesis in 

cultured cerebellar, hippocampal and cortical neurons. Interestingly, α-Nrxn containing the 

S4 insert binds to Cbln1 [62] but does not bind to any Nlgs or LRRTMs. Another distinctive 

feature of the Nrxn/Cbln1/GluRδ2 complex is that it is insensitive to the extracellular Ca2+ 

concentration [62]; while binding of Nrxn to Nlgs and LRRTMs requires extracellular Ca2+. 

While GluRδ2 is mainly expressed in cerebellar Purkinje cells, GluRδ1 is widely expressed in 

the developing forebrain including the caudate putamen and hippocampus. In a recent 

study it has been demonstrated that, in the presence of Cbln1 or Cbln2, GluRδ1 expressed in 

non-neuronal cells can induce inhibitory presynaptic differentiation on cultured cortical 

neurons by interacting with Nrxns containing the S4 insert [64].  

4. Transient cell-cell interactions in neural development 

Trans-synaptic adhesion molecules can affect the function of synapses at multiple levels, 

from recruiting synaptic proteins during synaptogenesis to regulating synaptic plasticity [1]. 

Thus, adhesion molecules are involved in dynamic processes such as synapse formation, 

which involves cell-type specific target recognition and synaptic plasticity, which requires 

the response to external stimulus or perturbations. A delicate balance between adhesion and 

de-adhesion cooperates generating robustness and flexibility to ensure normal nervous 

system development. 
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(A) GDNF induce trans-homophilic interactions between GFRα1 molecules, which are located at pre- and postsynaptic 

terminals. In the presence of GDNF, GFRα1, holds the terminals together triggering presynaptic maturation. This is 

mediated by GFRα1 and partially by the neural cell adhesion, NCAM, suggesting the involvement of an unknown 

partner (X). The role of GFRα1 in the postsynaptic terminal remains unknown (?). 

(B) Cerebelin1 (Cbl1) acts as a bidirectional synaptic organizer by binding presynaptic β-Nrx (+S4) and postsynaptic 

GluRδ2 inducing pre- and postsynaptic differentiation. 

Figure 1. Model describing ligand-induced trans-synaptic cell adhesion induced by (A) GDNF and (B) 

Cerebelin1. 

The majority of trans-synaptic adhesion mechanisms known to date involve interactions 

triggered by the encounter between cell adhesion molecules inserted in the pre- and 

postsynaptic compartments. The activity of these cell-adhesion molecules may be regulated 

either developmentally or in response to neuronal activity. For instance, activity- dependent 

alternative splicing of Nrxn transcripts, or post-translational modifications such as 

glycosilation, polysialilation or palmitoylation drastically modify adhesive properties; 

binding partners and signaling properties of certain adhesion molecules [26,65,66]. Ligand-

induced cell adhesion represents a previously unknown mechanism in which cell adhesion 

can be regulated not only by the presence of different forms of the associated receptor but 

also by ligand availability [56]. Furthermore, ligand secretion could also be regulated, for 

example by neuronal activity. Thus, trans-homophilic binding between GFRα1 molecules 

might be controled by the activity-dependent upregulation of GDNF, which has been shown 

to be upregulated by seizure activity [67,68]. On the other hand trans-heterophilic binding 

between GluRδ2 and Nrxn might also be regulated by the availability of Cbln1. It has been 

described that the expression of Cbln1 mRNA is completely shut down in mature granule 

cells when the neuronal activity is increased by kainate [69]. Moreover, a recent study 

revealed that the-ligand binding domain of GluRδ2 can also bind to D-Ser inducing 
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conformational changes of the receptor that might modify the synaptogenic activity of the 

Nrnx/Cbl1/GluRδ2 complex [70,71] In addition, D-Ser has been shown to be regulated 

during development and also to be release from astrocytes in an activity-dependent manner 

[71]. Thus, the activity dependent regulation of each component of the Nrnx/Cbl1/GluRδ2 

might increase the plasticity of the system. 

Ligand-induced cell adhesion represents a new way to regulate intercellular interactions 

that may have broad implications not only for the development of the nervous system, but 

also in other tissues and organs. 

5. Role of synaptic cell adhesion systems in nervous system disorders 

The ability of trans-synaptic cell adhesion molecules to regulate synapse formation, 

maturation and plasticity supports the idea that deficits in many synaptogenic genes might 

be associated to neurodevelopmental and/or neuropsychiatric diseases. 

Numerous studies indicate a genetic link of mutations in synaptic cell adhesion molecules to 

autism-spectrum disorders (ASD), in particular to Nlgs and Nrxns [72,73]. Mutations in genes 

encoding Nrxn1, Nlg3 and Nlg4 have been described to be associated with ASD. These 

alterations include different type of mutations that have been observed in a small fraction of 

patients. In particular thirteen different mutations have been described in Nrxn1 gene: seven 

point mutations, two distinct translocations and four different deletions [72,74,75,76,77,78,79]; 

ten different mutations has been found in Nlg4 gene: two frameshifts, five missense 

mutations and three internal deletions; and a single mutation in Nlg3 gene (R451C) 

[72,80,81,82,83]. Moreover, deletions in X-chromosome that includes the Nlg4 locus were 

detected in patients with autism [79,84,85,86]. Different studies have reported that Nlg4 

deletions are also associated with other neurological disturbances including Tourette 

syndrome, attention deficit hyperactivity disorders, anxiety and depression. In addition, two 

different deletions of α-Nrxn1 have been observed in families with schizophrenia [58,87,88]. 

The role of some of these proteins in ASD has been validated in trasgenic animals. Thus, the 

Nlg3-R451C knockin mouse were reported to show a phenotype that shares some, but not 

all features with human ASD patients These mice show a modest impairment in social 

behaviour [89]. Moreover, Nlg-4 knockout mice show deficits in social interactions and 

communication [90]. 

In addition, members of SynCAM and LRRTM families have also been associated with 

nervous system disorders. SynCAM1 has been associated with ASD. Two missense 

mutations in the SynCAM1 gene of ASD patients and their families have been described. 

Interestingly, the mutations were located in one domain, which is essential for trans-

synaptic interaction [91]. In a recent genetic study, polymorphisms in LRRTM3 were 

associated with ASD [88]. Moreover, LRRTM1 has been associated with schizophrenia [92].  

There is no strong evidence connecting mutations in genes involved in ligand-induced cell 

adhesion systems with nervous system diseases. So far, only GluRδ1 was found to be 

associated with schizophrenia [92,93]. 
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Further studies linking mutations in cell adhesion systems with nervous system diseases 

will contribute to the design of new diagnostic and therapeutic tools for these disorders. 

6. Perspectives 

It is well established, that cell-adhesion systems are in part responsible for the construction 

of neural circuits, synapse formation and plasticity. The correct function of the nervous 

system depends on the establishment of precise synaptic contacts between neurons and its 

specific targets, and deficits in genes coding for trans-adhesion molecules have been 

associated with learning deficits and cognitive impairments. 

During the last years several adhesion molecules have been reported to participate in 

synapse development, including integrins, cadherins, protocadherins, NCAM, Neurexin-

Neuroligin, LRRTM, SynCam, GDNF/GFRα, Nrxn-Cbl1-GluRδ2. The discovery of 

alternative trans-synaptic binding partners, in combination with their differential splice 

variants and isoforms, gave rise to a much larger spectrum of trans-synaptic interactions 

than was originally though. Furthermore, the mechanism of ligand induced cell adhesion 

considerably expands the functional repertoire of the ligands and receptors involved in 

these adhesion complexes and represents a new way to regulate trans-synaptic interactions 

that may have broad implications for the development of the vertebrate nervous system. 

Regulation of adhesion by soluble ligands allows a dynamic synaptic response to external 

stimulus during synapse formation and synaptic plasticity. 

Based on this, the main challenge will be now to elucidate the complex code by which the 

trans-synaptic cell adhesion systems participate in the different steps of synapse formation, 

maturation and plasticity and to understand the importance of the different combinations of 

trans-synaptic partners in specific circuits. It will be important to understand how the 

combination of multiple synaptogenic systems may contribute to synaptic specificity 

controlling exactly where and when synapses form. 

It will be also necessary to address whether individual synapse organizing protein instruct 

synaptic cell adhesion, or if the trans-synaptic interaction results from cooperation among 

different adhesion molecules. In some cases it is likely that the determination of initial 

synapse formation is mediated by multiple adhesion systems acting in parallel, as has been 

evidenced by α-Nrxs and Nlgns knockout mice. The analysis of these animals showed that 

knockdown of these molecules, does not have consequence in synapse formation, 

suggesting that other adhesions systems compensate the deficiency in these mice [30,44].  

The fact that multiple partners function at the same synapses opens the possibility that they 

cooperate in the recruitment of the same components to the synapse. Indeed, it has been 

described that overexpression of Nlgns and LRRTMs in primary hippocampal neurons 

cooperate in a synergistic manner in glutamate synapse development visualized by an 

increase in the recruitment of pre-synaptic proteins. Cooperation between different 

adhesion systems may help to stabilize interactions across the cleft by recruiting the pre- 

and postsynaptic machinery at multiple points. However the existence of mechanisms that 



 
Ligand-Induced Cell Adhesion in Synapse Formation 133 

can modulate and modify these interactions should be important, especially for synaptic 

plasticity. 

Further understanding of the molecular pathways and circuit events downstream these cell 

adhesion organizing systems will be extremely important in light of the role of trans-

synaptic cell adhesion molecules in neurodevelopmental and cognitive diseases. 
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