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1. Introduction 

The contact between cells and their microenvironment is fundamental both during 

development and for the preservation of tissue structure. Picking out the signals coming 

from the surrounding environment enable cells to react promptly to changes that may occur. 

Various molecular mechanisms explain the ability of cells to sense the microenvironment 

could be grouped into two major classes: (1) the transmission of signals in the form of 

soluble molecules which interact with cellular receptors, such as growth factors, cytokines, 

hormones, etc., and (2) the interaction of cells with structural components of their 

environment, namely other cells and the extracellular matrix (ECM) [1]. 

Cell–cell interactions are central to the function of many organ systems. A common theme for 

heterotypic cell interactions is the interaction of parenchymal cells with nonparenchymal 

neighbors with resultant modulation of cell growth, migration, and/or differentiation. 

Specifically, these interactions are of fundamental importance in physiology [2, 3], 

pathophysiology [4, 5], cancer [6, 7] developmental biology [8, 9], wound healing [10, 11], and 

attempts to replace tissue function through ‘tissueengineering’ [12, 13]. Further understanding 

of how cell– cell interactions modulate tissue function will allow us to gain fundamental 

biological insight as well as suggest approaches that will allow the manipulation of tissue 

function in vitro for therapeutic applications in vitro for therapeutic applications [14]. 

2. Cell-cell interaction and cross talk phenomena during embryonic period 

Cells are the true miracle of evolution. Once the basic building block, the eukaryotic cell, 

became available, the form of metazoans evolved by changing the arrangement of cells with 

respect to each other. Cell- cell interaction in embryo was described in literature to have a 
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vital role in cell differentiation and fate of developing cells, a process generally referred to as 

embryonic induction [15-17]. 

Jessell and Meltont [18] in their studies on the diffusible Factors in Vertebrate Embryonic 

Induction reported that one group of cells control the fate of neighboring cells. Inductive 

interactions involve two primary components. He added that the process involves a signal 

that is generated by the inducing cell and a receptive system that directly or indirectly 

controls gene expression in the responding cell. The competence of cells to respond to the 

ligand also contributes to the extent of induction. A good example of cellular interaction 

reported in this article is the induction of mesodermal development. In Xenopus blastula, 

vegetal blastomeric release extracellular signals that induce adjacent animal ectoderm 

(animal cap cells) to develop into mesodermal tissue such as muscles or mesothelia [19-21].  

Inductive interactions involve two primary components: a signal that is generated by the 

inducing cell and a receptive system that directly or indirectly controls gene expression in 

the responding cell. The ligands that constitute inductive signals can be anchored to the cell 

surface or secreted from cells. Thus, the extent of induction can be controlled by regulating 

ligand production or by limiting its range of action. The competence of cells to respond to 

the ligand also contributes to the extent of induction. Competence may be controlled by 

modifying the expression or function of the appropriate receptors, the intracellular signal 

transduction pathway, or the transcription of target genes (Figure 1). Inductive signals can 

also control multicellular pattern if the response of similar cells to different concentrations of 

the same signal results in different cell fates [18].  

Schmidt et al. [22] reported that Signals originating from embryonic ectoderm have a role in 

the development of underlying somites and neural crest which is mediated by Wnt family of 

secreted signaling molecules that controls a wide range of developmental processes in all 

metazoans. Neural crest is a population of multipotent progenitor cells that arise from the 

neural ectoderm in all vertebrate embryos and form a multitude of derivatives including the 

peripheral sensory neurons, the enteric nervous system, Schwann cells, pigment cells and 

parts of the craniofacial skeleton. Schmidt et al. [22] reported that neural crest induction 

requires an ectodermal signal. Signaling molecules of the Wnt, BMP, and FGF families and 

their downstream effectors have been shown to mediate neural crest induction [23-24]. 

Dorsolateral bending of the neural plate, an undifferentiated pseudo-stratified epithelium, is 

essential for neural tube closure which if failed spina bifida results. Ybot-Gonzalez et al. [25] 

pointed to the cellular interaction between neural crest cells and overlying neuroectoderm 

via molecular signaling that regulate the formation of dorsolateral hinge points (DLHPs) via 

antagonism of Bmp signaling that underlies the regulation of DLHP formation during 

mouse spinal neural tube closure. 

3. Cellular interaction in nervous system 

Glial cells are widely distributed throughout the nervous system. They have been found to 

have an impact on chemical synaptic transmission. Interplay among Schwann cells, the 



Cell-Cell Interactions and Cross Talk Described  
in Normal and Disease Conditions: Morphological Approach 207 

nerve and the muscle will provide insights into a better understanding of mechanisms 

underlying neuromuscular synapse formation and function. 

Feng and Ko [26] reported that perisynaptic Schwann cells (PSCs), which are the glia 

juxtaposed to the nerve terminal at the neuromuscular junction (NMJ) play active and 

essential roles in synaptic function, maintenance, and development. The authors also 

mentioned that PSCs can respond to nerve activity by increasing intracellular calcium and 

are capable of modulating synaptic function in response to pharmacological manipulations. 

Schwann cell-derived factors can also promote synaptogenesis and enhance synaptic 

transmission in tissue culture 

Feng and Ko [27] had studied the role of glial cells in the formation and maintenance of the 

neuromuscular junction. The authors reported that during development, PSCs grow beyond 

nerve terminals and guide nerve terminal extension. Nerve terminals retract or stop 

extension after PSC ablation by complement-mediated lysis in vivo, suggesting that PSCs 

can promote synaptic growth and maintenance at developing NMJs. 

Schwann cell-conditioned medium (SC-CM), with culture medium consisting of 45% 

Leibovitz’s L-15 medium (Invitrogen), 45% Ringer’s solution (in mM: 115 NaCl, 2 CaCl2, 2.5 

KCl, and 10 HEPES; pH 7.4), and 10% fetal calf serum (Invitrogen), which may be mediated 

by transforming growth factor-beta1, can promote synapse formation in Xenopus nerve-

muscle culture. In addition, SC-CM contains small molecules (within 500-5000 Da), which 

can enhance spontaneous synaptic activities acutely and potently at developing frog NMJs. 

In adult muscles, PSCs can detect evoked synaptic activities and are capable of modulating 

transmitter release. Nerve terminals retract and synaptic efficacy is reduced at 1 week, but 

not within the first few hours, after PSC ablation. Thus, PSCs are essential for the long-term, 

but not short-term, maintenance of synaptic structure and function at the adult NMJ. After 

nerve injury, adult PSCs sprout extensive processes, which guide regenerating nerve 

terminals. Schwann cells express agrin and neuregulins, which may help the postsynaptic 

differentiation and synaptic repair. Furthermore, neuregulin-ErbB signaling pathways play 

an essential role in synapse-glial interactions at the NMJ. These recent findings suggest that 

PSCs play multiple roles and actively participate in synaptic development, modulation, 

maintenance, and repair of the vertebrate NMJ [27].  

It was found that PSC interaction with nerve terminals play an important role in re-

innervations at frog NMJs: regenerating NTs induce PSCs to sprout, and PSC sprouts, in 

turn, lead and guide the elaboration of NTs. After nerve injury, PSCs sprout profusely and 

PSC processes guide regenerating nerve terminals [26, 28]. 

4. Brain pericytes implication in blood brain barrier and pathological 

disorders 

Brain microvascular pericytes are important constituents of the neurovascular unit. These 

cells are physically the closest cells to the microvascular endothelial cells in brain capillaries. 

They significantly contribute to the induction and maintenance of the barrier functions of 
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the blood-brain barriers [29]. The highest pericyte coverage around microvessels is found in 

the central nervous system (CNS). It is not clear why the CNS needs higher vascular pericyte 

coverage than other organs, but one of the possibilities is that pericytes contribute to the 

formation of the blood–brain barrier. 

Brain pericytes was suggested in early studies to be as a source of macrophage activity. 

Results substantiate this functional role via success demonstration of macrophage 

markers, phagocytosis and antigen presentation. Coupled with current knowledge on the 

entry of lymphoblasts into brain tissue and perivascular areas as potentially being the 

primary site of cellular interactions for production of immune responses, this places the 

pericytes in a position to significantly contribute to central nervous system (CNS) immune 

mechanisms.  

However, it has been shown from some studies with rat bone marrow chimeras that 

lymphocytes do normally enter CNS tissue [30]. It appears that only immature lymphocytes 

or lymphoblasts can gain access and they stay there 1 to 2 days [31]; this seems to be a 

continuous process though, which would mean the constant presence of a lymphoblast 

population. The immature nature of the cells probably explains why they were not 

previously detected. These lymphoblasts could then mature, become activated and 

participate in an immune response.  

Other functions of pericytes in brain are controlling of blood flow, regulation of vascular 

development and immune responses [32]. 

5. Vascular cell-cell interactions through junctions 

The vascular system is considered an excellent example that demonstrates cell adhesion and 

its regulation. Endothelial cell adhesion plays an essential role in the vascular response to 

pathological conditions, such as inflammation, ischemia wound healing and, in particular, 

cancer. Certainly, tumor-associated angiogenesis is key to cancer progression and 

metastasis, and vascular adhesion molecules are undoubtedly major players in this context 

[1].  

It has become clear that vascular intercellular adhesion exhibits cell type-specific features 

that account for the specialized roles of the adhesive junctions in the endothelium [1]. 

In endothelial cells, tight junctions being often intermingled with adherens junctions along 

the intercellular boundaries rendering this junctional organization not as rigid. Adding 

together, endothelial cells do not contain desmosomes, although some desmosomal 

components are found in the complex adherens, a junctional structure specific to certain 

specialized vascular districts, such as a subset of lymphatic vessels and of veins [33]. 

The main difference between epithelial and endothelial AJs is that the latter do not contain 

E-cadherin but an endothelial-specific cadherin, called vascular endothelial (VE) cadherin. 

The expression of VE-cadherin is essentially restricted to cells of the endothelial lineage and 

starts very early during the differentiation of endothelial cell precursors [34]. 
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Although VE-cadherin is found in all endothelial cell types, its levels vary in different 

vascular districts and during angiogenesis, including tumor vascularization. Indeed, the 

expression of VE-cadherin is enhanced in activated, cancer-associated vessels, suggesting a 

causal involvement in tumor angiogenesis [35]. 

Experimental evidence in vivo as well as in endothelial cell cultures pointed to an interplay 

between VE-cadherin-mediated adhesion and endothelial cell survival (i.e., resistance to 

programmed cell death or apoptosis). The molecular basis of this cross-talk probably lies in 

the ability of VE-cadherin to activate the phosphatidyl inositol-3 kinase (PI3K) pathway, an 

enzymatic cascade that ultimately leads to the inhibition of apoptosis [36]. 

Vascular Tight Junctions: Junctional adhesion molecules (JAMs) form a group of 

transmembrane proteins belonging to the immunoglobulin (Ig) superfamily, due to the 

presence of two Ig domains in their extracellular portion. JAMs appear to be associated with 

TJs rather than being integral components. As suggested by their name, a prominent feature 

of JAMs is their ability to promote intercellular adhesion via homophilic binding [37]. 

However, it is not clear to what extent the pro-adhesive function of JAMs is relevant in vivo. 

The JAM family appears to play an important role in the recruitment of various proteins to 

the TJs. Indeed, JAM-A associates with zonula occludens-1 (ZO-1), cingulin, and occludin, 

inducing their localization at TJs (Figure 1) [38]. 

 

Figure 1. Vascular tight junctions. The molecular organization of the tight junction between endothelial 

cells is illustrated in a schematic manner, together with the non-junctional adhesion provided by 

PECAM-1 and CD146. Quoted from Cavallaro [1]. 
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Recent observations have raised the possibility that JAMs are involved in tumor angiogenesis. 

Indeed, an antibody against JAM-C was reported to interfere with cancer growth by 

preventing neovascularization [39]. A major function of JAM proteins is their ability to 

regulate the trafficking of leukocytes and dendritic cells across the endothelium, a process that 

has crucial implications for the inflammatory response. Interfering with JAM function in vivo, 

e.g., by using neutralizing antibodies, blocks the transendothelial migration of monocytes and 

neutrophils in experimental models of inflammation. Vascular JAMs facilitate leukocyte 

endothelium interactions by heterophilic binding to blood cell integrins [40]. 

Some adhesion molecules expressed in endothelial cells do not show a specific association to 

junctional complexes. Platelet-endothelial cell adhesion molecule-1 (PECAM-1, also known 

as CD31) mediates inter-endothelial adhesion through homophilic binding. In addition, 

PECAM-1 has been implicated in a broad spectrum of vascular processes, including 

endothelial cell migration, survival, remodeling and angiogenesis [41]. 

Endothelial molecules, such as JAMs, PECAM-1 and CD146, that are involved in 

inflammatory infiltration could also facilitate the trafficking of tumor cells across the 

vascular wall. Hence, the therapeutic inhibition of adhesion molecules promoting 

transendothelial migration of inflammatory cells could prove useful also as a strategy to 

repress the metastatic dissemination of tumor cells [1].  

Endothelial/Pericyte Interactions: Pericytes is the term for vascular mural cells embedded 

within the vascular basement membrane of blood microvessels, where they make specific 

focal contacts with the endothelium [42]. 

Morphologically, the pericytes exhibit a small, oval cell body with multiple processes 

extending for some distance along the vessel axis; these primary processes then give rise to 

orthogonal secondary branches which encircle the vascular wall. The contour of the cells 

conforms to that of the adjacent vascular element; also, they are usually enclosed within the 

basal lamina of the microvasculature [1]. 

Pericytes are now coming into focus as important regulators of angiogenesis and blood 

vessel function. Genetic data demonstrate the critical importance of pericytes for vascular 

morphogenesis and function, and imply specific roles for the cell type in various aspects of 

angiogenesis [43]. 

Development of a vascular system involves the assembly of two principal cell types - 

endothelial cells and vascular smooth muscle cells/pericytes (vSMC/PC) - into many 

different types of blood vessels. Senger and Davis [44] stated that Pericyte coverage leads to 

vessel remodeling, maturation and stabilization. 

Pericyte-endothelial interaction mediated by cytokines: Insight into the molecular mechanisms 

of endothelial–pericyte interactions has accelerated during the past 1 to 2 years. Discovery of 

cytokine regulation confirmed the molecular cell talk between the two types of cells. 

Intercellular communication between endothelial and mural cells are mediated by many 

cytokines such as transforming growth factor β, angiopoietins, platelet-derived growth factor, 

spingosine-1-phosphate, and Notch ligands and their respective receptors [42]. Bergers and 
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Song [45] reported that Endothelial-derived PDGF-BB and HB-EGF coordinately regulate 

pericyte recruitment during vasculogenic tube assembly and stabilization (Figure 2).  

 

Figure 2. PDGF-B/PDGFR-β signaling is necessary for pericyte recruitment during angiogenesis. PDGF-

B is synthesized and secreted by the migratory tip cells at the leading edge of angiogenic sprouts. 

Binding of PDGF-B to HSPG is important for localization of PDGF-B to the vicinity to the developing 

vessel. Pericytes, which express PDGFR-β, are dependent on of endothelium-derived PDGF-B for 

proliferation and migration [42].  

Pericytes and pathological disorders: Pericyte as a multipotent progenitor cell of 

pathophysiological importance is gaining increasing attention. Bergers and Song [45] 

reported that when vessels lose pericytes, they become hemorrhagic and hyperdilated, 

which leads to conditions such as edema, diabetic retinopathy, and even embryonic 

lethality. Motegi, et al [46] studied the role of Pericyte-Derived MFG-E8 Regulates 

Pathologic Angiogenesis. Recent interest in pericytes also stems from their potential 

involvement in diseases [43-47] such as diabetic microangiopathy [48, 49] tissue fibrosis [50] 

cancer [51] atherosclerosis [52] and Alzheimer''s disease [53, 54]. 

6. Mesh-induced foreign-body reaction in hernea 

The fact that tissue cells respond to biomaterial implantation is illustrated by granuloma 

formation and cell infiltration surrounding mesh materials over time. Common cellular 

components of such a reaction are infiltrating macrophages. These cells have the propensity 

to synthesize a plethora of pro inflammatory cytokines [transforming growth factor-β (TGF- 

β), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF)) and 

are regarded as key players directing the extent of fibrosis with influence on the phenotypic 

behavior of surrounding fibroblasts [55, 56].  

Residential fibroblasts independently contribute to the regulation of tissue remodeling and 

wound healing. They occur as activated myofibroblasts encapsulating the mesh filaments and 

are constitutionally involved in extracellular matrix (ECM) remodeling by synthesizing type-I 

and type-III collagen. Furthermore, fibroblasts are the source of enzymes involved in matrix 
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degradation such as matrix metalloproteinases (MMPs) that may affect the ongoing foreign-

body reaction. MMPs are the most abundant proteases in wound healing [57] and MMP-2 (72-

kDa collagenase, gelatinase A) enzymatic activities are up-regulated in diseases associated 

with inflammatory reaction such as arthritis [58], cancer [59], atheroma [60] and tissue 

ulceration [10]. A pivotal role for MMP-2 in hernia disease was determined by a study that 

detected elevated levels of MMP-2 enzymatic activity in wound fluids of hernia patients [61].  

Beyond their capability to hydrolyze components of the ECM, MMP-2 directly affects 

cellular phenotypes, proliferation rates and the inflammatory reaction, and several studies 

indicate that MMP-2 is centrally involved in the inflammatory and fibrotic response [62]. 

Regarding foreign-body reaction, it is known that macrophages are activated by polymeric 

nanoparticles and secrete MMP-2 in vitro [64]. Blockage of MMP-2 activation with MMP 

inhibitor Ilomastat dampens the inflammatory cell infiltration, indicating that MMP-2 

mediates the cross-talk of cells and ECM components [65]. In vivo, stimulation of MMP-2 

expression may result from a complex cross-talk between cells, especially fibroblasts and 

macrophages in wound healing. These findings hint at a pivotal role of MMP-2 in wound 

healing and foreign body reaction and suggest the investigation of the molecular 

mechanisms that govern MMP-2 gene transcription after biomaterial implantation [66]. 

Transgenic as well as knockout models were established to elucidate the underlying gene 

regulation required for wound healing [64]. Meshes interfere with MMP-2 gene regulation 

due to soluble factors, ECM modification or cell cross-talk. In MMP-2/Lac Z transgenic mice 

the impact of mesh implantation on MMP-2 gene expression can be evaluated and 

compared to MMP-2 enzymatic activity, protein synthesis and expression/binding of 

transcription factors [66]. 

7. Dendritic cell–NK cell cross-talk 

The interaction of NK cells with the professional antigen-presenting cells of the immune 

system, the dendritic cells (DC), in regulating both innate resistance and adaptive immunity. 

DC is antigen-presenting cells, cornerstones between pathogen entry and lymph nodes that 

quickly respond to foreign antigens. Located in peripheral organs, skin, and mucosal 

surfaces, DC sample the environment for self and foreign material [67]. 

The molecular mechanisms involved in NK cell triggering by human DC start to be 

unraveled. Mature DC or immature DC in the presence of maturation stimuli, such as LPS 

or Mycobacterium tuberculosis or IFN, are able to activate NK cells [68, 69]. The crucial role of 

IL-12 in IFN-secretion by + human NK cells stimulated by monocyte- or CD34 –derived DC 

and LPS or by peripheral blood m DC in response to TLR3 or TLR8 legends has been 

formally demonstrated. Other cytokines, such as IL-18, and/or cellular contacts are also 

involved [70, 72]. However, NK cell activation by DC also requires direct cell-to-cell contacts 

and depends on the adhesion molecule LFA-1 [73]. 

The formation of DC/NK cell conjugates was found to depend on cytoskeleton remodeling 

and lipid raft mobilization in DC. BM-DC derived from mice with loss of function of the Wis 

kott Aldrich syndrome protein, a major cytoskeletal regulator expressed in hematopoietic 



Cell-Cell Interactions and Cross Talk Described  
in Normal and Disease Conditions: Morphological Approach 213 

cells; fail to promote NK cell lytic activity and IFN-secretion [71]. Moreover, disruption of 

the DC cytoskeleton with pharmacological agents abolished the DC-mediated NK cell 

activation. Therefore, the cross-talk between LPS-activated DC and NK cells is dictated by 

functional synapses [71]. 

8. Cellular interaction in normal and fibrosed heart muscle fibers 

Cells in the heart interact through both paracrine and autocrine pathways and by direct 

contact with the formation of gap and adherens junctions and desmosomes. In adherens 

junctions cadherins on one cell bind to cadherins on another cell in contact and link 

intracellularly to the actin cytoskeleton via catenins. Desmosomes link to intermediate 

filaments. Adherens junctions and desmosomes mechanically connect cardiomyocytes and 

so distribute contractile force within the myocardium. Gap junctions provide intercellular 

channels for ionic communication that allows the rapid and coordinated spread of excitation 

throughout the heart [74]. 

The conversion of fibroblasts to myofibroblasts is central to the development of cardiac fibrosis 

in response to hypertension [75] in ventricular hypertrophy, hypertension, or infarction; the 

number of fibroblasts in the heart has been shown to increase [75]. A scar tissue formed after 

myocardial infarction also is stiffened by both reparative fibrosis and actively contracting 

cardiac fibroblasts. These myofibroblasts influence myocardial function by increased collagen 

secretion and contractility causing a stiffening of the heart muscle that can lead to diastolic 

dysfunction and heart failure [76] and also by possibly interfering with the electrical 

connectivity of the cardiomyocytes [75]. In this example Genin et al described how tissue 

constructs serve as model systems in which to study how fibroblasts and cardiomyocytes 

interact to control contractile force and tissue stiffness. They dissect here the electrical and 

mechanical cell-cell phenomena that might underlie the above observations. [74] 

From the mechanical perspective, a possible explanation is that the eventual domination of 

the construct by the proliferative myofibroblasts stiffens the tissue constructs in a way that 

retains the ability to produce a steady baseline force, perhaps exerted mainly by 

myofibroblasts, while losing the ability to generate myocyte-dependent twitch force. The 

stiffening of fibrotic myocardium can result from secretion of excessive ECM from the 

myofibroblasts [77], and likely from increased ECM remodeling and increased 

myofibroblast contractility as well. The stiffening of the extracellular environment by 

myofibroblasts and associated rise in baseline force may overwhelm the actomyosin 

contractile mechanism in the cardiac myofibroblasts, constraining it to a low number of 

cross-bridge connections by limiting the motion of the contractile apparatus.  

In addition to these mechanical effects, myofibroblasts can impair both heart and EHT 

contractile function by distorting excitatory conduction. Under normal conditions the 

numerous fibroblasts in the heart maintain the ECM that provides the underlying structure for 

a continuous network of cardiomyocytes in electrical contact via gap junctions. The spread of 

electrical excitation in this network is organized to stimulate an orderly contraction first of the 

atria and then the ventricles to promote optimal pumping efficiency of the heart. Evidently, the 
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presence of the fibroblasts in normal heart muscle does not perturb this orderly impulse 

conduction. Myofibroblasts can distort the propagation of the excitatory wave both by 

disrupting the normal interactions (gap junction formation) among the cardiomyocytes and by 

forming gap junctions and therefore electrical contact with the cardiomyocytes [74]. 

Myofibroblasts can be coupled electrotonically to cardiomyocytes in vitro via gap junctions 

mediated by the connexins Cx43 and Cx45 [78, 79]. In these experiments strands of 

cardiomyocytes were coated with cardiac fibroblasts that had converted to the 

myofibroblast phenotype [74].  

This coupling suggests that myofibroblasts might not only provide a barrier to the electrical 

interaction of cardiomyocytes but might also provide a conductive link between them. This 

was demonstrated in vitro by connecting two strands of neonatal rat ventricular 

cardiomyocytes by a band of cardiac myofibroblasts [80].  

These experiments demonstrate that myofibroblasts both distributed throughout the heart 

muscle and in border zones of healing infarcts can play a complex role in impulse propagation, 

imposing steric blockage, providing alternative but slower conduction pathways and 

predisposing the tissue to arrhythmia [77]. Finally, a model system similar to that described 

above has demonstrated that contact with myofibroblasts can cause spontaneous activation of 

cardiomyocytes that could be analogous to ectopic activity in the heart [78]. 

9. Cell- cell interaction in lung parenchyma cells 

Cellular interactions in lung parenchyma were reviewed by Fehrenbach, 2001 [81]. The main 

functional units of lung parenchyma are the alveoli; an air filled sacs. Alveoli are lined by 

two types of cells; alveolar type I (type I pneumocyte) which are of considerable little 

thickness allowing gaseous exchange between alveolar air and pulmonary capillaries 

forming what is known as blood-air barrier Figure (3, 4). 

 

Figure 3. A: showing scanning microscopy of two great alveolar cells (Type II pneumocytes) B: alveolar 

cells (Type II pneumocytes) stained by immunofluroscence for surfactant protein D (green). Quated 

from Fehrenbach [81]. 

A B
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The second type of cells is alveolar type II or great Type II pneumocyte which is usually 

cuboidal in shape and rich in organelles involved in secretion of phospholipid material 

known as surfactant [81]. 

10. TypeII-type I- alveolar cell interaction  

Cell- cell interaction is well represented in lung parenchyma between type II alveolar cells 

and other resident cells of the lung . Direct laterl cell-cell contact with type I alveolar cell is 

maintained by cell junction complex that induce gap junction [82]. This contact allow 

mechanical stimulation of type I cell to modulate exocytosis rate of surfactant secteted by 

type II via transimmision of calcium ion oscillation throuhgh gap junction. On the other 

hand, direct inhubitory interaction between the two cells have been postulated by Mason 

and McCormack [83] to supress Type II proliferation. This explain proliferative activity of 

the later in case of injury of type I pneumocytes. Type II pneumocyte also was proposed by 

Kapanci et al. [84] as stem cell of the adult that differentiate to Type I pneumocyte and 

subsequent repair and re-establishing of air – blood barrier [85, 86]. 

11. TypeII-typeII interaction  

Khalil et al. [87] reported that inhbition of alveolar type II cells can be mediated via 

paracrine action via Type II cell–derived transforming growth factor (TGF) as in case of 

bleomycin-induced experimental lung fibrosis. 

Removal of cells dying by apoptosis is essential to normal development, maintenance of 

tissue homeostasis, and resolution of inflammation. Surfactant protein A (SP-A) and 

surfactant protein D (SP-D) are high abundance pulmonary collectins implicated in 

apoptotic cell clearance in vitro. Other collectins, such as mannose-binding lectin and the 

collectin-like C1q, have been shown to bind to apoptotic cells and drive ingestion through 

interaction with calreticulin and CD91 on the phagocyte in vitro. However, only C1q has 

been shown to enhance apoptotic cell uptake in vivo. Similar to C1q and mannose-binding 

lectin, SP-A and SP-D bound to apoptotic cells in a localized, patchy pattern and drove 

apoptotic cell ingestion by phagocytes through a mechanism dependent on calreticulin and 

CD91. These results suggest that the entire collectin family of innate immune proteins 

(including C1q) works through a common receptor complex to enhance removal of 

apoptotic cells, and that collectins are integral, organ-specific components of the clearance 

machinery [88]. 

12. Alveolar-endothelial cell interaction  

Embryonic studies showe that pulmonary endothelial cells exhbit inductive activity on 

foetal lung alveolar epithelium [89]. This effect was well studied in tissue culture. A 

paracrine mechanism of action was suggested to be exerted on alveolar cells via endothelin 

cytokine produced by capillary endothelium. on the other hand, celluar interaction is well 

represented by the fact that alveolar type II cells cells may act as transducers of an 

inflammatory signalfrom the alveolus to the capillaryendothelium  
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13. Cell- cell interaction between type II alveolar cells and mobile 

interstial pumonary cells 

Lung stroma or interalveolar connective tissue is rich in mobile ceels needed for pulmonary 

defense mechaniusm, those cells include alveolar macrophage dervide form circylating 

monocytes. 

14. Type II alveolar- alveolar macrophage - interaction 

This type of interaction was represented by recopricoal effect on proliferation of both cells 

via cytokines production such as hepatocyte growth factor [90] andheparin-binding 

epidermal growth factor-like protein secreted by macrophage and RANTES and MCP-1 

produced by alveolar type II cells [91]. Furthermore, Stamme et al. [92] reported that SP-A 

released from AE2 cellsmay modulate macrophage functions such as, oxygen radical release 

[93], and nitric oxide production [92]. 

15. Type II alveolar- leucocyte interaction 

Cytokines produced by type II alveolar cells were reported to influence differentiation of 

leucocytes (neutrophils-basophiles ands eosinophils) and have arole in lung parenchyma 

inflammatory reactions. On the other hand, alveolartype II cells can exert inhibitory effect 

on lymphocytes. Direct interaction of pneumocytes with migrating monocytes wasreported 

to be mediated by b2-integrins CD11b/CD18and b1-integrins as well as by CD47 [94]. The 

concept of considering typeIIalveolar cells as the “defender of the alveolus” by Fehrenbach, 

2001 implies thatsevere damage or loss of AE2 cells results in a considerablevulnerability of 

the alveolus such as lung fibrosis [95]. In spite of all knowledge reported by Fehrenbach 

[82], he added that more studied of mystery of cell–cell interactionsof AE2 cells still remains 

to be expanded. 

16. Type II - Fibroblasts interaction 

Findingd reported by Fehrenbach [82] and Shannon & Deterding 1997 [96] showed that 

reciprocal cell–cell relationship between type II alveolar cells and fibroblast control the 

modelling of alveoles during lung morphogenesis as well as duringremodelling associated 

with alveolar repair following lung injury [97, 98]. Both direct and indirectcell–cell 

interactions have been reported. 

Alvealar E2 cells have beenreported to secrete a factor that eitheir inhibits or stimulate 

fibroblast proliferation [99, 100]. In contrast, however, an increase in fibroblastproliferation 

was seen if both cell populations grown in coculturewere able to establish direct cell–cell 

contacts [100]. Transmission electron microscopy has demonstrated structural interaction 

between fibroblast processes and type II alveolar cell membranes [99]. 

Immunoelectronmicroscopy indicated that CD44v6 islocalised at the tips of these foot 

processes [97]. TheCD44 molecules constitute a family of integral membrane glycoproteins 
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that act as receptors of hyaluronan and osteopontin,for example, and are well established as 

beinginvolved in epithelial cell migration and differentiation [101] 

17. Cell- cell interaction in mammalian testicular tissue 

The mammalian testis represented a mixed gland where the exocrine; the seminiferous 

tubules is responsible for male gamete formation in the process named spermatogenesis. 

While interstitial (Leydig) cells form the endocrine part that is involved in testosterone 

production. 

Seminiferous tubule presents a highly complex cellular interacting system. Well 

documented interactions and communications take place between Sertoli and germ cells at 

different stages of their development [102]. At morphological level, Sertoli cell in testis of 

many species is associated with ∼30–50 germ cells at each stage of the spermatogenic cycle 

in the epithelium. In his interesting article concerning Cell Junction Dynamics in the Testis 

Yan Cheng and Mruk [103] mentioned that germ cells largely rely on Sertoli cells for 

structural and nutritional support [104]. Blood-testis barrier (BTB) formed by tight Junction 

between the lateral of Sertoli cells [104-108]. Serves for isolation of developing haploid germ 

cells from body immune response. In addition, cell-cell communications via paracrine 

factors and signaling molecules were also observed. Sertoli cells in this way can provide 

developing germ cells with the needed nutrients and biological factors [109-110]. Germ cell-

Sertoli cell interactions were studied early by Zabludoff et al [111] who found that 

regulation of CP-2 (a novel Sertoli cell product) synthesis and secretion by the Sertoli cell is 

dependent on paracrine signals or direct cell contact with the germ cells. 

The findings of Sharpe et al [113] showed that the functions of all of the cell types in the 

testis are interwoven in a highly organized manner. the authors emphasize that in normal 

adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or 

peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other 

Leydig cell products, plays a central role in many of these interactions, they added that The 

Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli 

and/or peritubular cells to create an environment which enables normal progression of germ 

cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in 

the control of the vasculature, and hence the formation of testicular interstitial fluid, 

presumably again via effects on the Sertoli and/or peritubular cells. 

18. Cellular interaction in mammalian skin 

Skin is the largest body organ which serves a number of important functions for the welfare 

of the organism. It has unique structure being derived from two different embryonic 

sources, namely the ectoderm which give rise the outer epithelial component, the epidermis 

and epidermal derivatives and the mesoderm which are the source of dermal connective 

tissue elements [114]. 
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To be an effective body barrier cellular interaction either via structural or cytokine contact 

between both epidermal and dermal components of skin. Epithelial-mesenchymal 

interactions control epidermal growth and differentiation. It was found that reciprocal 

stimulatory effects between keratinocytes and dermal fibroblasts and micro vascular 

endothelial cells via induction of paracrine growth factor gene expression. The superficial 

epidermal layer of skin consists of a variety of cells, namely, keratinocytes, the dominant cell 

type, melanocytes, the coloring cells of skin, Langerhan cells responsible for epidermal 

defense and Merkel sensory cell [115].  

Cell talk is will represented in the process of skin pigmentation (Melanogenesis). Melanin is 

synthesized and packaged in organelles containing melanogenic enzymes (tyrosinase gene 

family of proteins), the melanosomes, which are trans located down to the tips of the 

melanocyte dendrites and then transferred to the neighboring keratinocytes, where they 

form melanin cap over the nuclei to protect DNA from UV damage [116-117]. Many 

researches confirmed the presence of cellular interaction between melanocyte and 

keratinocytes for regulation of skin pigmentation [118-120] which in case of failure result in 

pathological pigmentation. 

Solar Lentigo; macular brown pigmentation appearing after chronic sun exposure is 

considered as a component of photoaging. Lesional keratinocytes express enhanced levels of 

endothelin-1 (ET-1) [121] and (stem cell Factor) SCF [122] that stimulate melanocyte 

proliferation and melanin formation. 

Ephelides (Freckles) which are small, discrete brown macules usually <0.5 cm in diameter 

appear on exposed areas among children and young adults, especially in fair-haired and 

fair-skinned individuals [123]. Histologically, the melanocytes are normal or reduced in 

number when compared with adjacent normal skin, but melanin production is increased 

owing to UV stimulation. Large numbers of mature melanosomes are evident in dendritic 

melanocytes [124]. 

Post-inflammatory Hyperpigmentation following inflammation occurring mainly in 

Fitzpatrick skin types IV-VI [123]. Post-inflammatory hyperpigmentation (PIH) represents a 

pathophysiological response to cutaneous inflammation, such as acne, atopic dermatitis, 

discoid lupus erythemasosus, erythema dyschromicum perstans, fixed drug eruption, 

generalized drug eruption, idiopathic eruptive macular pigmentation, impetigo, insect bites, 

irritant and allergic contact and photocontact dermatitis, lichen planus, lichen simplex 

chronicus, morphea, pityriasis rosea, polymorphous light eruption, psoriasis, burn, abrasive 

and postsurgical trauma, and viral exanthem [125]. Melanocytes can either be stimulated by 

the inflammatory process to become hyper-functional, thus secreting more melanin, or the 

number of melanocytes can increase. Epidermal hyperpigmentation (such as that associated 

with acne) occurs when increased melanin is transferred to keratinocytes, whereas dermal 

pigmentation (e.g., associated with lichen planus and cutaneous lupus erythematosus) 

occurs when the basement membrane is disrupted causing melanin to fall into the dermis 

and resides within melanophages [125]. 
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19. Keratinocyte-Langerhans cell interaction  

Skin is an immunological organ consisting of epidermal cells, i.e. keratinocytes and 

Langerhans cells (LCs, antigen-presenting dendritic cells), and both innate and acquired 

immune systems operate upon exposure of the skin to various external microbes or their 

elements [126]. 

Langerhans cells are dendritic cells (antigen-presenting immune cells) of the skin and 

mucosa, and contain large granules called Birbeck granules. They are present in all layers of 

the epidermis, but are most prominent in the stratum spinosum [127]. These Birbeck 

granules, are rod-like membrane-bound structures with regular cross-striations, one end of 

which frequently distends in a vesicle so that they resemble a tennis racket or Ping-Pong 

paddles (15 to 50nm in length and 4 nm thick). These granules form as a result of clathrin-

assisted endocytosis; however, their function is not known [127, 128]. 

Langerhans cells derive from the cellular differentiation of monocytes with the marker "Gr-

1" (also known as "Ly-6G/Ly-6C") [129]. In skin infections, the local Langerhans cells take up 

and process microbial antigens to become fully functional antigen-presenting cells. 

Presenting the processed antigens to T cells resulting in T-cell differentiation and activation 

has an important role in innate cutaneous immunity [130]. Toll-like receptors (TLR) are 

involved to enhance the ability of LCs to present a specific antigen to T cells [127]. Toll-like 

receptors (TLRs) are a class of conserved receptors that recognize pathogen-associated 

molecular patterns (PAMPs) present in microbes [131]. Hari et al. also reported that these 

receptors are expressed on several skin cells including keratinocytes, melanocytes, and 

Langerhans cells [131]. 

20. Cell-cell interaction in dermal resident cells 

Dermis is the deep connective tissue component of skin; it is the habitat of many cells either 

fixed (permanent) or transient visitors. Fibroblasts represent the dominant population of cells 

with only few hematopoietic cells residing in these tissues [132]. These cells are responsible for 

collagen production and serve to maintain the extracellular matrix and stromal connective 

tissues. They do this by secreting compounds that serve as precursors to components of the 

extracellular matrix, which go on to form collagens, glycosaminoglycan’s, glycoproteins, and 

reticular and elastic fibers. Fibroblasts has well known role in wound healing processes [133] 

as well as abnormal scar formation [134]. Adipocytes aggregate under the dermal tissue to 

offer a secondary protective barrier to body organs. 

Dermal cell interaction was described in normal as well as in pathological conditions of 

human skin. A complex pattern of cell talk or cellular interaction was observed by Ali et al. 

[134] in case of keloid scars. Fibroblast-lymphocytes, mast cells and macrophages contact 

were described by authors in such lesions (Figure 4, 5). Walsh et al. [135] reported the role of 

human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast 

cell products other than vasoactive amines influence endothelium in a proinflammatory 

fashion. Mast cells of considerable number, size and degranulation were found by Ali et al. 

[134] to dominate in some lesions of keloid scar. This suggested the interaction between 
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those two cells and their implication in scar formation. A paracrine loop between adipocytes 

and macrophages via free fatty acid and free fatty acids and tumor necrosis factor alpha 

signaling was reported by Suganami et al [136] and Andrade et al. to aggravate 

inflammatory changes [137].  

 

Figure 4. Cell interaction between different cell population in keloid dermal connective tissue, Quoted 

from Ali et al. [134]. 

The extracellular matrix is important because its composition determines the physical 

properties and integrity of dermal connective tissue [128]. Fibroblast growth factor (FGF) 

signaling is involved in a wide range of important organically activities with differential 

effects in several cell types. Ali et al. [134] found an interesting association of fibroblasts 

with lymphocytes, mast cells and macrophages known to be increased in dermal tissue in 

case of inflammatory processes characterized skin injury. A sort of cell interaction seemed to 

occur between fibroblasts and these immune cells was suggested. This interaction was 

termed cell talk by Lim et al [138]. 

Mast cells were the third type of immune cells that were interestingly found in large 

numbers of keloid scars examined in this study. This explained the finding that most 

patients with abnormal scars complained of itching as a symptom and erythema as a sign 

[139-140]. Both resolved by corticosteroid treatment. In this study, mast cells were found in 
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close contact with fibroblasts. Mast cell activation is a characteristic feature of chronic 

inflammation, a condition that may lead to fibrosis as a result of increased collagen 

synthesis by a fibroblast [140-144].  

Fibroblasts were also found to produce a mast cell growth factor that supposedly regulates 

mast cell survival, differentiation, and granule synthesis, whereas, mast cells were shown to 

affect the biochemical properties of fibroblasts, which can lead to fibrosis. Fibroblasts can 

modulate the functions of both mast cells and eosinophils, which also increase the amount 

of melanocytes and melanin pigment [141-143]. 

Obesity is associated with decreased dermal elasticity. This denotes the presence of an 

adipocyte–fibroblast interaction. Azure and Amano [145] found that enlarged adipocytes 

have negative regulation of dermal fibroblasts through release of free fatty acids. 

 

Figure 5. Mast cell-lymphocyte interaction by scanning microscopy, Quoted from Ali et al. [134]. 

Eosinophil infiltration into the inner dermal compartment is a predominant pathological 

feature of atopic dermatitis [146]. The interaction between eosinophils and fibroblasts under 

IL-31 and IL-33 stimulation differentially activated extracellular signal-regulated kinase, c-

Jun N-terminal kinase, p38 mitogen-activated protein kinase, nuclear factor-κB and 

phosphatidylinositol 3-kinase–Akt pathways. 

Eosinophil infiltration into the inner dermal fibroblast layer causing inflammation in atopic 

dermatitis has been well established]. Investigation of the interaction between eosinophils 

and fibroblasts may therefore help to elucidate the mechanism of initiating local 

inflammatory response in atopic dermatitis [147]. 
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