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1. Introduction 

Gene targeting is a powerful technology to achieve gene ablation and modification in the 

study of gene function by phenotypic analysis. This method is widely recognized as being 

useful; however, its application is not yet versatile. Its main limitation is the small number of 

cells in which gene replacement occurs efficiently after endogenous homologous 

recombination. Artificial enhancement of homologous recombination has been hardly 

successful. Recently, however, several techniques have been reported that can increase the 

efficiency of homologous recombination. In this chapter, I first summarize the principles 

and applications of those techniques. Next, I focus on a simple technique, in which the 

addition of oligonucleotides, homologous to the targeted locus, significantly increases the 

efficiency of homologous recombination and, subsequently, the number of genetically 

targeted clones. The greatest benefit of oligonucleotide-aided homologous recombination is 

its versatility, i.e., its applicability to virtually any cell type. Finally, the presumed molecular 

mechanisms underlying oligonucleotide-aided homologous recombination are presented. 

2. Gene targeting technology 

The ultimate goal of genetic molecular biology is to modulate the activity of genes at will. In 

gene targeting technology, in vivo homologous recombination enables the replacement of a 

target genomic region with an exogenous DNA fragment that contains a region homologous 

to the targeted locus (Fig. 1). This technology is indispensable for the analysis of gene 

function. To acknowledge its importance, the discovery of the principles of gene targeting in 

mice was awarded the Noble Prize in 2007. Recently, applications of this technology have 

been expanded to gene therapy and transgenic plants. However, the success of the 

technique greatly depends on the efficiency of homologous recombination; therefore, it 

cannot be successfully applied to cells with low homologous recombination efficiency, such 
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as mammalian somatic cells and higher plant cells. Furthermore, in multiploid somatic cells, 

simultaneous gene targeting is required, making complete gene replacement extremely 

difficult. Even in embryonic stem (ES) cells, where homologous recombination occurs with 

high efficiency, some genes are difficult to target and subject to homologous recombination. 

To overcome these problems, the development of efficient and versatile methods that can 

artificially increase the efficiency of homologous recombination is needed. 

 

Figure 1. Schematic diagram of principle of Gene Targeting 

When extracellular DNA fragment is introduced into cell, gene replacement rarely occurs by 

homologous recombination. Utilizing this phenomenon, one can ‘target’ a gene of interest 

and change its DNA alignment at will. 

3. Introduction of vector DNA into cells 

Introduction of a targeting vector (DNA fragment) into a cell is the primary step to targeting 

genes. In general, there are 3 types of strategies to introduce a DNA fragment into a cell: 

biological, chemical, and physical. The biological method, using a virus vector, yields high 

transformation efficiencies. However, there remains the risk of insertion of viral vector 

genes into the host genome with selectivity for the virus. The chemical method, usually 

utilizing a polycationic polymer, is easy to perform. However, the polymer can be 

recognized as a foreign substance and become enclosed within endosomes, where it is 

digested along with the transformation vector. It is possible to make the polymer escape this 

digesting pathway, but the strategy is generally not very efficient (Colosimo et al., 2003). 
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Physical methods such as microinjection and electroporation are relatively versatile and 

most frequently used in gene-targeted cell transformation (Niidome et al., 2002). 

4. Construction of gene targeting vectors 

In gene targeting, a linear DNA fragment is used as targeting vector. The targeting vector 

consists of 2 homologous regions to the genome and a drug resistance gene for the selection 

of transformants (Fig. 1). Drug resistance gene products can degrade drugs such as G418, 

hygromycin B, puromycin, and blasticidin S, which are toxic to untransformed cells, thus 

facilitating the survival of the transformed cells in drug-containing medium. The targeting 

vector is constructed by fusing the 3 DNA fragments in tandem by using basic molecular 

biological techniques, such as PCR, restriction enzyme digestion, and cloning techniques. 

Interestingly, Kuwayama et al. have described the construction of a gene targeting vector by 

PCR only, but unfortunately not in sufficient detail for reproduction (Kuwayama et al., 

2002).  

Briefly, in the first step, three separate PCR syntheses of a selectable marker cassette and the 

5'- and 3'-homologous regions of a target gene. Of the four primers used in amplification of 

the 5'- and 3'-regions of the target gene, two primers placed proximal to the site of the 

marker cassette are designed to have sequence tags complementary to the 5'- or 3'-side of the 

marker cassette. The two primers used in PCR synthesis of the marker cassette are 

complementary to the tagged primers. By fusion PCR, the 5' and 3' PCR products are 

connected to the marker cassette via the regions of tagged primers that overlap. And then, a 

sufficient amount of the disruption construct can be directly amplified with the outermost 

primers (Fig. 2). 

 

Figure 2. Schematic diagram of PCR-dependent construction of gene targeting vector. 

Step 1, the three primary PCR reactions. The 5'- and 3'-flanking regions are amplified with 

primers (primers A–F) specific for the sequence of the target gene. The primers distal to the 

selectable marker insertion site are simple primers complementary to the target gene 
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(primers A and D). The primers directly adjacent to the marker cassette are chimeric 

(primers B and C). Primers complementary to primers B and C are used to amplify the 

selection marker gene (primers E and F). Step 2, fusion PCR. The 5′- and 3′-flanking 

regions are joined to the marker gene and the final PCR product is amplified with the 

outermost primers A and D. The order in which the flanking sequences are joined to the 

ends of the selectable marker cassette is discretionary. The final PCR reaction mix containing 

the targeting vector is subjected to ethanol precipitation and can be directly used to 

transform cells. 

For the transformation, the targeting vector must be linearized by enzymatic digestion at a 

site outside the insert region; alternatively, the insert region may be amplified by PCR 

before transformation. One of the critical points in constructing targeting vectors is the 

length of the homologous regions. Optimum length of the homologous regions for gene 

targeting varies and depends on the organism, cell type, and targeted locus. In practice, the 

length of the homologous DNA region, which is cloned or amplified by PCR, is limited. In 

addition, an excessively long DNA fragment is difficult to introduce into cells. Therefore, the 

homologous DNA fragment is generally designed to be 5–8 kb in length (Hasty et al., 1993). 

5. Principles and applications of gene targeting methods 

Introduced DNA fragments containing homologous sequences to genomic DNA rarely 

induce target gene replacement (Hasty & Bradley, 1993; Rouet et al., 1994; Smih et al., 1995; 

Jasin, 1996; Mamsour et al, 1988). Notwithstanding its low occurrence, this reaction (so-

called homologous recombination) is considered the driving force of evolution and diversity 

in species. In a test tube, it is possible to manipulate the genomic DNA at will by means of 

gene targeting in organisms and/or cells with high transformation and endogenous 

homologous recombination efficiencies. However, even in such model systems, targeting 

vector transformation results in a high proportion of non-targeted (randomly inserted) 

transformants. This is because homologous recombination efficiency is generally much 

lower than genomic insertion efficiency. To overcome this problem, several methods, which 

eliminate non-targeted transformants, have been proposed. 

One such method is positive/negative selection (Mamsour et al., 1988). This method, based on 

the addition of a negative selection marker gene in one or both ends of the gene targeting 

vector, aims at the enrichment of the small fraction of cells in which homologous 

recombination took place. In case of random insertion, the negative selection marker is 

integrated into the genome along with the targeting vector. The negative marker gene product 

eliminates non-targeted host cells, and only homologously recombined clones can survive by 

removal of the negative selection marker gene during homologous recombination. However, 

the added negative selection marker gene may reduce homologous recombination efficiency. 

In another method, the “promoterless” method, the promoter region of the selection marker 

gene is removed and the marker gene can be translated only when homologous recombination 

occurs. However, when the endogenous promoter activity is low, the marker gene is not 

expressed at levels high enough to degrade the selection drug. 



 
Enhancement of Homologous Recombination Efficiency by Homologous Oligonucleotides 237 

Any of the 2 abovementioned methods can reduce the number of non-targeted clones, and 

minimize the time and effort required for selection of the targeted clones. However, none of 

them achieve the ideal removal of non-targeted clones. In fact, the ratio of targeted clones to 

non-targeted clones can be as low as 0.1%; in cultured mammalian cells, this percentage can 

reach up to 20% (Sedivy & Dutriaux, 1999). To increase the proportion of targeted clones, a 

method has been developed that suppresses non-homologous recombination by 

mutagenizing host cells. This method targets ku70/ku80 genes, which encode proteins that 

bind the ends of DNA linear fragments (Kooistra et al., 2004 ; Ninomiya et al., 2004). 

Without these genes, host cells suppress non-homologous recombination and, as a result, 

homologous recombination efficiency increases. However, application of this method is 

restricted to host cells possessing ku70/ku80 orthologous genes. Moreover, the effects of 

elimination of these genes should be carefully examined in each particular case. 

6. Increased homologous recombination efficiency by artificial methods 

Some methods have been proposed that artificially increase endogenous homologous 

recombination efficiency. The common basis of these methods relies on the observation that 

the occurrence of a DNA double-strand break (DSB) in the targeted region dramatically 

increases homologous recombination efficiency. Hence, artificial induction of DSB would 

effectively increase gene targeting efficiency, to (Hasty & Bradley, 1993; Rouet et al., 1994; , 

Jasin, 1996). At least 3 different DSB-inducing methods have been reported. I-SceI is a highly 

specific restriction enzyme that recognizes an 18-bp-long DNA sequence (Fig. 3). When the 

recognition site exists within the targeted domain, co-transformation of I-SceI with targeting 

vector results in specific digestion of the genomic DNA at the recognition site, increasing 

homologous recombination efficiency. The limitations of the method are the necessary pre-

existence of a I-SceI site in the target region and the absence of that same site from the 

targeting vector. Moreover, there should be ideally no other I-SceI restriction site in the host 

genome. Therefore, application of the method is restricted to certain organisms and cells.  

Another method utilizes a nuclease fused with engineered C2H2 zinc finger protein-based 

DNA-binding domains, which bind sequences specifically at the targeting region and cause 

site-directed DSBs (Fig. 4). A limitation of this method is the effort required to accurately 

and carefully design the zinc finger DNA-binding domain, because binding specificity and 

affinity are the critical determinants of recombination efficiency. Furthermore, simultaneous 

expression of zinc finger nucleases (ZFNs) with the gene-targeting construct is also 

indispensable (Urnov et al., 2005). 

Triplex-forming oligonucleotides (TFOs) are known to induce a DNA DSB and repair 

system and, thus, are expected to increase homologous recombination efficiency in vivo (Fig. 

5). However, TFOs that bind to double-stranded DNA are restricted to the polypurine or 

polypyrimidine tract; therefore, this technology is limited to segments with unique target 

sites (Demidov, 2003). 

When the recognition site of I-SceI inserted into the targeted domain, co-transformation of I-

SceI enzyme with targeting vector results in specific digestion of the genomic DNA at the 

recognition site, increasing homologous recombination efficiency. 
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Figure 3. Schematic diagram of Restriction Enzyme (I-SceI) dependent increase of homologous 

recombination efficiency. 

 

 

Figure 4. Schematic diagram of zinc finger nucleases (ZFNs) dependent increase of homologous 

recombination efficiency. 
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By expressing engineered C2H2 zinc finger protein-based DNA-binding domains which 

bind sequences specifically at the targeting region, a site-directed DSBs occurs and, thus, 

increases homologous recombination efficiency. 

 

 

 

 

 

Figure 5. Schematic diagram of Triplex-forming oligonucleotides (TFOs) dependent increase of 

homologous recombination efficiency. 

When a TFO is formed in genome, a DNA DSB is induced at the site and, thus, homologous 

recombination efficiency increases. 

7. Enhancement of homologous recombination efficiency by homologous 

oligonucleotides 

Recently, I described a general gene targeting method in which co-transformation of DNA 

oligonucleotides (oligomers) could significantly increase homologous recombination 

frequency and transformation efficiency (Kuwayama et al., 2008). This method is based on 

the experience that a high concentration of gene-targeting construct generally provides 

considerably better transformation and homologous recombination efficiencies. However, 

the amount of gene targeting construct that can be used at each transformation is limited 

and, furthermore, preparing a large amount of vector DNA is demanding. In order to 

overcome this limitation, I tested whether addition of only a part of the homologous region 

of a gene-targeting construct was as effective as the entire construct (Fig. 6). 
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A single-stranded DNA oligomer is much smaller than the gene targeting vector, and thus, 

it can be introduced into cells in much larger amounts than the targeting vector. Using the 

cellular slime mold model organism, Dictyostelium discoideum, and mammalian Hela cells, 

the effect of co-transformation of short homologous DNA oligomers was tested. In D. 

discoideum, the gbfA gene locus was chosen to be targeted because this gene was 

reportedly difficult to replace with an endogenous targeting vector. By electroporation, the 

gene targeting vector and homologous strand of short DNA oligomers were simultaneously 

transformed into D. discoideum cells. The DNA oligomer was about 20 bases in length, and 

the added concentration was 10 to 100 μM. This concentration was 100 to 10,000 times 

higher than that of the gene targeting vector. As a result, homologous recombination as well 

as transformation efficiencies significantly increased. Since this positive effect was also 

observed with all the genes tested—pkaC, gbfB, ctxA, and ctxB—addition of homologous 

DNA oligomer was considered to be effective in general in D. discoideum. The tested 

oligomers were designed such that they had 20–24 monomers, and the sequences at both 

the ends were identical to those of the flanking regions in the inward direction (Fig. 6). 

When the wild-type cells were co-transformed with 100 μM of the two inward-directed 

oligomers, the gene targeting efficiency as well as the transformation efficiency increased in 

all cases (Fig. 7). These results indicate that the co-transformation of the designed 

homologous oligomers increases the transformation efficiency. 

 
 

 

Figure 6. Schematic diagram of increase of homologous recombibation efficiency by short hologous 

DNA oligomers. 



 
Enhancement of Homologous Recombination Efficiency by Homologous Oligonucleotides 241 

Furthermore, we also observed that, in diploid cells, sister alleles were simultaneously 

recombined with the targeting vectors. As this effect was also observed in the human cell 

line, Hela, it was suggested that this effect is not specific to D. discoideum cells but is general 

to all eukaryotic cells. 

Why does the simple addition of homologous short DNA oligomers increase specific 

homologous recombination efficiency? It is not likely that TFOs are responsible because 

oligomers lacking TFO signature sequences are also effective. Hence, site-specific DSB does 

not seem to occur. One possibility is that short DNA oligomers can easily be introduced into 

the nuclei, affecting chromatin structure at the targeting locus and enhancing the interaction 

between the genomic targeted region and the targeting vector. Another possibility is that the 

added DNA oligomers contribute to the increase in the number of targeting vector 

molecules in the cell. 

 
 

 
 

Figure 7. Increase of the homologous oligomers on the transformation and homologous recombination 

efficiencies. 

Co-transformation of high concentration of short homologous DNA oligomers results in 

significant increase of homologous recombination. This technique also increases 

transformation efficiency, although the detailed mechanism is not unraveled, yet. 

Transformation efficiencies were examined for the pkaC, gbfA, ctxA, and ctxB gene -

targeting constructs. The data are represented as the number of primary transformants per 

transformation (2 × 107 cells). White bars represent transformation without oligomers. Blue 

bars represent transformation with 100 μM inward oligomers. Homologous recombination 

efficiencies of the gene- targeting construct without the oligomers (white bar) and with 100 

μM oligomers (Red bar) are represented as an average percentage of the gene targeted 
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transformants to the total number of transformants. Bars represent standard deviation (SD) 

of 3 independent transformations. 

8. Conclusion 

The DNA oligomer-aided homologous recombination herein presented can, in principle, be 

applied to any general transformation method, including microinjection and lipofection, and 

cell line, including mammalian transformed and primary somatic cells. Furthermore, no 

cytotoxicity and no random insertion of DNA oligomers into the genome were observed 

(unpublished data). Although the reason underlying the increase in the homologous 

recombination efficiency after oligomer addition remains unknown at present, it may 

become possible in the future to design oligomers to target the most effective position at the 

locus of interest. 

Further improvements in this method are expected to result in practical and clinically safe 

therapeutic modifications of human cells, in particular, by using artificial nucleic acid 

analogues such as peptide nucleic acid (PNA) and 2′-O or 4′-C locked nucleic acid 

(LNA). The use of these analogues is expected to provide higher homologous recombination 

frequency at low oligomer concentration because PNA and LNA have an increased affinity 

to native DNA and a high resistance to nucleases, thereby imparting higher biostability 

(Demidv, 2003). Furthermore, these analogues are low in toxicity (Wahlestedt et al., 2000; 

Kaihatsu et al., 2004). In the future, it is hoped that this method will contribute to 

development of genetically engineered high-efficiency yielding transformation methods and 

to innovation of epochal gene delivery systems. 
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