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1. Introduction 

Non-human primates (NHP) have been indispensable to the study of simian 

immunodeficiency (SIV)/human immunodeficiency (HIV) infection, pathogenesis, and the 

development of prophylactic and therapeutic interventions to prevent transmission and 

progression to disease. A number of SIV and chimeric simian-human immunodeficiency 

virus (SHIV) challenge stocks have significantly advanced the NHP model, making it 

possible to identify and better understand factors that influence virus transmission, acute 

infection, pathogenesis and the eventual progression to AIDS. The development of SHIV 

recombinant viruses, in particular, has been especially advantageous in that it provides a 

more relevant research tool for studying properties of HIV-1 infection in a NHP setting. 

These include HIV-1 envelope characteristics that affect transmission and pathogenesis. 

SHIV constructs also allow for the evaluation of the efficacy of anti-HIV microbicide 

formulations and vaccines that are directed against envelope and other critical virus 

components such as reverse transcriptase. While beneficial, the vast number of virologically-

distinct challenge stocks and the growth of the NHP challenge model repertoire to now 

include rhesus, pigtail and cynomolgus macaques, have collectively introduced an increased 

level of complexity with regard to experimental design and data interpretation. 

Furthermore, some virus stocks have virological properties that limit applications in novel 

areas of drug discovery, prompting the development of new generation SHIV challenge 

stocks. The purpose of this chapter is to therefore summarize efforts that have been made to 

characterize both SIV/SHIV challenge stocks and NHP hosts, to highlight the development 

of new generation SHIV, and how these novel challenge stocks have advanced the SHIV 

NHP challenge model and anti-HIV drug and vaccine development.  
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2. Current NHP models: Overview of NHP species origin, susceptibility 

to infection and pathogenesis/disease course 

2.1. Old World NHP natural hosts 

As many as 40 NHP species have been identified to be naturally infected with SIV, with 

each species exhibiting distinct virus lineages that share a considerable degree of genetic 

identity. Epidemiological and phylogenetic analyses have established that the origin of the 

HIV-1 and HIV-2 strains is the result of cross-species transmission of the NHP lentivirus 

equivalents SIVcpz and SIVsm from Eastern/Central African chimpanzees and the West 

African sooty mangabey, respectively [1-8]. More recently, there was also evidence 

demonstrating cross-species transmission of a distinct SIV lineage from gorillas [9]. Due to 

cost and ethical reasons, the study of SIVcpz infection has been limited to small numbers of 

chimpanzees tracked in the wild or in captivity, with limited opportunities to monitor 

natural SIVcpz infections. Laboratory-adapted HIV-1 strains were initially tested in 

chimpanzees and were found to recapitulate some, but not all, aspects of pathogenesis 

observed in HIV-1 infected humans [10]. Changes in the environmental protection status of 

this species have led to a halt in invasive studies thereby limiting their research capacity. 

Experimental SIV infection of sooty mangabeys has also ceased due to their endangered 

status, but previously acquired samples and animals with existing SIV infections are 

permitted for study. Two other animal models of natural SIV infection that are available for 

experimental AIDS research include the African green monkey (AGM), and more recently, 

mandrills that are native to Gabon [11, 12]. Although initial studies were performed in AGM 

of African origin, the import of this NHP species to the Caribbean has facilitated their 

availability, making AGM of Caribbean origin the source of more recent SIV studies. The 

breadth of research in mandrills is not yet as extensive as that conducted in the other Old 

World NHP species, thus the majority of information on non-pathogenic SIV infections have 

been gained from studies in sooty mangabeys and AGM. Research on these natural NHP 

SIV hosts has collectively revealed what have come to be known as the hallmarks of SIV 

infection in Old World NHP natural hosts: attenuated anti-SIV immune responses and a 

typical lack of progression to an AIDS-like disease.  

Natural hosts of SIV generally exhibit elevated acute innate and adaptive immune responses 

in the early phase of infection, followed by a downregulation of Type I interferon responses 

during the chronic phase of infection [13, 14]. In addition, while humoral immune responses 

are mounted during SIV infection, these are relatively minimal as demonstrated by the 

detection of low neutralizing antibody titers in SIV-infected sooty mangabeys and AGM [15, 

16]. This immunologic attenuation collectively contributes to limited T-cell apoptosis and 

maintenance of peripheral CD4+ T-cells even though viral loads comparable to those in 

pathogenic SIV infection are observed [17-19]. The precise mechanism that triggers the 

downregulated immune response is unclear, but is likely to involve a combination of 

proposed processes that include, (1) enhanced responses of immunosuppressive regulatory 

T-cells and IL-17 producing Th17 cells (2) a robust early innate immune response that is 

swiftly constrained, and (3) controlled regulation of cellular factors or receptors associated 
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with activation, apoptosis, or virus binding [20-32]. Furthermore, in contrast to the massive 

immune depletion that occurs in the gastrointestinal (GI) tract of non-natural hosts of SIV or 

HIV infection, natural NHP SIV hosts maintain GI epithelial integrity and exhibit a lack of 

microbial translocation that may in part account for minimal systemic immune activation 

[33, 34]. Limiting the pool and/or proliferative capacity of target cells may also play a role in 

disease resistance, as demonstrated by studies in sooty mangabeys in which SIV replication 

was shown to be restricted to primarily short-lived activated CD4+ T-cells, which likely 

contributes to the preservation of central memory CD4+ T-cells [35, 36]. A population of 

double negative (CD4-CD8-) T-cells capable of producing Th1, Th2 and Th17 cytokines have 

also been identified in sooty mangabeys, and are thought to compensate for CD4+ T-cell 

helper functions in SIV-infected animals [37].  

Although the vast body of evidence points toward a disease-resistant phenotype, a low level 

of AIDS-like mortalities have been described among natural NHP hosts of SIV. An 

increasing number of studies suggest that SIV-infected chimpanzees in particular do not 

necessarily follow the disease-resistant paradigm and can in fact develop AIDS-like 

symptoms that include depleted CD4+ T-cell counts, reduced fertility in females, low 

offspring survival rates and increased risk of death following infection [38]. A case of 

immunodeficiency was also observed in a sooty mangabey that had been naturally infected 

with SIV for nearly two decades [39]. Collectively, these reports suggest different incubation 

periods for the SIVcpz and SIVsm lineages and/or that the asymptomatic period in SIV-

infected Old World NHP may be longer than what is typically noted for HIV-infected 

humans. These NHP models have therefore provided valuable insight into both host and 

virus factors that have co-evolved to result in this attenuated disease phenotype. The slow 

progression to AIDS-like symptoms, if at all, in these species share important parallels with 

HIV-1 infected individuals who are long-term non-progressors and with HIV-2 infected 

individuals who typically exhibit a less severe clinical course , thereby providing clues 

about protective immune correlates of HIV infection that will undoubtedly influence 

vaccine and therapeutic design. It has also become increasingly apparent that immune 

factors alone may not influence the course of disease, as targeted CD4+ T-cell, CD8+ T-cell or 

CD20+ B-cell in vivo depletion via cell-specific antibody infusion in sooty mangabeys or 

AGM had negligible effects on viremia and disease progression [40-42], adding an 

additional layer of complexity and also highlighting that the virus itself needs to be taken 

into account. Continued research on the intricate interplay between host and virus factors in 

natural NHP hosts will continue to shed light on mechanisms that may have applications for 

health preservation in individuals already living with HIV infection.  

2.2 .Old World NHP non-natural hosts 

While natural NHP hosts of SIV have afforded a wealth of information about non-

pathogenic infections, current environmental and ethical laws alluded to above restrict the 

availability and/or experimental infection of some of these species thereby limiting studies 

involving SIV transmission and evaluation of early anti-SIV immune responses. 

Furthermore, the non-pathogenic status of these natural hosts is not applicable to studies 
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that seek to develop and test new prophylactic and therapeutic tools aimed at preventing 

and/or treating HIV infections. Such research has however been greatly facilitated by the 

utilization of Old World NHP macaque species since virus isolates and derivatives of SIVsm 

and SIVagm readily infect these animals, resulting in a pathologic process that is strikingly 

similar to that observed in HIV-1 infected individuals who progress to AIDS. Also of note, 

baboons (Papio cynocephalus) are readily infected with HIV-2, and exhibit a disease course 

resembling the slow progression that is observed in chronic HIV-1 infection in humans [43]. 

Baboons have therefore proven to be useful in studies evaluating viral latency and clinical 

stages of the disease. However, due to a number of factors that include differences in the 

HIV lineages, animal resource availability, and the time to disease development, studies 

modeling HIV-1 infection and vaccine development have primarily involved macaque 

species. The degree of susceptibility to infection and severity of disease course is highly 

dependent on both the macaque species and the challenge virus. Infection of Rhesus 

macaques (Macaca mulatta) with SIVsm isolates and its derivatives, but not SIVagm, 

typically leads to simian AIDS [44, 45]. Pigtail macaques (Macaca nemestrina) succumb to 

AIDS-like symptoms after infection with SIVsm and SIVmac, with only certain strains of 

SIVagm, and with SIVl’hoest and SIVsun which are isolates of l’Hoest (Cercopithecus lhoesti) 

and Sun tailed monkeys (Cercopithecus solatus), respectively[45-47]. Cynomolgus macaques 

(Macaca fascicularis) are readily infected with SIVmac251, an isolate from a captive rhesus 

macaque thought to have been infected with SIV from sooty mangabeys, but this species 

exhibits diminished pathogenicity and lower viremia when compared to SIV infected rhesus 

macaques [48].  

Thus, while there is a fairly broad repertoire of macaques as animal models for AIDS 

research, their distinct pathogenic outcomes and innate physiological and biological 

makeup have to be carefully accounted for prior to selection for experimental studies. There 

is healthy skepticism regarding the extent to which macaques can accurately reflect HIV 

pathogenesis and predict efficacy of vaccines or other prophylactic tools in humans, and this 

is especially highlighted by negative results of the vaccine clinical trials AIDSVAX and STEP 

[49]. However, NHP macaques continue to be the best available model that researchers can 

utilize to study in vivo host-virus interactions in a system that is similar to HIV infected 

individuals. Furthermore, macaque models can be utilized to conduct retrospective studies 

to recapitulate vaccine clinical trials that have been conducted in humans. The most recent 

Phase IIb vaccine clinical trial, RV144, demonstrated a modest level of protection (31.2%) 

with a prime-boost platform involving ALVAC HIV (vCP1521) and AIDSVAX B/E gp120 

candidate vaccines, and a working group has been set up to identify correlates of protection 

conferred by this vaccination in macaques in order to compare and contrast degrees of 

protection and associated protective immune responses . Drawing parallels between 

macaque models and vaccine trial participants may inform the design of future clinical trials 

as well as guide the choice of NHP model for prospective pre-clinical studies. The nature of 

the challenge virus itself has to also be considered. Indeed, as reviewed below, virus stocks 

utilized in NHP research have grown past SIV to include chimeric SHIV strains as well as 

simian-tropic HIV-1 strains, to better reflect properties of HIV-1 specific transmission and 
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associated immune responses, and to facilitate experimental studies on anti-retroviral 

treatments and anti-HIV vaccines in NHP models. The selection of a NHP model will also 

require careful thought of the scientific questions being evaluated, the impact of these 

studies on the design of clinical trials in humans, as well as the cost and availability 

associated with each macaque species. These considerations are detailed below and are 

summarized in Table 1. 

 

 

Macaque model Pros Cons

Rhesus 

macaques 

(Macaca mulatta) 

-intravenous, intra-rectal, intra-

vaginal and penile-exposure 

models established (single high 

and repeat low dose challenge). 

- SIV/TB co-infection models. 

- Well characterized MHC allelic 

profiles in Indian origin 

macaques. 

-Model of choice for vaccine 

candidates. 

-Supply of Indian rhesus macaques 

dependent on domestic breeding 

capacity. 

-Chinese rhesus macaques: Poorly 

characterized MHC allelic profiles, 

exhibit low viral loads and not 

suitable for vaccine studies. 

-Primarily seasonal breeders: 

shortage of female macaques, not 

suitable for comparative menstrual 

cycle-related SIV/SHIV studies. 

Pigtail macaques 

(Macaca 

nemestrina) 

-Vaginal ecology and physiology 

similar to women. 

-Well-characterized repeat low 

dose model of intravaginal virus 

challenge. 

-SIV/SHIV and STI co-infection 

models. 

-Shows promise as a macaque 

model utilizing modified HIV-1.  

-SIVmac infections typically 

aggressive and not reflective of HIV-1 

infection. 

-Limited breeding facilities in the US, 

expensive. 

-Less established as a model for 

testing vaccine candidates.  

Cynomolgus 

macaques  

(Macaca 

fascicularis) 

-Smaller in size, easier to handle. 

-Widely available. 

-Mauritian origin macaques 

exhibit high MHC allele 

homogeneity. 

-Smaller size restricts volume and/or 

frequency of blood and specimen 

collections. 

-Exhibit low viral loads. Limited 

suitability for vaccine studies. 

-Repeat low dose model not 

optimized. 

 

Table 1. Summary of advantages and disadvantages of current NHP models for AIDS. 



 

Immunodeficiency 316 

2.3. Research applications and species-specific advantages of macaque models 

for AIDS 

2.3.1. Rhesus macaques (Macaca mulatta) 

Rhesus macaques have been extensively used in AIDS research, which was in part 

facilitated by their availability. These macaques are now less easily obtained in part due to 

demands for these animals in non-HIV areas of research. This species is highly susceptible 

to infection with a wide range of SIVmac and SHIV strains via intravenous, intrarectal and 

intravaginal routes of infection [50-52], and it is perhaps the best characterized NHP model 

of low dose penile exposure studies [53, 54]. Co-infection models involving SIV and 

tuberculosis have also been established in rhesus macaques [55]. SIV replicates to high levels 

in macaques of Indian origin. This can be advantageous in applications that involve 

stringent testing of vaccine and/or therapeutic efficacy that utilize viral load readouts as 

primary endpoints. However, the high levels of viremia and relatively rapid decline in CD4+ 

T-cells lead to simian AIDS in an average of 2-3 years, which is not reflective of the typical 

rate of pathogenesis in HIV-1 infected humans who tend to develop AIDS over a longer 

period of 10 years. The comparatively faster disease course in rhesus macaques may 

underestimate the efficacy of prophylactic or therapeutic interventions in preclinical studies. 

Nonetheless, this NHP model still has wide applications in vaccine studies since 

experimental and disease outcomes can be determined in a shorter time frame. Furthermore, 

certain HIV-1 infected individuals do exhibit rapid disease progression (2-5 years) [56] and 

thus SIV-infected rhesus macaques could serve useful in this context as well. In humans 

rapid progression to AIDS and death in individuals homozygous at one or more loci (A, B, 

and C) and the association of rapid development of AIDS and the presence of HLA class I 

alleles B*35 and Cw*04 was demonstrated previously [57]. Genes of MHC class I alleles such 

as HLA B*5701, HLA C and the specific combination of KIR3DS1 with HLA-B alleles that 

encode molecules with isoleucine at position 80 (HLA-B Bw480I) were associated with an 

efficient immune control of the kinetics on AIDS progression [58]. Variant genotypes of the 

chemokine receptors of HIV CCR2 (CCR2-64I) and CCR5 (CCR5-∆32) in the homozygous or 

heterozygous states have been implicated in combating the progression of AIDS [59].  

The lower viral load and slower decline in CD4+ T-cells observed in most HIV-1 infected 

individuals is recapitulated better by SIVmac infection in rhesus macaques of Chinese 

origin[60]. However, there is limited genotypic information on Chinese rhesus macaques 

[61, 62], with major histocompatibility (MHC) Class I alleles and relevant SIV epitopes being 

more extensively characterized in Indian macaques [63-66]. MHC class I-restricted CD8+ T-

cell responses are a critical component of adaptive immunity that contributes to HIV-1 and 

SIV control. MHC-typing can be especially informative when selecting cohorts for studies 

that may require exclusion of animals expressing protective alleles known to confer disease 

resistance. Paradoxically, the advances in genotyping rhesus macaques have contributed to 

high levels of demand for animals with specific protective alleles such as Mamu-A*01, 

driving up their cost and limiting their availability. Homologues of the MHC class I alleles 

HLA-A and HLA-B exist in rhesus macaques. The high frequency of MHC class I (Mamu-
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A*01) in rhesus macaques of Indian origin resulting in the restriction of epitopes in different 

regions of SIV has been reported [67]. Mamu-A*01 positive rhesus macaques naturally 

restrict SIVmac251 replication and significantly contain viremia following intrarectal 

challenge. Significant preservation of absolute CD4 counts but the absence of viremic 

control was observed in Mamu-A*01 positive macaques upon intravenous infection with 

SIVmac251 or SIVsmE660 [68]. The ability of Mamu-A*01 positive macaques to restrict 

SIVmac251 replication at peak and set-point following intravenous challenge was 

demonstrated recently [69]. 

Elite controllers or long-term non-progressors have a high frequency of HLA-B27 and HLA-

B57. The presence of homologues in rhesus macaques of the above HLA alleles led to the 

identification of Mamu-B*08 in a high frequency (38%) in a group of macaques defined as 

elite controllers (geometric mean of chronic phase of plasma viremia is below 1000 

copies/mL). The association of MHC class I alleles Mamu-B*17 and Mamu B*29 and Mamu-

A*01 with several fold reduction in chronic-phase plasma viral load was established in a 

group of 181 rhesus macaques infected with SIVmac239 [70].  

Although the genotype of rhesus macaques has been well characterized, this species has 

limitations in studies involving SIV/SHIV infection and the reproductive cycle. Rhesus 

macaques are seasonal breeders [71], with female macaques exhibiting irregular menstrual 

cycles during non-breeding periods. These reproductive patterns put further restrictions on 

the general availability of female macaques and their applications in SIV/SHIV studies 

involving the role of the female reproductive tract and/or hormonal cycle on virus infection. 

Some researchers have circumvented the problem of irregular cycling by using Depo 

Provera, a progestin-based contraceptive, to thin the vaginal wall of rhesus macaques and to 

generate a prolonged luteal phase-like state that allows for consistent vaginal infections. An 

in depth description of this is provided below, in the section detailing Routes and Dose of 

Virus Inoculation.  

2.3.2. Pigtail macaques (Macaca nemestrina) 

In recent years, pigtail macaques have increasingly become an alternative NHP model for 

AIDS research. However, recent closures of several breeding facilities in the US have created 

logistical challenges for their acquisition and resultant increased cost. The benefit of this 

macaque model is that this species is readily infected with SIVmac, SIVagm, and SHIV 

strains [72]. SIVmac-infected pigtail macaques tend to progress rapidly to AIDS and can 

potentially develop thrombocytopenia [136] which is a common autoimmune disease that 

can also manifest in untreated HIV-1 infected individuals. Pigtail macaques in some 

breeding colonies may exhibit certain pre-existing immunologic conditions such as 

compromised mucosal integrity, increased microbial translocation and lower levels of naïve 

and central memory CD4+ T-cells,have been described [34, 73]. SIV/SHIV infected pigtail 

macaques also exhibit considerable variability in set point viral loads which is a trend that is 

noted in HIV-1 infected humans. This may be partially dependent on host genetics, which in 

part prompted the study of MHC Class I alleles in this macaque species (Mane). To date, 16 
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Mane-A and 22 Mane-B MHC Class I alleles have been identified, and further 

characterization of the frequency and distribution of at least 10 of these alleles was 

performed in pigtail macaques of Indonesian, North American, and Australian origin [74, 

75]. New alleles continue to be identified as the genetic characterization of pigtail macaques 

progresses, and this is likely to increase their application in vaccine research.  

Although pigtail macaques have not served as the primary NHP model for HIV vaccine 

studies, other similarities that are shared by this species and humans have encouraged their 

use in other areas of AIDS research. One of the main advantages of pigtail macaques is that 

the females exhibit continuous lunar menstrual cycles as do women [76], making this 

species particularly valuable for studies examining the impact of the menstrual cycle and 

accompanying changes in the vaginal environment on SIV/SHIV susceptibility. Research on 

the role of the female reproductive system in HIV acquisition and transmission is especially 

critical given recent findings that demonstrated a higher risk for women receiving the Depo 

Provera synthetic progesterone injection for the purpose of birth control [77]. Indeed, 

studies in pigtail macaques have demonstrated a similar increase in susceptibility to 

infection during the late luteal phase of the menstrual cycle when progesterone levels are 

high, which is when thinning of the vaginal epithelium, reduced local immunity and other 

factors conducive to virus infection occur [78]. Furthermore, pigtail macaques are a well-

characterized model for repeated low dose SHIV challenge studies involving the 

intravaginal route [79] which are more reflective of infectious HIV doses that are mucosally 

transmitted in humans. In addition, a co-infection model has been developed using this 

species, allowing for the study of sexually transmitted infections in the context of SHIV 

infection [80].  

An intriguing feature of pigtail macaques is that they are partly permissive to HIV-1 and 

HIV-2 infection although virus replication and persistence are transient in vivo [72]. 

Nonetheless, the implication that this macaque species could potentially serve as a primate 

model that utilizes HIV strains as the challenge virus is incredibly appealing given that 

current models depend on SIV or SHIV viruses that exhibit enough divergence from HIV-1 

to impede their applications in certain preclinical studies. The discovery that pigtail 

macaques carry a variant form of the host restriction factor TRIM5alpha [81-83] that fails to 

inactivate incoming HIV particles has led to the design of new generation recombinant 

SHIVs (described below) that exploit this feature, opening doors for the application of this 

macaque species as a challenge model in studies evaluating a number of pre-exposure 

prophylaxis (PrEP) approaches targeting HIV-1. 

2.3.3. Cynomolgus macaques (Macaca fascicularis)  

Like pigtail macaques and humans, cynomolgus macaques also have monthly menstrual 

cycles. While high dose virus challenge is widely used in these macaques, they are less well 

characterized for the repeat low dose challenge model. Cynomolgus macaques are small and 

easier to handle than rhesus or pigtail macaques, but this can restrict peripheral blood 

sampling volumes and the frequency of other specimen collections. Perhaps one of the 
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biggest advantages of this NHP species is that they are more widely available, with the 

Indian Ocean island, Mauritius, being its largest exporter. A caveat of cynomolgus 

macaques in AIDS research is that in order to establish a pathogenic SIV infection, a higher 

inoculation dose is required, at least when challenged mucosally, and the resulting viral 

loads are typically lower than levels observed in rhesus macaques, and are more similar to 

those noted in HIV-infected humans [84]. This can pose a problem for vaccine studies that 

depend on virus load reductions as end points. However, due to the natural geographical 

isolation of the Mauritian species, cynomolgus macaques exhibit a rather homogeneous 

genetic profile, with the majority of animals possessing the allele combination Mafa-

B*430101, Mafa-B*440101 and Mafa-B*460101 [85, 86]. This degree of MHC identity can be 

immensely beneficial to vaccine studies that require evaluation of CD8+ T-cell immune 

responses to defined viral epitopes. Furthermore, the well characterized and limited 

diversity of MHC alleles in this macaque species allows for their application in studies to 

evaluate non-MHC correlates of protection. As with rhesus macaques, an SIV/tuberculosis 

model has also been established in cynomolgus macaques, with this species being 

particularly informative with regard to latent/reactivated tuberculosis [87].  

3. SIV/SHIV challenge stocks 

3.1. SIV strains utilized in AIDS research: Origins, phylogeny, characteristics 

and applications 

To date, at least seven distinct lineages of the primate lentivirus SIV have been identified [5, 

88-94], and these share up to 50% identity in Gag and Pol proteins, which are the most 

conserved and encode structural and enzymatic viral proteins, respectively. The genomic 

organization for SIV lineages is generally LTR-gag-pol-vif-vpr-tat-rev-env-nef-LTR, but 

some differences exist, with the vpu gene being unique to SIVcpz and HIV-1 and a number 

of strains from Cercopithecus monkeys . However, SIVsm, HIV-2 and SIVmac strains harbor 

a vpx gene upstream of vpr. Genes expressing Vpr or Vpu are absent in the all other SIV 

lineages that include SIVagm.  

Sooty mangabey SIV is the origin of most virus challenge stocks for studies involving NHP 

non-natural hosts, although SIVagm.sab from the AGM species sabaeus has also been used 

to infect rhesus macaques in a number of studies. Commonly utilized SIV strains are listed 

in Table 2. The ‘parent’ SIVmac strains, SIVmac251 and SIVmac239, have been derived from 

rhesus macaques that are thought to have to been infected by SIV+ sooty mangabeys [95-98]. 

SIVmac251 is a swarm, containing different quasispecies, that was isolated from a 

lymphoma of an infected rhesus macaque. Further passage of this isolate through additional 

macaques yielded a clonal stock , SIVmac239. The SIVmac316 clone was generated in a 

similar manner following passage of SIVmac239 [99]. Several other isolates, either swarms 

or clones, were derived from the plasma or PBMC of sooty mangabeys that were passaged 

through rhesus macaques, or were expanded in cell lines in vitro. It is also important to note 

that several attenuated SIV strains, primarily from the SIVmac239 and SIVmac251 lineages, 

have been designed for the purposes of vaccine research. Live attenuated strains, that 
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include SIV-∆vpr, SIVmac239∆nef, and SIVmac251∆nef, have been utilized to study 

protective effects against intravenous or mucosal challenge with heterologous or 

homologous virus stocks in rhesus macaques (reviewed in [100]). While the risk associated 

with a live attenuated HIV vaccine precludes use in humans, vaccine studies in macaques 

serve to provide an understanding of the basis of protection that is conferred by attenuated 

strains, by shedding light on immune memory mechanisms and virus targets that could be 

applied in HIV vaccine design. 

 

Strain Source Stock composition References 

SIVsmE660 Passaged in rhesus 

macaques originally 

infected with 

SIVsmE038 

Swarm [236] 

SIVsmE543 

  SIVsmE543-3 

Passaged in rhesus 

macaques originally 

infected with 

SIVsmE038 

Swarm 

 -Clone 

[112] 

SIVmac251 Rhesus macaque 

isolate 

Swarm [95, 97, 98] 

SIVmac239 Passaged in rhesus 

macaques infected 

with SIVmac251 

Clone [95, 96] 

SIVmac316 Passaged in rhesus 

macaque infected 

with SIVmac239 

Clone [99] 

SIVagm.sab92018 African green 

monkey plasma and 

PBMC isolate 

Swarm [12, 18] 

SIVPBj14 

  SIVsmPBj6.6 

  SIVsmPBj6.9 

Rhesus macaque 

isolate originally 

infected with SIVsm9

Swarm 

 -Clone 

 -Clone 

[237, 238] 

SIVmne 

  SIVmneCl8 

  SIVmne170 

  SIVmne027 

Pigtail macaque 

lymph node isolate 

Swarm 

 -Clone 

 -Clone 

 -Clone 

[230, 231, 239-243] 

Table 2. Commonly utilized SIV strains. 

Although the SIVmac and SIVsm strains share common ancestry, differences in the source, 

number of animal passages and/or laboratory in vitro propagation techniques can confer 

distinct virological properties, such as replicative capacity and pathogenicity, to each 
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challenge stock. The selection of a challenge stock for any study therefore requires careful 

consideration of these virus-specific characteristics. SIVmac239, being a molecular clone, 

allows for better experimental reproducibility, and the nature of escape mutations from 

CD8+ T-cell responses are well defined for this stock. However, a clonal virus stock is not 

representative of human exposures where a number of quasispecies exist per exposure. This 

issue can be circumvented by utilizing swarm virus stocks such as SIVmac251 and SIVsm 

strains. These viruses are typically more aggressive but can serve as stringent challenges in 

vaccine studies. However, as mentioned earlier, their high pathogenicity could also 

underestimate the efficacy of vaccines and other prophylactic interventions. Furthermore, 

lab-specific propagation techniques can affect swarm challenge stocks, such as SIVmac251, 

leading to variations in the composition of quasispecies within what should in theory be the 

same stock. It is unclear if these differences can significantly affect the infectivity and course 

of pathogenesis in macaques, but nonetheless highlights the importance of addressing the 

phylogeny of challenge stocks used in NHP experiments.  

Phylogenetic analysis of challenge stocks has greatly advanced since the advent of single 

genome amplification (SGA) which accurately determines the number and nature of viral 

quasispecies during the stages of transmission, acute, and chronic infection . This technique 

has demonstrated that the majority of mucosal HIV-1 infections (60-90%) originate from a 

single virus variant [101, 102]. This phenomenon, termed the genetic bottleneck, does not 

necessarily apply to high-risk individuals, who are typically infected with a more 

heterogeneous population that also correlates with more rapid disease progression [103-

105]. An in-depth understanding of lentiviral phylogeny can therefore contribute immensely 

to the design of preventative strategies aimed at viral variants that are transmitted and go 

on to establish infection. Importantly, the features of HIV-1 transmission and early 

diversification are mirrored in SIV-infected macaques. SGA analysis of swarm challenge 

stocks SIVmac251 or SIVsmE660, and isolated virus soon after intra-rectal or intravaginal 

inoculation of macaques have demonstrated the presence of low diversity env sequence 

lineages that share a high level of genetic identity to the env spectrum in the challenge stock 

[53, 106, 107]. Indeed, it was found that a limited number of transmitted variants (1-10 

species) establish infection, thus offering strong support for and confirmation of the 

observed patterns of HIV-1 transmission. Studies have also been performed on SIV 

evolution in the male genital tract of rhesus macaques, with results demonstrating similar 

virus sequence distribution in the blood and semen at peak viral load, while a 

compartmentalization of quasispecies begins to develop after set point [108]. Thus, SIV 

phylogenetic studies of challenge stocks and transmitted strains combined with knowledge 

of the dose and timing of transmission allows for more defined evaluation of virus 

evolution. In addition to shedding light on virus factors influencing transmission, analysis 

of SIV by SGA, or other next generation sequencing methods, can help identify variant-

specific cellular or humoral responses generated by the host at early and late stages of 

infection. 

Some SIV strains, such as SIVmac251, SIVmac239, and SIVsmE543-3, can be resistant to 

neutralizing antibodies, restricting their application in vaccine studies designed to elicit 
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humoral immune responses [84, 109-114]. In contrast, SIVmac316 is sensitive to antibody 

neutralization while others, that include SIVsmE660, demonstrate variable sensitivity [109, 

110]. Furthermore, while neutralizing antibodies may be produced in response to some of 

these viruses following infection, successful control of viral replication is still not achieved. 

Given these variations, evaluation of neutralizing antibody responses typically involve a 

tiered approach, and patterns of sensitivity are defined for viruses based on whether there is 

very high (Tier 1A), above average (Tier 1B), moderate (Tier 2), or low (Tier 3) sensitivity to 

antibody-mediated neutralization [115, 116]. Although levels of elicited humoral immune 

responses are inconsistent among the various challenge stocks, a close evaluation of these 

differences can help delineate molecular determinants of neutralization.  

A unique characteristic of SIV strains is that CCR5 is the primary co-receptor of choice, with 

few utilizing CXCR4, and this CCR5-specificity is reflective of the majority of HIV-1 strains. 

Furthermore, a number of alternate co-receptors have also been identified for SIV, including 

GPR15, STRL-33, GPR-1, ChemR23 and CCR8 [117, 118]. The affinity for one or more of 

these co-receptors varies for each challenge stock. In addition to co-receptor usage patterns, 

several of the commonly utilized SIV strains, such as SIVmac251 and SIVmac316, are M-

tropic, and SIV-infected macaques switch from M-tropism (macrophages, memory or 

activated CD4+ T-cells) to dual or T-tropism (naïve/resting and memory T-cells) during 

infection, as do many HIV-infected individuals [119].  

Given that the cellular tropism of SIV strains affects cell populations other than CD4+ T-

lymphocytes, such as macrophages and dendritic cells, NHP macaques are also utilized to 

address other aspects of SIV pathogenesis. HIV-1 infection in humans has been shown to 

cause complications that include encephalopathy, neurological diseases, interstitial 

pneumonia, and nephropathies [120]. Some of these pathologies have been successfully 

modeled in SIV-infected rhesus and pigtail macaques, and studies have focused on 

elucidating viral determinants of macrophage tropism, since the infection of this cell 

population was observed in perivascular, meningeal and microglial cells, and in alveolar 

macrophages, which contribute to neurological diseases and interstitial pneumonia, 

respectively [121]. However, macrophage tropism alone is not sufficient to cause these 

diseases, and these pathologies only manifest in a fraction of SIV-infected macaques or HIV-

infected humans. Efforts to determine host and virus factors that influence the development 

of these diseases are ongoing.  

While SIV strains have a wide range of applications in NHP macaque models of AIDS, the 

genetic, structural and antigenic differences between SIV and HIV-1, particularly in the 

virus envelope (Env), pose limitations in areas addressing cellular tropism or co-receptor 

affinity, antibody neutralization, and immune-driven evolution and adaptation of Env. 

These differences in Env and other viral components can restrict the utility of SIV challenge 

models when evaluating Env-based vaccine strategies, or when testing methods of PrEP that 

employ entry inhibitors and/or post-entry inhibitors. To circumvent this issue, chimeric 

simian/human immunodeficiency viruses have been developed to create challenge stocks 

that better mimic the infectivity and pathogenic properties of HIV-1 in a macaque model 

setting.  
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3.2. SHIV challenge stocks 

3.2.1. Strains, transmissibility, and in vivo virological characteristics 

The similarity in the genetic organization and composition of HIV-1 and SIV make it 

possible to construct replication-competent recombinant viruses that exhibit properties of 

both lineages. The genetic backbone of the majority of SHIV strains is SIVmac239. These 

viruses have been engineered to contain not only HIV-1 env, but also genes encoding Tat, 

Rev, Vpu, Vpr, Nef, integrase and/or reverse transcriptase. Initial SHIV constructs were 

found to have attenuated pathogenesis in macaques compared to parental SIVmac strains. 

However, the isolation of variants obtained from serial passage and in vivo adaptation in 

macaques yielded challenge stocks that variably increased their pathogenicity. The dual-

tropic chimera SHIV89.6 that was originally developed by Reimann et al, contains the env 

gene from cytopathic primary patient isolate HIV-1 89.6, and although CD4+ T-cell loss and 

some degree of persistent infection was observed following intravenous inoculation in 

rhesus macaques, no disease developed [84]. In contrast, serial transfusion of peripheral 

blood from a rhesus macaque infected with SHIV89.6 yielded more pathogenic variants, 

SHIV89.6P (isolated from PBMC, LN and spleen) and SHIV89.6PD (plasma-derived), that 

had primarily CXCR4-tropism and resulted in higher viral loads and CD4+ T-cell decline, as 

well as simian AIDS [84, 122]. This SHIV construct and its derivatives have since been 

utilized to decipher host and virus factors influencing transmission and early T-cell and 

antibody responses following intravenous and intravaginal inoculation in macaques, and 

have also been applied in a number of pre-clinical vaccine trials. However, the suitability of 

HIV89.6P as a challenge virus in rhesus macaque models, particularly when evaluating 

vaccine candidates, has been called into question given their CXCR4-tropism. The affinity 

for the CXCR4 co-receptor allows for infection of naïve CD4+ T-cells which has a major 

impact on the kinetics of CD4+ T-cell depletion, resulting in rates of lymphopenia that are 

not reflective of that caused by HIV-1 and most SIV strains that are CCR5-tropic.  

Another CXCR4-specific construct, SHIVSF33, which encodes Env from the patient PBMC 

isolate HIV-1SF33, exhibited similar properties in that the original molecular clone was 

minimally virulent, with in vivo adaptation in rhesus macaques cells yielding a more 

pathogenic isolate termed SHIVSF33A [123, 124]. This virus stock resulted in productive 

infections in rhesus macaques via both intravenous and intravaginal routes of challenge. 

The increased virulence of these SHIV derivatives were mapped to distinct amino acid 

changes throughout Env. Indeed, certain CXCR4-tropic constructs, such as SHIVku-1 which 

is a pathogenic variant derived by sequential passage of SHIV-4 (Table 2) in pigtail 

macaques leads to CD4+ T-cell depletion within 4 weeks of infection and simian AIDS in as 

early as 8 months [125]. However, this particular construct and its rhesus macaque-passaged 

counterpart SHIVku-2, lead to productive infection in the central nervous system and 

glomerulosclerosis of the kidney [126, 127], and so have applications in modeling 

neuropathogenesis and renal diseases that manifest in some HIV-1 infected individuals. 

Thus, despite the drawbacks of utilizing CXCR4-tropic SHIV in vaccine studies, these 

chimeric constructs are still highly relevant in other areas of AIDS research. For instance, the 
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infection of cynomolgus macaques and rhesus macaques of Chinese origin with SHIV89.6 

results in a robust acute immune response, lower viremia, slower decline in CD4+ T-cells, 

and general maintenance of virus-specific immune responses and prolonged survival [84], 

similar to the scenario in HIV-1 infected humans. The early robust cell-mediated responses 

to SHIV89.6P infection and subsequent reduction in viral replication offer clues about 

immune correlates of protection and help determine prophylactic or therapeutic 

interventions aimed at inducing strong immune responses during the acute infection period. 

Furthermore, the transmission of SHIV89.6P, SHIVSF33 and SHIVku-1 constructs via the 

vaginal route in macaques demonstrate that CXCR4-utilizing virus strains can successfully 

cross the cervicovaginal mucosa to result in persistent viremia, CD4+ T-cell loss and simian 

AIDS [128-130]. Thus, although there is a higher prevalence of CCR5-tropic transmitted 

HIV-1 variants, these SHIV constructs can be utilized to address early T-tropic pathogenesis, 

as well as prophylactic and/or therapeutic strategies aimed at CXCR4 HIV-1 variants.  

SHIV CCR5-tropic chimeric viruses have been developed in recent years. One of the best 

characterized of these is SHIV162 [124]. Recombinant virus was generated by replacing the 

tat, rev and env genes of SIVmac239 with those of HIV-1SF162. Intravenous challenge of 

rhesus macaques with SHIV162 yielded lower viral loads than the parental SIVmac239 

strain, and although viremia persisted for over a year, immunodeficiency did not develop in 

any of the animals under study. However, three sequential blood-bone marrow transfusions 

in naïve rhesus macaques resulted in pathogenic variants termed SHIV162P3 and 

SHIV162P4 [131], the former being isolated from lymph node mononuclear cells. Infection of 

macaques with these in vivo adapted strains leads to peak viral loads of 106-108 viral RNA 

copies/ml plasma, viral set points of 103-106 viral RNA copies/ml, a gradual CD4+ T-cell 

decline, severe weight loss, and opportunistic infections, which are reflective of HIV-1 

infection in humans. Importantly, productive infection via intrarectal, intravaginal or 

intravenous routes can be consistently obtained in rhesus, pigtail and cynomolgus 

macaques, therefore making this virus chimera a useful tool in a wide range of studies that 

involve host-specific immune responses and/or prophylactic or treatment regimens 

targeting HIV-1 envelope protein.  

Another clade B chimera that productively infects rhesus, pigtail and cynomolgus macaques 

is SHIV Ba-L, which expresses tat, rev, vpu and env genes from R5-tropic HIV-1 Ba-L [132]. 

However, HIV-1 Ba-L is a laboratory adapted strain which may not truly reflect virologic 

properties of primary isolates. Furthermore, virus persistence of SHIV Ba-L is comparatively 

shorter (42 weeks) than has been observed for SHIV162P3/P4. A dual R5- and X4-tropic 

Clade B chimera, SHIVDH12 replicates to high titers and causes immunodeficiency in 

pigtail macaques, while its derivative SHIVDH12R induces CD4+ T-cell loss in rhesus 

macaques [133]. However, mucosal transmission of this construct has not been described. 

Nonetheless, the utilization of these recombinant viruses, which encode HIV-1 subtype B 

Env, has collectively contributed greatly to our understanding of host and viral 

determinants influencing the transmission of an HIV-1 clade that is highly prevalent in 

North America and Europe. However, diverse HIV-1 genotypes exist due to the high genetic 

variability of this virus, leading to classification of distinct classes (Group M, N and O) and 
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subtypes based on env or gag nucleotide sequence comparisons. Group M is the major class 

and consists of 9 subtypes (A-D, F-H, J and K) that collectively constitute greater than 90% of 

HIV infection cases across the globe. Clades A, C, and D are predominant subtypes in sub-

Saharan Africa, with Clade C being prevalent also in India and China. CRF01_AE is 

widespread in Thailand and neighboring regions of Southeast Asia. Recombinants of HIV-1 

have also been identified in areas with populations infected with two or more subtypes. 

Thus, SHIV constructs have been tailored to encode clade-specific Env proteins in order to 

develop virus and macaque models that better reflect HIV transmission that is local to these 

regions.  

 

Strain & 

derivatives 

SIVmac 

components 

HIV-1 

components 

Source HIV-1 

Clade 

Tropism Reference 

SHIV89.6 

  SHIV89.6P 

  SHIV89.6PD 

gag, pol, vif, 

vpx, vpr, nef 

env, tat, vpu, rev 

from 89.6/HXBc2 

B X4/R5X4 [122] 

SHIVSF33 

  SHIVSF33A 

gag, pol, vif, 

vpx, vpr, nef 

env, tat, rev, vpu 

from SF33 

B X4 [124] 

SHIV-4 

  SHIVKU-1 

  SHIVKU-2 

gag, pol, vif, 

vpx, vpr, nef 

env, tat, rev, vpu 

from  

HXBc2 

B X4 [229] 

SHIV162 

  SHIV162P3 

  SHIV162P4 

gag, pol, vif, 

vpx, vpr, nef 

env, tat, rev, vpu 

from SF162 

B R5 [124] 

SHIV Ba-L gag, pol, vif, 

vpx, vpr, nef 

env, tat, rev, vpu 

from Ba-L 

B R5 [132] 

SHIVDH12 

  SHIVDH12R 

gag, pol, vif, 

vpx, 20% vpr 

80% vpr from 

NL43 and DH12; 

tat, rev, env, vpu, 

nef from DH12 

B R5X4 [133, 232] 

SHIV1157i 

  SHIV1157ip 

  SHIV1157ipd3n4 

  SHIVipEL 

gag, pol, vif, 

vpx, vpr, nef 

tat, rev, vpu from 

HXBc2; env from 

1157i isolate from 

Zambian infant 

C R5 [134-136] 

SHIVCHN19 gag, pol, vif, 

vpx, vpr, nef 

env, tat, vpr, vpu, 

rev from CHN19 

C R5 [137] 

SHIV-E-CAR 

  SHIV-E-P4 

gag, pol, vif, 

vpx, vpr, nef 

rev, tat and env 

ectodomain from 

CAR-402; rev, tat 

and env TM 

domain from SF33

E X4 [228] 

 

Table 3. List of common SHIV recombinant viruses and their genetic composition. 
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The chimera SHIV-1157i is an infectious molecular clone that encodes Env from an R5 clade 

C HIV-1 strain that was isolated from a 6 month old Zambian infant born to an HIV+ 

mother. As can be expected, the in vivo passage of this recombinant virus in rhesus 

macaques yielded a pathogenic isolate, SHIV-1157ip, which induces simian AIDS but at a 

relatively slow rate [134]. A clonal derivative, SHIV-1157ipd3N4, was designed to contain an 

additional NF-KB site to accelerate viral replication and also contains the 3’ half of provirus 

isolated from the PBMC of a SHIV-1157ip infected rhesus macaque that progressed to 

simian AIDS [135]. This construct was found to exhibit a Tier 2 neutralization phenotype. A 

Tier 1 SHIV derivative, SHIV-1157ipEL, was generated to encompass both the neutralizing-

sensitive Env from SHIV-1157ip and the increased replicative capacity of SHIV-1157ipd3N4 

[136]. The passaged virus, SHIV-1157ipEL, retains its R5 tropism, is mucosally transmissible 

and induces a pathogenic profile that is consistent with HIV infection. SHIV strains with 

different sensitivities to neutralizing antibodies can also provide a tiered testing platform for 

humoral-based vaccine candidates. Another Clade C recombinant virus, SHIVCHN19, 

encodes Env from an HIV-1 isolate local to China [137]. The passaged virus exhibits viral 

loads of up to 109 vRNA/ml of plasma in pigtail macaques and persists for 28-31 weeks, but 

its pathogenicity in rhesus macaques requires further characterization. This and other SHIV 

constructs are summarized in Table 3. 

The sizeable repertoire of studies involving SHIV recombinant viruses has revealed a 

number of characteristics about these chimeras. First, they are highly versatile and can be 

engineered to reflect viral envelope properties of a wide range of HIV-1 subtypes. Second, 

these viruses have varying levels of transmissibility, pathogenicity and host specificity, 

thereby providing investigators with options that can be tailored to fit their research 

interests and available resources. These SHIV constructs also successfully establish 

infections when applied in repeat low dose models. Finally, despite pathogenic effects in 

some macaques, SHIV viremia in many of these animals is typically controlled or is ultimately 

cleared due to either intrinsic replicative properties of the recombinant virus and/or early 

robust host cell-mediated responses or neutralizing antibodies. While this may limit their 

application in some studies, SHIV constructs are still tremendously useful for evaluating 

prophylactic strategies aimed at preventing mucosal virus transmission, and for examining 

viral evolution in the context of prophylactic or therapeutic regimens during the acute 

infection period. The inclusion of env from different HIV-1 subtypes in these recombinant 

viruses has shed light on envelope-related factors such as cellular tropism that influence 

transmission, as well as host immune defense mechanisms that are required to inhibit 

envelope-mediated entry and infection. However, the constantly evolving nature of HIV-1 env 

poses a challenge for certain existing prophylactic methods, prompting a focus on other virus 

components as potential drug targets. This has yielded a new generation of SHIV chimeras 

that allow for preclinical evaluation of a wide range and/or combination of antiviral drugs.  

3.2.2. New generation SHIV recombinants  

While the SHIV constructs designed thus far have contributed significantly to the field of 

NHP preclinical AIDS research, the genetic distance between these recombinant viruses and 
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HIV-1 is still substantial (up to 70%), which makes it difficult to definitively predict the 

efficacy of proof-of-concept studies in NHP models in downstream clinical trials. 

Furthermore, emerging drug resistance and/or drug toxicities underscore the need for 

alternate targets and novel anti-retroviral (ART) drugs. To facilitate these studies in NHP 

models, SHIV recombinant viruses encoding one or more HIV-1 genes in addition to env 

have therefore been developed and will be highlighted in this section. 

Current HIV-1 treatment regimens involve nucleoside reverse transcriptase inhibitors 

(NRTIs) or non-nucleoside reverse transcriptase inhibitors (NNRTIs) either alone or in 

combination with other ARTs. The reverse transcriptase (RT) protein of HIV-1 shares 

approximately 60% identity with that of SIV. For this reason, NNRTIs, which exhibit high 

specificity for HIV-1 RT, do not effectively inhibit SIV or SHIV chimeras that contain SIV RT. 

To overcome this limitation, the construct RT-SHIVHXB2 in which the entire RT of 

SIVmac239 was replaced with RT from the HXB2 clone of HIV-1 IIIB, was designed [138, 

139]. The initial construct exhibited a severe impairment in replicative capacity, but this was 

significantly improved by introducing a T to C substitution at position 8 of the SIV tRNA 

primer binding site. The resulting chimera has been shown to replicate to high levels (105-107 

vRNA copies/ml) following intravenous or intra-rectal challenge in rhesus macaques, or 

intra-vaginal challenge in pigtail macaques both with and without Depo Provera treatment. 

In addition, RT-SHIVHXB2 also exhibited sensitivity to a number of NNRTIs (efavirenz, 

nevirapine and UC781) and NRTIs (tenofovir and emtricitabine) both in vitro and in vivo. 

Similar studies have been performed in pigtail macaques utilizing RT-SHIVmne, which 

contains HIV-1 RT in the genetic background of SIVmne, a pathogenic isolate from the 

lymph node of an infected pigtail macaque [140]. Importantly, plasma virus isolates from 

macaques infected with either RT-SHIVHXB2 or RT-SHIVmne, and treated with 

NRTIs/NNRTIs, contained genetic mutations known to confer drug resistance such as K65R 

(tenofovir), V108I (efavirenz,) and K103N and M184I (emtricitabine), making these chimeras 

useful tools for the preclinical evaluation of in vivo drug resistance [140-143].  

Newer prevention and treatment strategies typically employ ART combinations that target 

two or more components of HIV-1. The utilization of RT and entry inhibitors, in particular, 

has gained momentum since this approach targets the virus at both early and post-entry 

stages of its life cycle, potentially increasing efficacy. This combined method has been 

difficult to model in macaques since the majority of SHIV constructs, containing either Env 

or RT from HIV-1, have limitations in evaluating certain combination drug strategies for 

prevention or treatment. To facilitate this line of study in NHP models an RT Env SHIV 

construct which used RT-SHIVHXB2 and SHIV162P3 as templates to generate a chimera 

containing both RT and Env from HIV-1was developed [144]. In vivo passaging in rhesus 

macaques yielded a virus stock that infects intravenously, intra-rectally or intra-vaginally 

(without Depo Provera treatment). Viral loads of 106-107 vRNA copies/ml are observed, with 

viremia being detected up to 20 weeks post-challenge [145]. Furthermore, this virus retains 

sensitivity to both RT and entry inhibitors that include the NNRTI dapivirine, the NRTI 

tenofovir, and the CCR5 antagonist maraviroc. In vitro testing of dual drug combinations 

indicated additive inhibitory effects on RT Env SHIV replication. Collectively, these studies 
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open the door for further in vivo applications of this chimera in macaques and allow for the 

evaluation of dual drug combinations in prophylactic and treatment strategies. 

In order to stay one step ahead of drug resistance mutations that develop, ARTs targeting 

components other than RT and Env have also been developed. These include a broad range 

of HIV protease inhibitors (PIs), fusion inhibitors and integrase inhibitors. The recombinant 

virus SHIV-pr, which contains the pol segment encoding protease from HIV-1 NL432, 

replicates to levels of 106-107 vRNA copies/ml following intravenous challenge in rhesus 

macaques, reaching a set point of approximately 105 copies/ml with infection persisting for 

up to 12 weeks [146]. Importantly, in vivo viral load was lowered to or below the detection 

limit when macaques were treated with a combination of the PIs lopinavir and ritonavir. 

However, further characterization of this virus stock in mucosal transmission applications 

and in other NHP models is required.  

 

Figure 1. New generation SHIV constructs. The schematic illustrates HIV-1 genetic components in an 

SIV background (pale grey) for the various SHIV recombinants. 

In recent years, scientists have worked toward generating recombinant SHIV constructs that 

are minimally divergent from HIV-1, such that they share greater than 90% genomic 

identity. This would undoubtedly expand the utility of these chimeric viruses and would 

also reduce the complexity of data interpretation when comparing prophylactic and 
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treatment studies in NHP macaque models and human clinical trials. However, the creation 

of such chimeric viruses has proven to be difficult with the major reason being innate 

restriction factors of macaque cells that inhibit HIV-1 replication. In particular, TRIM5alpha 

and APOBEC3 proteins in rhesus macaque cells prevent HIV-1 infection, while the capsid 

and Vif protein sequences of HIV-1 enable it to overcome the human forms of TRIM5alpha 

and APOBEC3. Interestingly, pigtail macaques express TRIMCyp, which is a fusion protein 

of CypA and TRIM5, and does not inhibit HIV-1 transmission and replication [81-83]. 

However, HIV-1 replication is not sustained in vivo in these macaques. Some degree of 

persistent viremia was noted for two modified HIV-1 constructs, SHIVrti/3rn and NL-DT5R, 

in pigtail macaques. SHIVrti/3rn contains the reverse transcriptase and integrase-encoding 

regions of HIV-1 in addition to the 3' half genomic region of HIV-1, while NL-DT5R is an 

HIV-1 derivative that contains sequences encoding a 7 amino acid segment of capsid protein 

and the entire vif gene from SIV. Persistent replication of both these strains in pigtail 

macaques was attributed to replacement of HIV-1 vif with that from the HIV-

2/SIVsm/SIVmac lineage. However, replication levels were low and plasma viremia was 

cleared by 5-12 weeks post-infection. In vivo treatment with a CD8+ T-cell-depleting 

antibody was also necessary to establish infection in some of the macaques. A promising 

study by Hatziioannou et al described the generation of simian-tropic (st) HIV-1 strains that 

not only persisted for greater than 20 weeks after intravenous inoculation, but also 

replicated at levels comparable to that in HIV-infected humans (105-106 vRNA copies/ml 

plasma) [147, 148]. Furthermore, the stHIV-1 strains demonstrated sensitivity to a wide 

range of RT and protease inhibitors in vitro, and the PrEP application of a 

tenofovir/emtricitabine/efavirenz triple drug combination in two naïve pigtail macaques 

demonstrated protection against a high dose intravenous challenge by stHIV-1. In depth 

characterization of the stHIV-1 model is still necessary, but results thus far show promise for 

its application in candidate vaccine studies and alternative PrEP research involving drug 

combinations. A limitation of the modified stHIV-1 constructs described above is that they 

encode a Clade B env that is primarily CXCR4-tropic and so do not model the dominant 

CCR5-mediated mode of transmission. More recently, a study by Humes and Overbaugh 

described the generation of HIVAQ23/SIVvif, which is a CCR5-tropic subtype A HIV-1 

molecular clone encoding the vif gene from SIVmac239 [149]. Two adaptive mutations in Env 

were found to confer increased infectivity and replication in pigtail macaque cells in vitro. 

Thus, while further in vivo characterization of this modified HIV-1 construct is necessary, it is 

clear from the studies described above that the SHIV molecular virology field is making great 

strides in generating strains that not only maximally mimic transmitted HIV-1 strains but are 

also viable tools that can be implemented in vivo in NHP macaque models. Figure 1 

summarizes the genomic content of the new generation SHIV/modified HIV-1 constructs. 

3.2.3. Routes and dose of virus inoculation 

Researchers have struggled for decades to mimic human HIV transmission and 

pathogenesis in animal models. A wide variety of combinations of NHP species, route and 
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dose of infection, and recombinant viruses have been established over the last few decades. 

The specific combination to be used by an individual researcher is determined primarily by 

the research question being addressed. The varying degrees of resistance to different 

mucosal routes of infection with SIV or SHIV make the process even more complex. This is 

quite pronounced in vaginal transmission models. Unlike the rectum, the vaginal cavity has 

naturally evolved to resist and fight pathogens like bacteria and viruses and foreign material 

introduced via intercourse. The existence of multiple layers of the squamous epithelium in 

the vagina, innate immune factors, vaginal microflora, and mucus are some of the factors 

that occur in vivo to protect the female reproductive tract against sexually transmitted 

infections.  

Earlier NHP models used supraphysiological doses that are far greater than the viral 

inoculum seen in human semen to demonstrate the efficacy of HIV therapeutics . Traditional 

methods of SIV/SHIV infection of macaques involve the administration of a single high dose 

of virus sufficient to infect all of the naïve controls. However, much lower doses of HIV exist 

in mucosal fluids of humans during sexual transmission. Thus these high dose inoculums 

may underestimate the degree of efficacy when evaluating HIV vaccines or antiretroviral 

drugs that are effective in preventing HIV infections at a physiologically relevant dose. 

Infection of macaques with lower intermediate doses of virus was therefore adopted. The 

intermediate dose in rhesus macaques generally includes the exogenous administration of 

Depo-Provera (a progestin-based contraceptive) to thin the vaginal epithelium and therefore 

increase the susceptibility to infection with SIV/SHIV [51, 150]. Although this model is 

reliable in obtaining consistent infection rates, it does not model HIV transmission in 

humans that are not on hormonal contraceptives.  

The repeat-low dose model developed in the early 2000s closely resembles to the mucosal 

exposures of humans to HIV in the following ways. A physiologically relevant viral dose to 

what is seen in humans during exposure to seminal fluid is used, and repeated exposures 

mimic multiple sexual transmission events. Unlike the models which use a single high viral 

inoculum exposure, the repeat low-dose model [79, 151-153] allows the investigator to assess 

the efficacy of anti-HIV regimens in a repeated fashion that is closer to human use patterns.  

Intravenous transmission - The intravenous transmission route in the SIV/SHIV non-human 

primate model has contributed to our understanding of HIV/AIDS associated disease 

pathogenesis and in the development of effective vaccines and anti-HIV therapies. Rhesus 

macaques infected intravenously with SIVmac251 or SHIV89.6P were analyzed for 

virological outcomes at peak, set-point and viral decline. A positive correlation was found to 

exist between peak and set point viral load among animals infected with both viruses. 

However, rhesus macaques infected with SIVmac251 had a greater variability for set point 

viral load and viral decline than among those that were positive with SHIV-89.6P [84]. The 

association between plasma viral kinetics and the development of AIDS and death in 

humans has been well characterized. A similar correlation can be found among rhesus 

macaques infected with SIV [154]. Rhesus macaques inoculated with chimeric SHIV showed 

variability in their disease progression. Intravenous inoculation of rhesus macaques with 
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SHIV-HxBc2 or SHIV-89.6 caused persistent viremia but no decline in their CD4 numbers. 

On the other hand, inoculation with SHIV-89.6 P, a biological isolate derived from in vivo 

passages of SHIV-89.6, and SHIV-KB9, a molecular clone of SHIV-89.6P, caused high 

viremia and rapid and profound loss of CD-4 T cells and immunodeficiency [155]. 

Intravenous infection of juvenile rhesus macaques with SIVmac251 led to development of 

AIDS like symptoms and the rapid progression to death as is seen in some patients with 

HIV. However it was also reported that 8 monkeys were persistently infected for prolonged 

periods of time. There was an effective correlation between the presence of a strong 

antibody response to SIV and the clinical outcome in these long-time survivors [156]. Pig-

tailed macaques are also susceptible to intravenous inoculation with SIVmac251. 

Persistently high levels of viremia associated with a gradual decline of CD4+ T cells mimic 

closely the outcomes of HIV-1 infection in humans [72]. These examples illustrate the 

importance of choosing the most relevant virus/host combination when defining efficacy of 

anti-HIV strategies. 

Although the intravenous route is used rarely in the NHP model today, the early proof of 

concept experiments using the intravenous route of infection in macaques helped to 

formulate the parameters of pathogenesis, disease progression and correlates of protection 

that are now being evaluated with mucosal routes of exposure. The NHP model has 

progressed more towards mucosal routes of transmission in both vaccine evaluation and 

PrEP studies in an effort to keep pace with the clinical strategies being developed.  

Intrarectal transmission - The estimates of relative risk of HIV-1 acquisition for the different 

routes of sexual transmission has been determined to be the highest for rectal, followed by 

vaginal, and finally the urogenital route. The incidence of acquisition of HIV with 

unprotected anal intercourse was estimated to be 0.65%- 1.7% per act risk of transmission 

[157, 158]. Rectal intercourse is prevalent among men who have sex with men as well as 

within the heterosexual exposure group. It has been reported that among the heterosexual 

population surveyed for rectal intercourse, additional high risk behavior for HIV/STD such 

as the lack of condom use and multiple sex partners exist [159]. The per-act risk of HIV 

transmission associated with receptive anal intercourse is five times greater than that for 

receptive vaginal intercourse [160]. The presence of a single cell-layer of columnar 

epithelium along with increased expression of the CCR5 and CXCR4 receptors required for 

HIV entry augments the vulnerability of the rectal mucosa to infection with HIV [161]. An 

understanding of the rectal environment and mucosal mechanisms involved in rectal 

transmission of HIV through animal models will greatly facilitate the development of 

effective microbicides and vaccines. 

A more appropriate model to mimic rectal transmission of HIV is achieved with a repeated 

low-dose exposure to virus. Consistent rectal infection can be achieved in rhesus macaques 

within the first four exposures with an inoculum of 105 RNA copies of SHIV162p3 which is 

within the range of HIV-1 RNA levels in semen (103–106 copies/ml). It was demonstrated 

that low-dose SIV infection of rhesus macaques, unlike high dose, gave rise to a longer 

eclipse phase (the time period between infection and first appearance of systemic viremia), 

and lowered activation of innate immunity [106]. No association of adaptive immune T-cell 
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responses upon repeated rectal exposures and inherent resistance or delayed susceptibility 

to infection with SHIV162P3 among some rhesus macaques validates the use of this model 

as an effective approach to test various HIV prevention strategies . 

Alternative models such as cynomolgus macaques have also been utilized for vaccine and 

PrEP studies with rectal SIV and SHIV exposures. Cynomolgus macaques of Philippine 

origin were infected intrarectally with multiple-low dose exposures to SIVmac239. 

However, there was a need for an escalating dose regimen to infect some of the macaques 

[162].Cynomolgus macaques are susceptible to infection by the rectal route with SIVsm, but 

have lower steady state plasma RNA concentrations than rhesus macaques [163]. Successful 

intrarectal inoculation of cynomolgus macaques with a single high dose of SIVmac239 and the 

ability to generate escape variants to CD8 T-cell responses has been demonstrated as well [164, 

165]. Rectal transmission in cynomolgus macaques of hybrid SHIV viruses such as the 

pathogenic variant SHIV89.6P was achieved with a high dose of 1000 TCID50. These animals 

exhibited CD4+ cell depletion and a significant decline of their CD4+/CD8+ ratios [166]. 

Pig-tailed macaques, though highly utilized for intravaginal transmission studies, have been 

used sporadically for rectal transmission [167]. Intrarectal SIVmac251 infection of pig-tailed 

macaques led to persistently high levels of plasma viremia and continuous gradual decline 

of the CD4 cell counts [72]. The utilization of a pathogenic CCR5 variant clade C SHIV-

1157ipd3N4 intrarectally in pig-tailed macaques results in an immunopathogenesis similar 

to SIV infection in rhesus macaques [168].  

Intravaginal transmission - The lower transmission probability of vaginal infections with 

SIV/SHIV requires the administration of a higher inoculum of the virus vaginally compared 

to the rectal dose, or the use of Depo-Provera to thin the vaginal epithelium to increase the 

susceptibility of the macaques to vaginal SHIV/SIV transmission . The inherent resistance of 

the vaginal cavity to mucosal transmission and the need for the administration of high doses 

of SIV for successful transmission was established in the late 1980s [169]. Transient viremia 

and no seroconversion to SIVmac251 were achieved upon a single intravaginal inoculation 

[170]. Rhesus macaques of Chinese origin were equally susceptible as those of Indian origin 

to infection with high physiological doses of SIVmac251. Lower plasma viral loads than 

rhesus macaques of Indian origin were seen 6 weeks post infection among the Chinese 

rhesus macaques [171]. Intravaginal infection of pig-tailed macaques, the species that is 

widely sought after owing to its menstrual cycling similarity to humans, with 6x 103 TCID50 

of the CCR5-tropic SHIVSF162P3 over 2 days infected all macaques with a moderate 

depletion of the CD4+ T cells. Although the mean peak viral load was similar to those 

infected intrarectally with SIVmac251, three of the eight macaques controlled their viremia 

to very low levels owing to their robust SHIV-specific cellular and humoral immune 

responses [72]. Rhesus macaques were also successfully infected intravaginally with 

chimeric SHIV89.6 in which the envelope glycoproteins were derived from HIV-1 89.6, a 

primary isolate that is CXCR4/CCR5, lymphotropic and monocytotropic, and not with SHIV 

(HxBC2) where the env fragment was derived from the CXCR4 T-tropic HIV-1 IIIB/LAI. 

Thus the ability of chimeric SHIVs to establish an infection mucosally is influenced by the 

properties provided by the cloned HIV-1 env fragments [172]. Unlike natural HIV infections 
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that are primarily initiated by CCR5 tropic viruses, the chimeric SHIVs such as SHIV89.6 

that produced successful vaginal infection in rhesus macaques are dual tropic (CCR5 and 

CXCR4). The above mentioned studies in rhesus macaques require the administration of 

high doses of virus to achieve mucosal infection in naïve control animals. A more relevant 

model with a repeated weekly exposure to a physiologically relevant dose of the SHIV162P3 

in pig-tailed macaques is effective and more appropriate for preclinical evaluation of 

therapeutics targeted to early transmission events .  

Pigtail macaques have a menstrual cycle very similar to women and have become a very 

important model for pre-exposure prophylaxis (PrEP) studies where inhibition of vaginal 

transmission is the primary endpoint. A low-dose titration in pig-tailed macaques showed 

that systemic infection can be achieved with 3 once-weekly intravaginal exposures to 

10TCID50 of SHIV162P3 [152]. It was reported recently that the susceptibility to infection in 

normally cycling female pigtail macaques is substantially greater in the luteal phase when 

the challenge regimen used is the repeat low dose model [78]. This study has had great 

implications on study design for vaginal topical PrEP preclinical studies, and in the 

interpretation of clinical trial results. Currently, PrEP trials for vaginal transmission require 

that the enrolled participants must be on contraceptives . Given that we now know that 

contraceptive use can lead to a luteal-like state as observed with the Depo-Provera treated 

rhesus macaques, and susceptibility is increased in this state, the interpretation of protection 

in clinical trials is changing. It will be very important to model these different scenarios in 

the pigtail macaque for topical as well as systemic PrEP regimens. It is easy to treat all of the 

animals with Depo-Provera to mimic what is happening in clinical trials, but we must keep 

in mind that in a real world situation not all women will be taking hormonal contraceptives. 

Indeed, many women prefer non-hormonal forms of birth control, and it is imperative that 

we design our NHP studies to answer questions for this group as well [77]. 

Penile transmission - Men are infected through penile exposure to HIV in heterosexual and 

men who have sex with men (MSM) relationships . Limited preclinical research is available 

regarding the penile mode of transmission and an emphasis has been placed on vaginal and 

rectal transmission studies. The presence of foreskin has been associated with an 

approximately 50% increase in risk of acquisition of HIV [173-175]. The human penis, 

foreskin has potential HIV target cells such as CD4+ T cells, Langerhans cells, macrophages, 

and submucosal lymphoidal aggregates that are rich in CD3+ and CD4+ cells [176, 177]. 

Early penile transmission studies in rhesus macaques were limited to urethral exposures to 

SIVmac251 [169]. Successful infection of two adult and four juvenile rhesus macaques with 

urethral exposures to SIVmac251 was obtained in the above study. Recent epidemiologic 

evidence has prompted an increase in interest in establishing a penile transmission model. 

Infection of rhesus macaques with SIVmac251 through penile exposure has been recently 

reported [53, 178]. However, repeated exposure of macaques to a dose of 10 TCID50 (n=5) or 

103 TCID50 (n=2) over 14 inoculations was insufficient to infect the animals Exposures to a 

high dose of SIVmac251 (105 TCID50) twice within the same day was needed to infect 3 of 5 

animals. One of two macaques exposed twice within the same day to 105 TCID50 of 

SIVmac251 for a total of three-times over an 8 week period became systemically infected as 
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well. The above rhesus macaque penile transmission study was used in an attempt to 

recapitulate the findings of the Merck Step trial which revealed enhanced HIV-1 infection in 

Ad5 seropositive individuals [179].  

4. Vaccine research in NHP models 

The high degree of variability among HIV-1 strains and the lack of defined correlates of 

immune protection in HIV-1 infected individuals or SIV/SHIV NHP models have 

collectively posed a considerable challenge for the development of a vaccine that confers 

sterilizing immunity. Vaccine design thus far has focused heavily on the induction of T-cell 

immunity, since HIV-1 neutralizing antibodies have been difficult to induce and do not play 

a dominant role in the control of viral load. Early vaccines employing recombinant HIV-1 

envelope glycoprotein were efficient in neutralizing lab-adapted HIV-1 strains but not 

primary isolates . Furthermore, several in vivo studies in macaques have demonstrated that 

while certain humoral-based vaccine candidates conferred partial protection to animals 

challenged with SHIV strains, no protection was observed against challenges with more 

pathogenic SIVmac strains . However, this does not entirely rule out a role for humoral 

immunity, since a prime boost vaccination approach in a study involving SIVmne gp160 was 

shown to be effective in protecting cynomolgus macaques against intrarectal challenges with 

uncloned SIVmne and protection was associated with the development of SIV-specific 

neutralizing antibodies [180]. Similar approaches involving a recombinant vaccinia virus or 

baculovirus expressing SIVmac239 gp160 did not protect rhesus macaques against intravenous 

challenges with homologous SIVmac239 or heterologous SIVmac251 strains [181]. 

Although it is evident that a skewed focus on eliciting broad neutralizing antibodies will not 

suffice, it has also become clear that while HIV-1 gag vaccines can be strongly immunogenic, 

a potent T-cell response does not necessarily translate to protection. This was especially 

highlighted by the Merck STEP clinical trial which showed that following administration of 

a replication defective recombinant adenovirus 5 (rAd5) expressing HIV-1 subtype B 

Gag/Pol/Nef, those vaccine recipients who were already seropositive for Ad5 had a higher 

incidence of HIV-1 infection [182]. This is in contrast to preceding preclinical studies in 

which rhesus macaques exhibited a high level of both the magnitude and duration of virus-

specific immune responses following a DNA prime- rAd5 boost regimen, and were 

protected against challenges with SHIV89.6 [183]. Subsequent studies demonstrated that the 

Ad5 vaccine did not protect against challenge with SIVmac239, and reduced viral loads only in 

animals with the protective MHC class I allele Mamu A*01 [184]. Furthermore, male rhesus 

macaques that were chronically infected with a host-range mutant Ad5 prior to immunization 

with an Ad5 vector expressing SIVmac239 Gag/Pol/Nef had a higher rate of infection 

following challenge with an escalating dose of SIVmac251 via penile exposure, recapitulating 

the outcome of the human clinical trial [179]. However unlike the Merck trial, the Ad5 

immunized macaques showed a lower acute-phase viremia than the unimmunized animals.  

The STEP Trial outcome led to a significant overhaul in the design and execution of vaccine 

studies. It was suggested that NHP models could not always be relied upon as a 
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“gatekeeper” for determining go/no-go criteria. However NHP are the only animal models 

that best reflect many facets of HIV infection in humans, and therefore continue to a play a 

pivotal role in comparative and retrospective studies which can simultaneously inform 

vaccine strategies of both ongoing and future clinical trials.  

Since the Merck STEP Trial, several NHP studies employing various types and combinations 

of HIV-1 antigen prime-boost vaccines have been conducted, with varying degrees of 

success. Rhesus macaques receiving a plasmid DNA prime and rAd5 vector expressing 

SIVmac239 env/gag/pol boost vaccine regimen, and challenged intrarectally for 12 weeks 

with either SIVmac251 or the heterogeneous SIVsmE660, exhibited 50% protection from 

infection with the latter virus strain [185]. In addition, among the SIVsmE660-infected 

animals, those expressing the Mamu-A*01 MHC class I allele were found to have a log lower 

plasma peak viremia. The vaccinated Mamu-A*01 negative animals in the SIVsmE660 group 

that were protected were also shown to express low levels of neutralizing antibodies and an 

envelope-specific CD4+ T cell response, highlighting roles for both humoral and cellular 

arms of the immune system. The presence of homozygous restrictive, allelic forms of the 

TRIM5alpha was shown to be associated with protection from infection [185]. The most 

recent, and perhaps most successful, vaccine study was the RV144 trial conducted in 

Thailand [186]. The vaccine candidates included a canarypox viral vector vaccine encoding 

clade B gag/pro and Clade E env as the prime (ALVAC-HIV vCP1521), and a boost with 

AIDSVAX gp120 B/E which is genetically engineered HIV-1 gp120 from both Clade B and E. 

Spanning over a six year period, this Phase IIb trial had an approximately 31% protection 

rate against HIV acquisition. While modest, this level of protection nonetheless re-energized 

the vaccine field, and several studies are underway in NHP models to recapitulate the 

results from the clinical trial, with the hope of identifying the specific immune response(s) 

that is responsible for protection.  

The outcomes of HIV/SIV/SHIV vaccine trials thus far have made it apparent that the rate 

and level of virus acquisition and/or replication are at present, the only reliable factors when 

deciding the efficacy of a vaccine candidate, since the immune responses required for 

vaccine efficacy remain undefined. However, it is clear that NHP studies need to carefully 

account for the challenge virus as well as the genetic background of the macaque species, 

and perhaps standardize or implement more rigorous vaccine protocols to afford better 

predictive power and/or help in the identification and exclusion of confounding factors.  

5. The role of the NHP model for Pre-exposure Prophylaxis 

Microbicides are inhibitory compounds that when applied vaginally or rectally will prevent 

or reduce the likelihood of HIV transmission . PrEP is defined as the use of antiretroviral 

(ARV) drugs among HIV- negative individuals to prevent the acquisition of HIV. The 

successful use of ARVs in the treatment of HIV-infected individuals as post-exposure 

prophylaxis (PEP) and the associated knowledge gained on their safety have led the way for 

their use as PrEP agents. Various formulations of microbicides have been developed for 

rectal and vaginal application such as gels, films, suppositories (tablets) and intravaginal 
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rings. It is necessary that a product that is destined for topical use is safe and widely 

acceptable, thereby promoting and enhancing adherence, cost effective and be able to 

deliver the drug at a high enough concentration locally to prevent the acquisition of HIV. 

The primary focus of microbicides has been placed on a coitally-dependent gel strategy, the 

method of choice for microbicide formulations, and intravaginal rings (IVR) that provide a 

sustained release of drugs over prolonged periods of time in a coitally-independent fashion. 

Though Sub-Saharan Africa is home to only 10% of the world’s population it contains every 

two of three people living with HIV. More than 60% of the people living with HIV in Sub-

Saharan Africa are women, and of these 75% are between the ages of 15 and 24 [187]. The 

increasing risk associated with women and their inability to negotiate consistent condom 

use or monogamy emphasizes the need for the development of female-controlled methods 

of prevention of HIV acquisition. It was predicted that a vaginal microbicide that is 50% 

efficacious may prevent 33% of HIV infections in a period of 25 years upon 75% usage [188]. 

The effectiveness of PrEP in preventing mucosal infections with HIV will be influenced by 

the delivery of ARVs to a protective level at the mucosal site of transmission. The NHP 

model not only provides an experimentally controlled platform for the safety and 

pharmacokinetic evaluation of microbicides, but can also be used in the evaluation of 

efficacy in preventing mucosal transmission of HIV [189-192]. It is of utmost important for 

microbicides that are targeted for topical use in preventing sexually transmitted infections, 

such as HIV, to be tested in animal models prior to human trials. The sexual transmission of 

HIV involves a biologically complex milieu comprising initial infection among target cells at 

the port of entry (vaginal or rectal), the establishment of a small founder population, and 

local expansion to establish systemic infection . This poorly understood process cannot be 

properly evaluated in vitro. The recent failure and enhanced transmission observed in the 

first microbicide efficacy trials with nonoxynol-9 and Savvy [193, 194] warrant the need for 

controlled and careful investigation of topical products in animal models. A phase II/III trial 

with nonoxynol-9, an over the counter spermicide, in a vaginal gel formulation increased 

the risk of acquisition of HIV among users of the gel [195]. The detrimental effects associated 

with the multiple vaginal application of nonoxynol-9 such as epithelial disruption and 

inflammatory infiltration was also demonstrated in pig-tailed macaques [196].  

The pharmacokinetic and pharmacodynamics evaluation of microbicides in animal models 

allows for the determination of not only the accumulation of ARVs in mucosal tissues , but 

also of the minimal effective dosing and the optimal timing with regards to the periods of 

virus exposure. The nonhuman primate model has been pivotal in producing preclinical 

data that can inform clinical trial design is this new and exciting field of prevention. There 

are several ARV PrEP candidates that have great potential for topical application and here 

we describe a few select ARVs and delivery methods that have progressed through initial 

preclinical evaluation in the NHP model. The implementation of ARVs for pre-exposure 

prophylaxis (PrEP) of HIV both as oral and topical applications is currently being 

investigated as outlined among the different trials in Table 4 [197-200].  
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Trial Study 

population 

Country Route of 

Administration

Drug  Effect 

Size (95% 

CI) 

Partners 

PrEP [197] 

HIV 

serodiscordant 

couples  

Kenya, 

Uganda 

Oral i.TDF/ 

Emtricitabine 

ii. TDF 

73%  

(49-85) 

 

62%  

(34-78) 

 CDC 

sponsored 

TDF2 [233]  

Heterosexual 

men and 

women 

Botswana Oral TDF/ 

emtricitabine 

63%  

(22-83) 

iPrEX [227] MSM South 

America, USA, 

South Africa, 

Thailand 

Oral TDF/ 

emtricitabine 

44%  

(15-63) 

CAPRISA-

004 [198] 

Sexually active 

HIV uninfected 

women 

South Africa Vaginal 

microbicide gel

1%TFV 39%  

(6-60) 

VOICE [234, 

235]  

HIV-negative 

women 

Uganda, South 

Africa, 

Zimbabwe 

i. Oral  

ii. Vaginal 

microbicide gel

i. TFV 

ii. 1%TFV 

 

Ineffectivea 

FEM-PrEP 

[200] 

HIV uninfected 

women 

Kenya, 

Tanzania, 

South Africa 

Oral TDF/ 

emtricitabine 

0%  

(-69 -41) 

TFV- Tenofovir, TDF-Tenofovir disproxil fumarate, a Both arms were halted for futility. Final data from VOICE trial has 

not been announced.  

Table 4. ARV based oral and topical PrEP trials among different populations: Adapted from [197].  

5.1. Antiretroviral inhibitors implemented in PrEP microbicide products 

Several ARV based microbicides are currently under preclinical development in non-human 

primates to inhibit HIV replication at various stages of its lifecycle. The microbicides are 

classified based on the step that it inhibits in replication cycle of HIV such as entry, reverse 

transcription of its RNA genome, integration into the host chromosome, translation of new 

viral proteins, release and maturation of the progeny virions.  

Entry inhibitors - Binding of HIV gp120 to CD4 on T helper cells and macrophages triggers 

conformational changes in gp120 that allows binding to the CCR5 or CXCR4 co-receptor. 

Next, the gp41 ectodomain forms a six- helix bundle that allows close proximity of the viral 

and cell membranes leading to fusion . Small molecule inhibitors that bind gp120 and 

prevent attachment to CD4 such as BMS-378806 have been shown to be effective as a vaginal 

microbicide in rhesus macaques upon a high dose challenge. BMS-378806 in combination 

with C52L, a bacterially expressed gp41-mediated fusion inhibitor peptide, protected 
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macaques against vaginal challenge [201]. T1249, another fusion inhibitor, was also effective 

as a vaginal gel formulation against a variety of SHIV in macaques [202]. Cyanovirin, a 

cyanobacterial protein that binds non-competitively to gp120, was also effective in 

protecting pig-tailed macaques against vaginal infection [203]. CCR5 antagonists CMPD167 

and maraviroc, and modified chemokines such as PSC-Rantes have shown protection in 

rhesus macaques against RLD vaginal challenge with SHIV [201, 204, 205].  

Reverse transcriptase inhibitors - Nucleoside reverse transcriptase inhibitors (NRTIs) and 

non-nucleoside reverse transcriptase inhibitors (NNRTI) block reverse transcriptase activity. 

The NRTIs such as zidovudine, lamivudine, and Tenofovir (TFV) require phosphorylation 

by host cell enzymes to their pharmacologically active triphosphate (TP) anabolite [206-208]. 

The TPs are analogs of endogenous 2’-deoxynucleotides (dNTPs) and compete for 

incorporation into the growing HIV DNA chain by HIV reverse transcriptase leading to 

chain termination .  

The potential of TFV for preventing acquisition of HIV derives from its capacity to prevent 

SIV infection in rhesus macaques. After four weeks subcutaneous administration of once 

daily TFV beginning 48 hours before and up to 24 hours after intravenous inoculation of 

SIV, macaques were protected against systemic infection. The macaques showed no 

evidence of virus in the plasma or PBMC for 56 weeks. Lymphoid tissues and major organs 

obtained from healthy euthanized animals 40 weeks post inoculation were also free of SIV. 

The efficacy of TFV and Truvada (TDF and emtricitabine) as PrEP agents was proven with 

repeated exposures to physiological equivalents of SHIV162P3 in rhesus macaques [153, 209, 

210]. Intermittent dosing with an oral pre-exposure dose 1, 3 or 7 days before virus exposure 

followed by a dose of TDF/emtricitabine 2 hours after exposure was associated with a 16.7, 

15.3, and 9.4 factor reduction respectively in comparison to the controls against rectal 

SHIV162P3 protection. No protection against rectal SHIV162P3 exposure was observed if 

the first dose was delayed up to 24 hours after exposure emphasizing the need for 

interdicting the initial replication events [211].  

TFV alone (1%) or in combination with emtricitabine (5%) in a vaginal gel formulation was 

also effective in protecting pig-tailed macaques against a repeat low-dose exposure to 

SHIV162P3 [212]. The correlation of intracellular TFV-DP levels in vaginal tissue 

lymphocytes at the time of vaginal exposure and reduced efficacy in protecting pigtail 

macaques was demonstrated recently with intermittent application of a 1%TFV gel once per 

week and virus exposures occurring twice weekly. It was estimated that the median TFV-DP 

concentrations were 1810 fmol/106 cells at 4 hours and above 1000 fmol/106 cells in the 

vaginal lymphocytes that were obtained from animals necropsied at 1 and 2 days after gel 

application. However, the median TFV-DP concentrations dropped to 252 fmol/106 cells 3 

days after gel application which correlated to 74% efficacy [213]. This study was therefore 

able to find a direct correlate between intracellular TFV-DP levels and efficacy in the 

nonhuman primate model.  

NNRTIs differ from NRTIs in binding to the reverse transcriptase outside of the active site 

and have been shown to be efficacious in the vaginal SHIV challenge models in macaques. 
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Vaginal combination gels containing zinc acetate dehydrate and the NNRTI MIV-150 

provided complete protection in rhesus macaques against RT-SHIV up to 24 hours 

following 2 weeks of daily gel application. Partial protection was seen with formulations 

containing zinc acetate or MIV alone [214]. MC 1220 in a gel formulation also provided 

partial protection against RT-SHIV in rhesus macaques [215].  

Integrase inhibitors - HIV integrase is essential for incorporation of the viral genome into the 

host DNA and is an essential event for viral replication. Inhibitors that block this process are 

actively being developed for therapeutic applications and are just beginning to be 

investigated for PrEP. Because the integration step occurs later in the replication cycle than 

entry and reverse transcription, administration of integrase inhibitors may be effective when 

used as post-exposure prophylaxis (PEP). To address this question in the NHP model, 

topically applied L-870812 was evaluated for efficacy in preventing vaginal transmission of 

SHIV162P3 in a repeat low-dose macaque model. Pigtail macaques received 3 mL of a 0.2% 

L-870812 gel 30 minutes after intravaginal virus exposure with SHIV162P3 and partial 

efficacy was observed [216]. Further investigation of integrase inhibitors as sole PrEP agents 

and in combination with other PrEP agents is warranted given these encouraging results. A 

combination of ARVs that act at different stages of viral replication will theoretically 

provide broader protection.  

5.2. Drug delivery vehicles 

There are many different delivery platforms available for PrEP and these are being tested in 

NHP models. Many of the studies described above employ conventional gel formulations 

and are associated with problems such as leakage and the need to administer the gel shortly 

before every act of intercourse to prevent HIV acquisition. In addition there is also the lack 

of covertness with gel application which makes it difficult for women who need to use the 

microbicide without the knowledge of their partner. However, topical applications like gels, 

tablets, and films are administered directly to the site of transmission and very high local 

tissue levels can be achieved [217, 218]. Oral and injectable dosing is preferable in some 

settings, but the drug is delivered systemically, not locally, and therefore higher and more 

frequent dosing may be required for protection.  

Alternative delivery platforms are being investigated in the NHP model to overcome some 

of the problems encountered with conventional dosing methods. For instance, intravaginal 

rings (IVR), such as those commercially available for contraception, can help overcome some 

of the barriers associated with conventional gel formulations and delivery. IVRs are torus 

shaped flexible drug delivery devices that are self –inserted and when placed is located 

close to the cervix in the upper two-thirds of the vagina and provide sustained release of 

one or more drugs for mucosal and possibly systemic effects. The advantageous properties 

of IVRs such as the capacity to provide sustained and controlled release of drugs over 

extended periods of time, non-coital dependency, and the need for a single application in 

women of only once a month or every few months, are beginning to be exploited in the field 

of microbicides [219-223].   
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The initial safety and size guidelines to develop ring devices that are suitable for use in 

pig-tailed and rhesus macaques came from the administration of different sized rings and 

the close monitoring of the safety of these devices. Non-medicated silicone elastomer 

vaginal rings of 3 different sizes were administered to pig-tailed and Chinese rhesus 

macaques for a 28 day period [224]. No signs of inflammation or irritation were observed 

on colposcopic examinations and the animals showed no behavioral changes or other 

problems following insertion of the rings. Mucosal proinflammatory cytokines were 

unchanged in the presence of the rings (for 4 weeks) or upon removal (4 weeks post 

removal). Safety analyses of macaque-sized elastomeric silicone and polyurethane 

intravaginal rings (IVRs) loaded with candidate ARV drugs were tested in pig-tailed 

macaques in four studies ranging in duration from 49 to 73 days with retention of the IVR 

being 28 days in each study. The presence of IVRs not only made of silicone but other 

polymers such as, polyurethane in pig-tailed macaques does not cause an alteration 

longitudinally in the levels of the proinflammatory cytokines locally or systemically and 

in the vaginal microbiological patterns [225, 226]. Efficacy studies in the NHP model with 

IVRs are just beginning, but preliminary pharmacokinetic studies are very promising 

[227-235]. 

6. Summary and outlook 

As we move forward in our endeavors to prevent HIV infections, it is clear that having 

viable animal models are a vital component of a comprehensive approach to develop and 

test biomedical preventions. The field of HIV treatment and prevention has broadened to 

include not only vaccine discovery and treatment of infected individuals to PEP, PrEP, 

combination therapies, and discussions of eradication and cure. The pharmaceutical 

discoveries of recent years have increased our options for PEP and PrEP, and vaccine 

designs are becoming much more sophisticated. As the prevention field moves forward we 

are constantly modifying the macaque model to accommodate new combinations of 

interventions. The new SHIVs will have to incorporate the elements necessary to evaluate 

vaccines and other prevention modalities both singly and in combination. The likelihood 

that future clinical vaccine trials will be conducted in concert with PrEP trials is very high, 

and the recombinant viruses we use in the NHP models have to keep pace in evaluating 

promising candidates in the most rigorous way possible. The nonhuman primate model has 

adapted to aid researchers in answering ever more complex questions surrounding the 

interaction of the virus, host, and antiretroviral drugs. The coming years will be very 

interesting and fruitful as we move towards our common goal; to make HIV and AIDS a 

disease of our past, not of our future. 
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