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1. Introduction 

The constancy of the speed of light in a vacuum is a fundamental idea in modern physics 

and is the basis of the standard of length in metrology since 1983. Its genesis is in the theory 

of special relativity introduced 100 years ago by Albert Einstein who postulated that light 

travels at a constant speed in all inertial frames [1-3]. There have been numerous 

experiments [3] over the past century that test light speed constancy under a variety of 

conditions and they almost all yield a value c (in vacuum). The first experiment among these 

that was taken as indicating light speed constancy is the celebrated Michelson-Morley 

experiment of 1887 that searched for ether drift based on interferometer fringe shifts [4]. 

This experiment involved interfering light beams that traversed orthogonal paths on a 

movable apparatus. It was designed to reveal the speed of the Earth’s orbital motion 

through the hypothesized ether using the expected change in light speed arising from 

movement with or against the associated ether wind. The observed fringe shift was 

significantly less than what was expected as a result of the revolving Earth. The null result 

was interpreted as an indication of light speed constancy. This basic experiment was 

repeated many times over the years with essentially the same results. In 1925 Miller did 

appear to achieve positive fringe shifts [5] but it was later argued that this resulted from 

diurnal and seasonal variations in equipment temperature [6]. 

In 1964 Jaseja et al. introduced a major enhancement of this basic experiment [7]. These 

researchers employed laser technology to realize a sensitivity increase of 25 times the original 

experiment but detected no change in the system’s beat frequency within its measurement 

accuracy. A later improved version of the Jaseja experiment by Brillet and Hall [8] searched for 

light speed anisotropy in the form of changes in the resonant frequency of a cavity resonator. 

They claimed a 4000-fold improvement over the results of Jaseja et al. and again detected no 

change. The conclusion from these experiments was that light speed is constant. 

Modern versions of the Michelson-Morley experiment operating along the lines of the 

approach by Brillet and Hall use electromagnetic resonators that examine light speed 
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isotropy. These systems compare the resonant frequencies of two orthogonal resonators and 

check for changes caused by orbital or rotational motion. Several experiments of this type 

have been conducted including experiments by Hermann et al.[9], Muller et al. [10] and 

Eisele et al. [11]. These experiments have progressively lowered the limit on light speed 

anisotropy with the most recent measurement being 17/ 10c c   where c  is the 

measured change in light speed. It should be noted however that Demjanov [12] and Galeav 

[13] have reported positive fringe shifts in recent Michelson-Morley type experiments but 

these have received little or no attention. 

As a result of these many negative tests the almost universal belief among physicists is that 

the postulate of light speed constancy has been confirmed. However Zhang [3] has shown 

that what these experiments have established is two-way light speed constancy but that one-

way light speed constancy remains unconfirmed. A few experiments testing one-way light 

speed have been conducted including those by Gagnon et.al. [14] and Krisher et.al. [15] but 

these too are not true one-way tests because of the apparent inability to independently 

synchronize the clocks involved [3]. 

The global positioning system (GPS) utilizes advanced time-measuring technology and 

appears to provide the means to accurately determine one-way light speed. It is a modern 

navigation system that employs synchronized atomic clocks in its operation [16]. This 

system of synchronized clocks enables the accurate determination of elapsed time in a wide 

range of applications including time-stamping of financial transactions, network 

synchronization and the timing of object travel. Based on the IS-GPS-200E Interface 

Specification [17], GPS signals propagate in straight lines at the constant speed c (in 

vacuum) in an Earth-Centered Inertial (ECI) frame, a frame that moves with the Earth but 

does not share its rotation. This isotropy of the speed of light in the ECI frame is utilized in 

the GPS range equation to accurately determine the instantaneous position of objects which 

are stationary or moving on the surface of the Earth. 

Using the system, Marmet [18] observed that GPS measurements show that a light signal 

takes about 28 nanoseconds longer traveling eastward from San Francisco to New York as 

compared with the signal traveling westward from New York to San Francisco. Kelly [19] 

also noted that measurements using the GPS reveal that a light signal takes 414.8 

nanoseconds longer to circumnavigate the Earth eastward at the equator than a light signal 

travelling westward around the same path. Marmet and Kelly both concluded that these 

observed travel time differences in the synchronized clock measurements in each direction 

occur because light travels at speed c v eastward and c v westward relative to the surface 

of the earth. Here v is the speed of rotation of the Earth’s surface at the particular latitude. 

This research by Marmet and Kelley was the precursor to a series of papers by this author 

on the use of GPS technology in the unambiguous demonstration of one-way light speed 

anisotropy. In this chapter we bring this material together in one place so that the full 

impact of the technology on this important issue can be better appreciated and the 

significant results made available to a wider audience. 



 
GPS and the One-Way Speed of Light 47 

2. Clock synchronization 

In light speed determination, synchronized clocks are required for the timing of a light pulse 

as it propagates between two separated points. In this regard, the IEEE 1588 Standard for a 

Precision Clock Synchronization Protocol for Networked Measurement and Control Systems 

defines synchronized clocks as follows: “Two clocks are synchronized to a specified 

uncertainty if they have the same epoch and measurements of any time interval by both 

clocks differ by no more than the specified uncertainty. The timestamps generated by two 

synchronized clocks for the same event will differ by no more than the specified 

uncertainty.” In other words clocks are synchronized if they indicate the same times for the 

same events and this is realised using a clock synchronization procedure. This is the logical 

and widely accepted meaning of synchronized clocks and is the one adopted in the chapter. 

Unfortunately some authors have created a degree of confusion by referring to other modes 

of clock operation as synchronized clocks, modes which result from what may be referred to 

as “clock synchronization schemes”. Using such clocks, light speed measurement will show 

a dependence on these different clock synchronization schemes since differently 

synchronized clocks will measure different time intervals for the same light signal 

transmission. In fact virtually any value of speed can be obtained by suitably 

“synchronizing” the measuring clocks and according to Will [20], “a particularly perverse 

choice of synchronization can make the apparent speed…infinite”! These “apparent” speeds 

bear no relation to physical reality and are meaningless. A proper clock synchronization 

method is one that results in clock operation such that clocks indicate the same times for the 

same events and light speed can be reliably measured using such synchronized clocks.  

The synchronization approach discussed by Einstein [1] involves the consideration of two 

clocks A and B at rest at different points in an inertial frame. Let a ray of light propagate 

from A directly to B and be reflected at B directly back to A. Let the start time at A as 

indicated on the clock at A be At  and let the time of arrival of the light ray at B as indicated 

on the clock at B be Bt . Finally, let the time of arrival of the reflected ray back at clock A be 

At . Then, Einstein declared [1] that the two clocks are synchronized if  

 B A A Bt t t t    (1) 

This synchronization technique demands that “the “time” required by light to travel from A 

to B equals the “time” it requires to travel from B to A” i.e. that light travels with the same 

speed in both directions which Einstein “established by definition”. However it is precisely 

the light speed in the different directions that we wish to measure and therefore it would be 

circular logic to assume a priori that light speed in both directions is the same in order to 

synchronize the measuring clocks.  

The GPS utilizes a clock-synchronization procedure that has been exhaustively tested and 

rigorously verified [16, 17] and now forms part of the specification for the GPS. This 

procedure for the synchronization of clock stations is also contained in standards published 

by the CCIR, a committee of the International Telecommunications Union in 1990 and 1997 

[19]. Similar rules were established in 1980 by the Consultative Committee for the Definition 
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of the Second (now the Consultative Committee for Time and Frequency (CCTF)) [19]. In 

these synchronization procedures, the synchronization of two clocks fixed on the moving 

Earth is accomplished by transmitting an electromagnetic signal from one clock to the other 

assuming the postulate of the constancy of the speed of light c then applying a correction to 

the elapsed time that is said to arise because of the rotating Earth. This adjustment is called 

the “Sagnac correction” and is today automatically applied to all electromagnetic signals 

transmitted around the Earth in order to achieve clock synchronization.  

This synchronization algorithm has been tested and confirmed in numerous experiments. 

While there is disagreement about the underlying theory, the procedure works. The 

resulting GPS clocks are synchronized according to the IEEE definition and enable the 

determination of one-way light speed relative to observers situated on the rotating Earth. 

The simple exercise is the transmission of a light or electromagnetic signal between 

separated GPS clocks fixed on the surface of the Earth and the division of the fixed distance 

between the clocks by the measured time interval between transmission and reception of the 

light signal. Since light was used to synchronize the clocks the objection to light speed 

measurement using these same clocks might be raised. This objection can however be 

answered by observing that the synchronized clocks have been rigorously and exhaustively 

tested and verified. In any event such a measurement will serve as a check on the 

requirement that the measured light speed be consistent with the assumed constant light 

speed c involved in the synchronization process that follows from the application of the 

postulate of light speed constancy. 

3. One-way light speed test using the GPS clocks 

In this section the synchronized clocks of the GPS are used in the one-way determination of 

the speed of light by timing the transmission of a light signal travelling between two fixed 

points on Earth. In order to exclude issues associated with the curvature of the Earth’s 

surface and non-inertial frames, we consider a clock A located in a building in one city say 

Scarborough in the Republic of Trinidad and Tobago and another clock B located at the 

same latitude in the same building and a short distance l away from clock A. This is shown 

in figure 1.  

A B

l

EARTH

N

E

 

Figure 1. GPS Clocks A and B at fixed positions on Earth 
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Under such circumstances light travels between the two clocks in a straight line in an 

approximately inertial frame which is the same as that used in the performance of the many 

light speed measurements in which c is the reported value [7-11]. It is particularly 

noteworthy that the one-way experiment by Krisher et al. [15] which searched for light 

speed changes resulting from rotation of the Earth extended 21 km across the surface of the 

Earth and appears to violate the inertial requirement. Yet these authors who claimed
7/ 3.5 10c c   gave no consideration to any non-inertial effects.  

3.1. Eastward transmission 

We establish synchronization of the GPS clocks by transmitting a light signal from clock A 

to clock B. Using the CCIR synchronization rules involving the assumed constancy of the 

speed of light c along with the so-called Sagnac adjustment, the total time t for light to 

travel the path from clock A to clock B is given by [16, 18] 

 
2

2' E
z

path path

d
t dA

c c

      (2) 

where d  is infinitesimal distance in the moving frame, E is the angular velocity of the 

rotating Earth and zdA  is the infinitesimal area in the rotating coordinate system swept out 

by a vector from the rotation axis to the light pulse and projected onto a plane parallel to the 

equatorial plane. Carrying out the integration associated with (2) yields 

 
2

2 E
z

l
t A

c c


    (3) 

where l is the distance between the two stations both moving at speed v  the speed of the 

Earth’s surface at that latitude. Let the circumference of the Earth at that latitude be Cl and 

let the corresponding radius be r . Then the area zA is given by 

 2
z

C

l
A r

l
   (4) 

Since /E v r  and 2Cl r , substituting equation (4) in (3) gives 

 
2

l lv
t

c c
    (5) 

The first term in (5) corresponds to the light travel time under the assumption of constant 

light speed c and the second term is the so-called “Sagnac correction” that is said to be 

required because of the Earth’s rotation. This total elapsed time must now be added to clock 

B such that if at the instant of light transmission the time on clock A is At , then at the instant 

of reception the time Bt on clock B is set to B At t t   . After this procedure Clocks A and B 

are synchronized. 
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Following the synchronization verification of the GPS clocks A and B, we use them to 

measure one-way light speed. Thus at a specified time, a light signal is transmitted eastward 

from clock A directly to clock B. Because the clocks have been synchronized using (5), the 

time interval B At t t   between the transmission and reception of the signal is exactly that 

given in (5) as  

 
2B A

l lv
t t t

c c
      (6) 

Equation (6) is like a law of nature as it indicates the time for light to travel eastward 

between two points at the same latitude fixed on the surface of the Earth. It means therefore 

that an actual clock measurement for the time of transmission is not required since clock 

behavior for eastward travel is fully represented by equation (6). This equation therefore 

makes available the full precision of the GPS clocks anywhere in the world without the need 

for actual clocks and is therefore a very useful result. 

Using this elapsed time in speed determination, since the distance between the two clocks is 

l , it follows that the one-way speed of light ABc traveling eastward between the two clocks is 

given by 

 1

2

(1 ) (1 ( )) ,AB

l l v v v
c c c o c v v c

l lvt c c c

c c

         
 

 (7) 

Thus the synchronized clocks of the GPS give a one-way eastward light speed measurement 

of ABc c v   relative to the surface of the Earth and not light speed ABc c required by the 

postulate of the constancy of the speed of light. 

3.2. Westward transmission 

For westward transmission we again establish synchronization of the GPS clocks, using the 

rules of the CCIR, by transmitting a light signal from clock B to clock A. In this case the total 

time t for light to travel the path from clock A to clock B is given by [16, 18] 

 
2

2 E
z

l
t A

c c


    (8) 

which reduces to 

 
2

l lv
t

c c
    (9) 

Again, the first term in (9) is the elapsed time assuming constant light speed c and the 

second term is the so-called “Sagnac correction” said to be required because of the Earth’s 

rotation. This total elapsed time must be added to clock A such that if at the instant of light 
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transmission the time on clock B is Bt , then at the instant of reception the time At on clock A 

is set to A Bt t t   . After this procedure clocks B and A are synchronized. 

Using these clocks to conduct a one-way light speed test, at a specified time, an observer at 

clock B sends a light signal westward to an observer at clock A. Because the clocks are 

synchronized using (9), the time interval A Bt t t    between the transmission and 

reception of the signal is given in (9) as 

 
2B A

l lv
t t t

c c
      (10) 

Equation (10) is essentially a law of nature as it provides the time for light to travel 

westward between two points at the same latitude fixed on the surface of the Earth. It means 

therefore that an actual clock measurement for the westward time of transmission is not 

required since clock behavior is fully represented by equation (10). Equation (10) therefore 

brings the full precision of the GPS clocks to everyone anywhere in the world without the 

need for actual clocks! This constitutes another very useful result. 

Using the time found in (10) for one-way light speed in the westward direction, since the 

distance between the two clocks is l , it follows that the one-way speed of light BAc traveling 

westward between the two clocks is given by 

 1

2

(1 ) (1 ( )) ,BA

l l v v v
c c c o c v v c

l lvt c c c

c c

         
 

 (11) 

Thus the synchronized clocks of the GPS give a one-way westward light speed 

measurement of BAc c v   relative to the surface of the Earth and not light speed BAc c
required by the postulate of light speed constancy. 

The results in equations (7) and (11) confirm the independent claims of Marmet and Kelley: 

Light travels faster westward than eastward relative to the surface of the Earth. Specifically 

the one-way measurement of light speed using GPS data in (6) clearly indicates that a signal 

sent eastward travels at speed c minus the rotational speed of the Earth v at that latitude 

giving c v . The GPS data available in (10) also shows that a signal sent westward travels at 

speed c plus the rotational speed of the Earth v at that latitude giving c v . These 

generalized results were first reported by Gift [21]. 

We are now better able to understand why the times t  in (6) and (10) enable the 

synchronization of two clocks in GPS: Time interval (6) is the time for light to travel from 

clock A to clock B at the actual speed ABc c v  relative to both clocks and time interval (10) 

is the time for light to travel from clock B to clock A at the actual speed BAc c v  relative to 

both clocks. At the constant speed c required by the postulate of light speed constancy the 

associated time /l c for light to travel from one clock to the other when added to the 

receiving clock does not result in synchronization because this is not the true travel time. In 
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the CCIR synchronization rules the time /l c is adjusted by 2/lv c in order to compensate 

for the real changes in light speed c v that occur relative to the clocks. In view of these 

results, the interpretation that the time t is the time required for light to travel between 

clocks at constant speed c, with a correction added because of the rotating Earth is now 

known to be invalid. 

4. Michelson-Morley experiment using the GPS clocks 

With the availability of synchronized clocks, the Michelson-Morley experiment can be 

conducted with direct timing of the signals traversing the orthogonal arms of the apparatus. 

Such an approach was previously considered but never executed because of insufficient 

timing resolution. The approach proposed here does not encounter this problem since the 

novel feature of the method is that the light travel time is directly available from the GPS 

clock synchronization algorithm adopted by the CCIR. This renders actual signal timing 

with physical clocks completely unnecessary [22].  

The basic configuration of the original Michelson-Morley experiment [4] is shown in figure 2 

where the apparatus is moving with velocity v  through the hypothesized ether in direction 

PM1. Light from a source S splits into two beams at beam-splitter P. One beam travels from 

P to mirror M1 and back and is reflected at P into the interferometer I. The second beam is 

reflected at P to mirror M2 and back and passes through P into the interferometer I where 

both beams form an interference pattern. 

M2

M1S

I

P

Velocity of Apparatus

v

 

Figure 2. Michelson-Morley Experiment 

In the frame of the moving apparatus as a result of ether drift, the resultant light speed 

between P and M1 would be c v toward M1 and c v  toward P while the resultant light 

speed between P and M2 would be 2 2 1/2( )c v in both directions. For optical path lengths 

11PM l and 22PM l  the time 1( )t a for the light to travel from P to M1 is given by 



 
GPS and the One-Way Speed of Light 53 

 1
1( )

l
t a

c v



  (12) 

and the time 1( )t b for the light to travel from M1 to P is given by 

 1
1( )

l
t b

c v



 (13) 

Therefore the round-trip time along PM1 is given by 

 1
1 1 1 2 2

2
( ) ( )

(1 / )

l
T t a t b

c v c
  


 (14) 

The time 2( )t a for the light to travel from P to M2 is given by 

 2
2

2 2
( )

l
t a

c v



 (15) 

and the time 2( )t b for the light to travel from M2 to P is given by 

 2
2

2 2
( )

l
t b

c v



 (16) 

Therefore the round-trip time along PM2 is given by 

 2
2 2 2 2 2 1/2

2
( ) ( )

(1 / )

l
T t a t b

c v c
  


 (17) 

The time difference 1 2T T T   is given by  

 
2 2

1 2 1 2
1 2 3 3

2( ) 2l l l v l v
T T T

c c c


       (18) 

If the apparatus is turned through 90o so that PM2 is in the direction of motion, the time 

difference becomes 

 
2 2

1 2 1 2
1 2 3 3

2( ) 2l l l v l v
T T T

c c c


         (19) 

The change in these time differences is 

 
2

1 2 3
( )

v
T T l l

c
        (20) 

If 1 2l l l  then this reduces to  
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2

2

2l v

c c
   (21) 

A fringe shift proportional to this value (given by
c


  ) is expected to appear in the 

interferometer. The time difference
2

2

2l v

c c
  is second-order and is significantly reduced by 

length contraction arising from motion through the ether [12]. This is why Michelson-

Morley type experiments have been largely unsuccessful in detecting ether drift.  

The accurate synchronized clocks in the GPS are now used to directly determine one-way 

light travel time. Thus in a modification of the original Michelson-Morley apparatus GPS 

clocks are placed at P, M1 and M2 in fig.2. Additionally the arm PM1 is oriented along a line 

of latitude and the arm PM2 is positioned along a line of longitude. As a result of the 

rotation of the Earth there is movement of the apparatus at velocity v w in the direction 

PM1 towards the East where w is the rotational speed of the surface of the Earth at the 

particular latitude.  

4.1. Time measurement along PM1 

The time 1( )GPSt a  measured by the GPS clocks at P and M1 for the light to travel from P to 

M1 is [16, 18, 21] 

 1 1
1 2
( )GPS

l l w
t a

c c
   (22) 

while from equation (12) of ether theory  

 1 1 1
1 2
( ) ,

l l l w
t a w c

c w c c
   


 (23) 

Hence 1 1( ) ( )GPSt a t a and ether drift arising from the rotation of the Earth is detected. The 

time 1( )GPSt b  measured by the GPS clocks for the light to travel from M1 to P is [16, 18, 21] 

 1 1
1 2
( )GPS

l l w
t b

c c
   (24) 

while from equation (13) of ether theory  

 1 1 1
1 2
( ) ,

l l l w
t b w c

c w c c
   


 (25)  

Hence 1 1( ) ( )GPSt b t b and ether drift arising from the rotation of the Earth is again detected. 

From ether theory as well as clock measurement, the difference in the out and back times 

along PM1 is given by  
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 1
1 1 1

2
( ) ( )

l w
t t a t b

c c
     (26) 

Result (26) is first-order and therefore not affected by second-order length contraction as is 

the second-order result (21) in the conventional Michelson-Morley type experiments. 

Equation (26) has been extensively verified in GPS operation.  

4.2. Time measurement along PM2 

The time 2( )GPSt a for the light to travel from P to M2 measured by the GPS clocks at P and 

M2 is [16, 18] 

 2
2( )GPS

l
t a

c
  (27) 

while from equation (15) of ether theory  

 2 2
2

2 2
( ) ,

l l
t a w c

cc w
  


 (28) 

Hence 2 2( ) ( )GPSt a t a and ether theory is confirmed by GPS measurement. The time 2( )GPSt b

for the light to travel from M2 to P measured by the GPS clocks is [16, 18] 

 2
2( )GPS

l
t b

c
  (29) 

while from equation (16) of ether theory  

 2 2
2

2 2
( ) ,

l l
t b w c

cc w
  


 (30) 

Hence 2 2( ) ( )GPSt b t b and ether theory is again confirmed by GPS measurement. From ether 

theory as well as GPS clock measurement, the difference in the out and back times along 

PM2 is given by  

 2 2 2( ) ( ) 0t t a t b     (31) 

This has been confirmed by actual GPS measurements which have shown that unlike East-

West travel, there is no time difference between light travelling North and light travelling 

South. 

The modified Michelson-Morley experiment using synchronized GPS clocks to measure 

light travel times out and back along the arms of the apparatus has detected ether drift 

resulting from the rotation of the Earth. The clocks have directly confirmed the light travel 

times for changed light speeds c w in the East-West direction arising from the drift of the 

ether as the apparatus moves through the medium at speed w corresponding to the speed 



 

New Approach of Indoor and Outdoor Localization Systems 56 

of rotation of the Earth’s surface at the particular latitude. The experiment is operated 

within the dimensions of the original Michelson-Morley apparatus where the frame is 

considered to be approximately inertial and where special relativity has been universally 

applied [2]. This negates any objections about rotating coordinates and non-inertial frames 

which are never raised in the original Michelson-Morley experiment or in any of the several 

modern versions of the experiment [7-11]. 

5. One-way light speed using the range equation 

In section 3 in the determination of one-way light speed, the CCIR algorithm was used to 

determine flight time for light transmission between two fixed points on the same latitude. 

In this section the range equation used in the GPS to evaluate distance and determine 

position is employed in the determination of flight time. Specifically by substituting known 

spatial positions in the range equation, light travel times can be determined without the 

direct use of the GPS clocks. These times are then used to determine one-way light speed in 

the East-West direction. 

The range equation is central to the operation of the GPS. It holds in an ECI frame which is a 

frame that moves with the Earth as it revolves around the Sun but does not share its 

rotation. It is given by [16] 

 ( ) ( ) ( )r r s s r sr t r t c t t    (32) 

where st is the time of transmission of an electromagnetic signal from a source, rt  is the 

time of reception of the electromagnetic signal by a receiver, ( )s sr t  is the position of the 

source at the time of transmission of the signal and ( )r rr t  is the position of the receiver at 

the time of reception of the signal. Using elapsed time measurements determined by the 

GPS clocks and the light speed value c in this equation, position on the surface of the Earth 

can be accurately determined. It has been exhaustively tested and rigorously verified and 

has resulted in the worldwide proliferation of the GPS.  

Wang [23] has used the range equation operating in the ECI frame to show that the speed of 

light is dependent on the observer’s uniform motion relative to the ECI frame. He did this 

by using the range equation to determine elapsed time and concluded that the successful 

application of the range measurement equation in GPS operation is inconsistent with the 

principle of the constancy of the speed of light. Instead of using the synchronized clocks of 

the GPS, we use the range equation (32) of the GPS to determine elapsed time for light 

traveling between two known adjacent points at the same latitude fixed on the surface of the 

rotating Earth. We then use this time and the known distance between the two fixed points 

to calculate the one-way speed of light.  

Consider figure 3 in which two adjacent GPS stations A and B are at the same latitude and 

fixed on the surface of the Earth a distance l  apart with B East of A. Since the Earth is 

rotating, the stations are moving eastward at speed v the Earth’s surface speed at that 

latitude. Let l  be sufficiently small by for example having stations A and B in the same 
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building such that the stations are moving uniformly in the same direction at speed v 

relative to the ECI frame. In such circumstances stations A and B constitute an 

approximately inertial frame moving at speed v relative to the ECI frame, again similar to 

the many light speed experiments conducted to verify light speed constancy.  

A B

l

EARTH

N

E

x

 

Figure 3. GPS Stations A and B at fixed positions on Earth 

5.1. Eastward transmission 

Let station A transmit a signal eastward at time It to station B which receives it at time Ft . 

On an axis fixed in the ECI frame along the line joining the two stations with the origin west 

of station A, let ( )Ax t be the position of station A at time t and ( )Bx t be the position of 

station B at time t. Then from the range equation (32), 

 ( ) ( ) ( )B F A I F Ix t x t c t t    (33) 

where ( )B Fx t is the position of station B at time Ft and ( )A Ix t is the position of station A at 

time It . Since the stations are moving uniformly in the same direction at speed v relative to 

the ECI frame, it follows that the relation between the position ( )B Fx t of station B at the time 

of reception of the signal and its position ( )B Ix t at the time of emission of the signal is given 

by 

 ( ) ( ) ( )B F B I F Ix t x t v t t    (34) 

Substituting for ( )B Fx t from (34) in (33) yields 

 ( ) ( ) ( ) ( )B I A I F I F Ix t x t v t t c t t      (35) 

This gives the elapsed time as 

 ( )F I

l
t t

c v
 


 (36) 
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Therefore the speed ABc of the light traveling from station A to station B is given by 

separation l divided by elapsed time ( )F It t which using (36) is 

 
( ) / ( )AB

F I

l l
c c v

t t l c v
   

 
 (37) 

5.2. Westward transmission 

Let station B transmit a signal westward at time It to station A which receives it at time Ft . 

Then using the range equation (32) and noting that ( ) ( )B I A Fx t x t , 

 ( ) ( ) ( )B I A F F Ix t x t c t t    (38) 

where ( )B Ix t is the position of station B at time It and ( )A Fx t is the position of station A at 

time Ft . Since the stations are moving uniformly in the same direction at speed v relative to 

the ECI frame, the relation between the position ( )A Fx t of station A at the time of reception 

of the signal and its position ( )A Ix t at the time of emission of the signal is given by 

 ( ) ( ) ( )A F A I F Ix t x t v t t    (39) 

Substituting for ( )A Fx t from (39) in (38) yields 

 ( ) ( ) ( ) ( )B I A I F I F Ix t x t v t t c t t      (40) 

This yields the elapsed time as 

 ( )F I

l
t t

c v
 


 (41) 

Therefore the speed BAc of the light traveling from station B to station A is given by 

separation l  divided by elapsed time ( )F It t which using (41) is 

 
( ) / ( )BA

F I

l l
c c v

t t l c v
   

 
 (42) 

The results in equations (37) and (42) first reported in [24] indicate that light travels faster 

westward than eastward relative to the surface of the Earth. In particular the one-way 

determination of light speed using the range equation of the GPS establishes in (37) that a 

signal sent eastward travels at speed c minus the rotational speed of the Earth v at that 

latitude giving c v . The range equation data also shows in (42) that a signal sent 

westward travels at speed c plus the rotational speed of the Earth v at that latitude giving

c v . This is true for the short-distance travel in the approximately inertial frame 

considered here as well as long-distance circumnavigation of the Earth [19] and fully 

corroborates the light speed determined in section 3 using the synchronized GPS clocks 

[21].  
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6. Test of the light speed invariance postulate using the range equation 

The direct one-way tests above reveal that light travels faster West than East and does so for 

short-distance travel which approximates an inertial frame or large-distance travel such as 

circumnavigating the Earth. This finding contradicts the light speed invariance postulate of 

special relativity according to which the speed of light is constant in all inertial frames [1-3]. 

A particularly interesting interpretation of this postulate was presented by Tolman in 1910 

[25]. Referring to a similar figure 4 he said the following: 

“A simple example will make the extraordinary nature of the second postulate evident. 

S is a source of light and A and B two moving systems. A is moving towards the source 

S, and B away from it. Observers on the systems mark off equal distances aa' and bb' 

along the path of the light and determine the time taken for light to pass from a to a' 

and b to b' respectively. Contrary to what seem the simple conclusions of common 

sense, the second postulate requires that the time taken for the light to pass from a to a' 

shall measure the same as the time for the light to go from b to b'.” 

a a

b b

A

B

S
v

v

 

Figure 4. Test of Light Speed Invariance 

The range equation of the GPS now makes it possible to test this prediction of the light 

speed invariance postulate of special relativity [26]. 

In figure 4 consider a light source S fixed in the ECI frame and two systems A and B moving 

uniformly in the ECI frame. A is moving towards the source at a constant speed v relative to 

the ECI frame and B is moving away from the source at a constant speed v relative to the 

ECI frame. Observers on the two systems mark off equal distances aa' and bb' equal to D 

along the light path and determine the time taken for the light to pass from a to a' and b to b' 

respectively. As Tolman has observed, “the second postulate [of special relativity] requires 

that the time taken for the light to pass from a to a' shall measure the same as the time for 

the light to go from b to b'.” According to the second postulate this measured time must be

/D c on both systems. This prediction will now be tested using the range equation of the 

GPS. 

6.1. Analysis on system A 

Let GPS stations be placed at a and a respectively. On an axis fixed in the ECI frame along 

the line aa' joining the two stations with station a closer to the origin O than station a' and 

taking positive values, let ( )ax t be the position of station a at time t and ( )ax t be the position 
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of station a' at time t. Let light from S arrive at station a at time It and later at station a' at 

time Ft . Then using the range equation (32) and noting that ( ) ( )a F a Ix t x t  , 

 ( ) ( ) ( )a F a I F Ix t x t c t t     (43) 

Since both stations are moving uniformly toward S at speed v relative to the ECI frame, it 

follows that the relation between the position ( )a Fx t  of station a' at the time of its reception 

of the signal and its earlier position ( )a Ix t  is given by 

 ( ) ( ) ( )a F a I F Ix t x t v t t     (44) 

Substituting ( )a Fx t from (44) in (43) yields 

 ( ) ( ) ( ) ( )a I a I F I F Ix t x t v t t c t t       (45) 

Since ( ) ( )a I a Ix t x t D    then (45) becomes 

 ( ) ( ) ( )( )a I a I F Ix t x t D c v t t       (46) 

Hence for an observer on system A the range equation gives the time for light to travel 

between a and a as 

 F I

D
t t

c v
 


 (47) 

Thus the light travel time measured by an observer on A is / ( )D c v and not /D c as 

required by the light speed invariance postulate. Therefore the light speed aac  detected on 

system A for the light traveling from station a to station a' is given by the fixed length D  

divided by elapsed time ( )F It t which using (47) is given by 

 
( ) / ( )aa

F I

D D
c c v

t t D c v
    

 
 (48) 

6.2. Analysis on system B 

Let GPS stations be placed at b and b' respectively. On an axis fixed in the ECI frame along 

the line bb' joining the two stations with station b closer to the origin O than station b' and 

taking positive values, let ( )bx t be the position of station b at time t and ( )bx t be the position 

of station b' at time t. Let light from S arrive at station b at time It and later at station b' at 

time Ft . Then using the range equation (32), 

 ( ) ( ) ( )b F b I F Ix t x t c t t     (49) 

Since both stations are moving uniformly away from S at speed v relative to the ECI frame, 

it follows that the relation between the position ( )b Fx t  of station b' at the time of its 

reception of the signal and its earlier position ( )b Ix t  is given by 
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 ( ) ( ) ( )b F b I F Ix t x t v t t     (50) 

Substituting ( )b Fx t from (50) in (49) yields 

 ( ) ( ) ( ) ( )b I b I F I F Ix t x t v t t c t t       (51) 

Since ( ) ( )b I b Ix t x t D    then (51) becomes 

 ( ) ( ) ( )( )b I b I F Ix t x t D c v t t       (52) 

Hence for an observer on system B the range equation gives the time for light to travel 

between b and b' as 

 F I

D
t t

c v
 


 (53) 

Thus the light travel time measured by an observer on B is / ( )D c v and not /D c as 

required by the light speed invariance postulate. Therefore the light speed bbc  observed on 

system B for the light traveling from station b to station b' is given by the fixed length D  

divided by elapsed time ( )F It t which using (53) is given by 

 
( ) / ( )bb

F I

D D
c c v

t t D c v
    

 
 (54) 

Equations (47) and (53) indicate that the light travel times over the distance D on systems A 

and B are / ( )D c v  and / ( )D c v respectively and not the value /D c required by the 

second postulate of special relativity. This is because the light speeds observed on systems A 

and B in equations (48) and (54) are c v  and c v respectively and are different from the 

value c  required by the second postulate. The light speed variation demonstrated here in 

the ECI is exactly what is observed using the synchronized clocks of the GPS in section 3 

and the range equation of the GPS in section 5 in the frame of the surface of the rotating 

Earth.  

7. One-way light speed in the sun-centered inertial frame 

The demonstration of light speed anisotropy has thus far been confined to a space on or 

close to the surface of the Earth. It is possible to broaden the scope of the discussion beyond 

the terrestrial frame to the region encompassed by the solar system. In this regard Wallace 

[27] used published interplanetary data to present evidence of light speed c v .relative to 

the moving Earth where v is the Earth’s orbital speed. This light speed variation for light 

travelling through space is exactly what has been observed on the orbiting Earth for light 

from planetary satellites in the Roemer experiment [28] and for light from stars on the 

ecliptic in the Doppler experiment [29]. Light speed anisotropy arising from the orbital 

motion of the Earth has also been reported for light propagation over cosmological distances 

[30] and in the Shtyrkov experiment involving the tracking of a geostationary satellite [31]. 
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This phenomenon of light speed anisotropy arising from light transmission through space 

has recently been investigated by this author using planet and spacecraft tracking 

technology [32]. Specifically range equations operating in the solar system barycentric or 

sun-centered inertial (SCI) frame used in tracking planets and spacecrafts were used to 

determine the one-way speed of light reflected from a planet or spacecraft and observed 

from the orbiting Earth moving in the solar barycentric frame. Time measurement was 

effected using atomic clocks based on Coordinated Universal Time (UTC) and the spatial 

coordinates were taken relative to the SCI frame. The equations are given by [33] 

 ( ) ( )u B R d A R d uc r t r t         (55) 

 ( ) ( )d A R B R dc r t r t     (56) 

where Rt is the time of reception of the signal, u and d are the up-leg and down-leg times 

respectively, Ar is the solar-system barycentric position of the receiving antenna on the 

Earth’s surface, Br is the solar-system barycentric position of the reflector which is either a 

responding spacecraft or the reflection point on the planet’s surface and c is the speed of 

light in the SCI frame. In practice in order to obtain values for u and d , the two equations 

must be solved iteratively.  

Using these equations in a novel approach it was found [32] that light travels from the 

reflector to Earth at a speed c v  relative to the Earth for the Earth moving toward the 

reflector at orbital speed v and light travels at speed c v relative to the Earth for the Earth 

moving away from the reflector at orbital speed v . This light speed variation for light 

traveling in the SCI frame confirms the earlier finding of Wallace [27] for light travel 

through space and is consistent with light speed changes observed on the orbiting Earth for 

light from planetary satellites in the Roemer experiment [28] and for light from stars on the 

ecliptic in the Doppler experiment [29]. 

8. Conclusion 

Measuring the speed of light has for many years been a major activity in science. Following 

the introduction of special relativity theory in 1905 in which light speed invariance was 

postulated, light speed tests assumed even greater significance. Numerous experiments 

have been conducted over the past century the vast majority of which appear to confirm the 

postulate. A careful examination by Zhang [3] however revealed that while two-way light 

speed constancy has been confirmed, one-way light speed constancy has not. Indeed these 

experiments by their very nature seem unable to detect one-way light speed variation and 

therefore cannot be used to fully test the postulate. The main contribution of this chapter is 

the use of GPS technology in testing one-way light speed and the demonstration that light 

speed does in fact vary contrary to the postulate of light speed invariance. This technology 

includes the synchronized clocks of the GPS, the range equation of the GPS and the UTC 

clocks and range equations used in tracking of planets and space missions.  
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The light speeds c v  in the East-West direction determined using both the GPS clocks and 

range equation in the frame of the surface of the Earth are different from the results of the 

many light speed experiments [7-11, 14, 15] conducted in the same frame which all give c. 

These non-constant light speed values c v  induced by the rotation of the Earth contradict 

the postulate of light speed constancy since the postulate requires constant light speed c for 

light traveling eastward or westward between the two clocks. In his consideration of light 

travel between San Francisco and New York, Marmet [18] has remarked that “Unless we 

accept the absurd solution that the distance between [New York] to [San Francisco] is 

smaller than the distance between [San Francisco] and [New York], we have to accept that in 

a moving frame, the velocity of light is different in each direction” a difference that “is even 

programmed in the GPS computer in order to get the correct Global Positioning.” Wang [23] 

has also argued that the successful application of the range equation in GPS operation is 

inconsistent with the postulate of the constancy of the speed of light.  

Apart from this demonstration of the postulate’s inapplicability in the frame of the rotating 

Earth, the range equation was used to directly test this postulate in a form expressed by 

Tolman and again showed that the postulate of light speed constancy is not valid even in the 

ECI frame. Light speed changes were also observed for light travelling through space. Based 

on range equations employing UTC measurements and spatial coordinates relative to the 

solar-system barycentric frame, the speed of light reflected from a body such as a planet or a 

space vehicle and travelling to Earth was found to be c v where v is the orbital speed of the 

Earth toward or away from the reflecting surface at the time of reflection of the signal. 

It is clear therefore that GPS technology very easily demonstrates that light speed is not 

constant and hence that the light speed invariance postulate which leads to the Lorentz 

Transformation and special relativity is invalid. This significant finding has profound 

implications for modern physics and metrology where light speed constancy is a foundation 

tenet. Moreover this light speed variability indicates the existence of a preferred frame, the 

search for which interestingly was the original objective of the Michelson-Morley 

experiment.  

In order to confirm this preferred frame detection, the GPS clocks were utilized in a 

modified Michelson-Morley experiment where the clocks replaced the interferometer. The 

clocks measured light travel times along the arms of the apparatus and revealed ether drift 

arising from the Earth’s rotation. This direct determination of the light travel times rendered 

the measurement essentially immune to the second-order length contraction phenomenon 

which negates the fringe shift in the conventional Michelson-Morley experiments. The GPS 

technique did not require actual time measurement but utilized light travel time that is 

directly available from the CCIR clock synchronization algorithm. The modified experiment 

succeeded in detecting ether drift for rotational motion while the majority of other 

Michelson-Morley-type experiments are considered to have produced null results. In the 

approximately inertial frame of the experiment, special relativity is directly applicable and 

predicts a zero time-of-flight difference between equal orthogonal arms and hence a null 

result [2].  
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Contrary to this prediction of special relativity, the modified Michelson-Morley experiment 

detects non-zero time-of-flight differences corresponding to ether drift and thereby reveals a 

preferred frame as previously reported by Gift [34] and Shtyrkov[31] and also by Demjanov 

[12] and Galaev [13]. This is consistent with the preferred frame associated with the set of 

“equivalent” transformations identified by Selleri [35]. This set contains all possible 

transformations that connect two inertial frames under a set of reasonable assumptions and 

which differ only by a clock synchronization parameter. This includes the Lorentz 

Transformation of special relativity and the Inertial Transformation which yields a modern 

ether theory [35, 36]. Using this “equivalent” set Selleri [36] and Gift [37] have identified the 

Inertial Transformation and the associated modern ether theory as the space-time theory 

that best accords with the physical world. Light speed variation, so easily demonstrated by 

GPS technology and which invalidates the Lorentz Transformation, decidedly confirms the 

Inertial Transformation that predicts it. 

Thus the modern ether theory based on the inertial transformation is a robust replacement 

for special relativity [35, 36] and the transition to this new theory is facilitated by the 

similarity of the structure of the members of the set of “equivalent” transformations. Such a 

transition can usher in a period of renewed scientific discovery as areas that are now 

prohibited can legitimately be explored. A good example of this is the case where Lorentz 

covariance imposed by relativistic considerations was relaxed as a result of which a new 

quantum theory of magnetism emerged that for the first time provided convincing 

explanations for the chemical reactivity of free radicals, the covalent bonds underpinning 

organic chemistry and the celebrated Pauli Exclusion Principle [38].  

In view of the incontrovertible demonstrations of light speed variation using GPS 

technology presented in this chapter, investigation into the properties of the Inertial 

Transformation and the nature of the associated Modern Ether Theory should be the main 

focus of space-time research in the twenty-first century. 
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