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1. Introduction 

Computer-aided analysis of field distribution for evaluating electromagnetic device or 
component performance has become the most advantageous way of design. Analytical 
methods have limited uses and experimental methods are time intensive and expensive 
(Morozionkov et al., 2008). 

The problems of magnetic fields calculation are aimed at determining the value of one or 
more unknown functions for the field considered, such as magnetic field intensity, magnetic 
flux density, magnetic scalar potential and magnetic vector potential. As the field has 
infinite points, the function values are in infinite number. 

Physical phenomena of electromagnetic nature are described by Maxwell’s equations from 
the mathematical point of view. These are differential equations with the given boundary 
conditions. By means of them, the exact solution of the problem is obtained. In this way, the 
value of function or functions in any point of the studied range is calculated. This represents 
the analytical way for solving the problems. 

Analytical methods (conformable representation method, method of separation of the 
variables, Green function method) are applied to solve relatively simple problems. Problems 
which occur in practice are often complex concerning the geometric construction, material 
heterogeneity, loading conditions, boundary conditions, so that the integration of 
differential equations is difficult or sometimes impossible. In this case, the analytical 
solution can be carried out only by creating a simplified model so that the integration of 
differential equations is possible. Therefore, an exact solution for a simplified model can be 
obtained (Gârbea, 1990). 

It is sometimes preferable to obtain, instead of the exact solution of the simplified model, an 
approximate solution of the real problem. Approximate solutions which are obtained by 
numerical methods reflect better the reality than exact solutions of a simplified model. 
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The software package ANSYS can be used for investigation of the magnetic field 
distribution (the magnetic flux density, the magnetic field intensity and the magnetic vector 
potential) and basic electromagnetic characteristics (inductance and electromagnetic force). 
A typical magnetic field problem is described by defining the geometry, material properties, 
currents, boundary conditions, and the field system equations. The computer requires the 
input dates, the numerical solution of the field equation and output of desired parameters. If 
the values are found unsatisfactory, the design modified and parameters are recalculated. 
The process is repeated until optimum values for the design parameters are obtained. 

The ANSYS program is based on the finite element method (FEM) for solving Maxwell’s 
equations and can be used for electromagnetic field modeling, where the field is 
electrostatics, magnetostatics, eddy currents, time-invariant or time-harmonic and 
permanent magnets (ANSYS Documentation). 

The finite elements method assures sufficient accuracy of electromagnetic field computation 
and very good flexibility when geometry is modeled and field sources are loaded. 

2. The fundamental relations of the stationary magnetic field 

In this section, we discuss the particular forms of the electromagnetic field theory laws for 
the magnetic stationary field. We consider the models of the magnetic induction versus 
magnetic field intensity (B-H) relation, passing conditions through discontinuity surfaces, 
the enunciation of stationary magnetic field (the sources of the field, boundary conditions), 
the enunciation of scalar magnetic potential - magnetostatic field problems (Dirichlet 
conditions, Neumann conditions) and the enunciations using the magnetic vector potential 
(stationary magnetic field problems). The general formulation of the uniqueness conditions 
gets particular forms, adapted to some geometrical configurations (plane-parallel fields, 
with rotation symmetry, etc.).  

Depending on the relation between the magnetic induction and the intensity of the magnetic 
field, a few types of materials are distinguished, the most important being linear and 
isotropic materials, linear and non-isotropic materials, linear and non-isotropic materials, 
non-linear and isotropic materials, without permanent magnetization, non-linear and non-
isotropic materials, materials with hysteresis. 

Non-linear and isotropic materials, without permanent magnetization, are ferromagnetic 
materials, which are frequently used in the production of electric equipment. 

2.1. Particular forms of the electromagnetic field theory laws for the stationary 

magnetic field 

The stationary magnetic field is established by non-moving, permanently magnetized 
bodies and by non-moving connecting wires crossed by direct current (Mocanu, 1981). 
Fundamental magnetic field relationships result by customizing the general laws and 
material laws of the electromagnetic field in the following conditions: bodies are non-



 
Finite Element Analysis of Stationary Magnetic Field 103 

moving 0v 


 and the electric and magnetic quantities are invariable in time, 
 

0
.

t





. A 

stationary magnetic field in a conducting domain satisfies the following system of 
equations: 

- the magnetic circuit law (Ampère’s theorem) 

 rot H J
 

 (1) 

- the magnetic flux law (local form) 

 0div B 


 (2) 

- the connection law in magnetic field  

  0B H M 
  

 (3) 

- the temporary magnetization law 

  t tM M H
  

. (4) 

Here, H


 is the magnetic field intensity, J


 is the total current density, B


 is the magnetic 
induction, quantity tM


 is called the temporary magnetization of the material and 

7 1
0 4 10 H m         is the vacuum permeability. 

Magnetostatics is the branch in electromagnetism that studies the stationary magnetic states 
that do not accompany the conduction electric currents. This magnetic field is produced by 
permanent magnets ( 0J 


; 0v 


). 

2.2. Models for the B-H relation 

Depending on the relation between the magnetic induction B


 and the magnetic field 
intensity H


, a few types of materials are distinguished (Andrei et al. 2012).  

2.2.1. Linear and isotropic materials 

The most important type of materials consists of the linear and isotropic materials, in which: 

 0 p pB H M H I     
    

 (5) 

where pM


 is called the permanent magnetization and pI


is the magnetic polarization. This 
category includes the materials for which the temporary magnetization law is (Răduleţ, 
1975) : 

 t mM H
 

 (6) 
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where m  is called the magnetic susceptibility, representing a dimensionless and constant 
scalar quantity. 

In the absence of permanent magnetization ( pM


=0, pI


 =0) the relation becomes:  

 B H
 

 (7) 

 H B
 

. (8) 

The quantity   is the magnetic permeability and 
1


  is called the reluctivity. The B


 and 
H


 vectors are collinear. 

2.2.2. Linear and non-isotropic materials 

In these materials, the B


 and H


vectors are not, generally, collinear, but the connection 
between them remains linear. 

For some crystalline materials, the dependence between tM


 and H


 is linear, but each 
component of the temporary magnetization depends on all components of the magnetic field. 

The relation between them can be written, in the absence of permanent magnetization, 
under the form: 

 B H
 

 (9) 

where   is a tensor. In Cartesian coordinates, the relation becomes: 

 
xx xy xzx x

y yx yy yz y

z zx zy zz z

B H

B H

B H

  

  

  

    
    
     
    
     

 (10) 

The permittivity matrix is symmetrical ( ij ji  ) and positively defined. In these 
conditions, there are three orthogonal directions, called main directions, with respect to 
which the relation between B  and H  becomes (Hănţilă, 2004): 

 
1 1 1

2 2 2

3 3 3

0 0
0 0
0 0

B H

B H

B H






     
           
          

 (11) 

2.2.3. Non-linear and isotropic materials, without permanent magnetization 

In these materials, the B


 and H


 vectors are collinear, but the relation between them is non-
linear: 

   3 3:B f H f R R  . (12) 
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This is, usually, the behavior of ferromagnetic materials, which are frequently used in the 
production of electric equipment. 

2.2.4. Hysteresis materials 

In hysteresis materials, the instantaneous value of the magnetic induction depends not only 
on the value of the intensity of the magnetic field, but also on the previous evolution of 
these quantities.  

Assume that the magnetic field intensity is gradually reduced after following the first 
magnetization curve OA, corresponding to a value +Hmax (Figure 1).  

 
Figure 1. The B-H relation for a hysteresis material 

The curve obtained during the magnetic field intensity reduction differs from the first 
magnetization curve. When H is null, the magnetic induction has a value different from zero 
called the residual magnetic induction: 

 0r rB M   (13) 

where Mr is the residual magnetization. 

For further reduction of the magnetic induction, the sense of magnetic field intensity is 
changed (as well as the sense of magnetization current), with respect to the initial one. 

The magnetic field intensity necessary to compensate the magnetic induction is called the 
coercitive field Hc. Increasing the field in the contrary sense to –Hmax and then returning to 
the values of H up to Hmax, the hysteresis cycle is obtained. By repeating several times the 
magnetization cycle between the limits +Hmax and -Hmax, a closed curve and a stabilized cycle 
are obtained, with the reversal points A and A' symmetrical with respect to the origin of the 
coordinate system. 

It is important to mention that in the case of a periodic magnetization, the existence of the 
hysteresis cycle leads to energy losses that occur in the ferromagnetic core as heat. These 
energy losses are called the hysteresis iron losses (Şora, 1982).  
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2.2.5. Non-linear and non-isotropic materials 

In these materials, the B


 and H


 vectors are not, generally, collinear and the relation 
between them is non-linear. 

2.3. The magnetic vector potential 

The magnetic vector potential is a vector field, which does not have a specific physical 
meaning. Its utilization allows simplification of the mathematical approach of many 
physical problems. 

The condition 0div B 


, which expresses the continuity of the magnetic flux, is identically 
satisfied if the B


 vector is expressed under the form of an auxiliary vector A


, called the 

magnetic potential vector:  

 B rot A
 

  (14) 

The potential vector A


 is univocally determined only after 0div A 


 is chosen. The choice 
of the value for B


 is called the calibration of the vector potential and the respective 

condition is called calibration condition. Depending on the context, one can adopt 
convenient calibration conditions. One of the most used calibration conditions is the Coulomb 
condition:  

 0div A 


 (15) 

If the calculation of the magnetic flux through an open surface is expressed by means of 
magnetic induction, then the magnetic vector potential must be taken into account by the 
Stokes' theorem (Moraru, 2002). 

The magnetic flux through a surface SΓ bounded by a contour Γ can be computed as a contour 
integral of the vector potential: 

 S
S S

BdA rot AdA Adl


  

     
    

  (16) 

The magnetic flux through the surface SΓ is equal to the line integral of the magnetic vector 
potential along the contour Γ on which this surface is supported. Equation (16) relieves the 
fact that the value of a magnetic flux does not depend on the surface shape, as it is 
computed only by considering the contour on which that surface is supported. Let us 
consider a material with linear magnetic properties and without permanent magnetization, 
for which B H

 
. From the magnetic circuit law, it results that (Hănţilă, 2004): 

 
1

rot H rot rot A J

 

  
 

  
 (17)  

In linear and homogeneous mediums, where µ is constant:  
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 rotrot A J graddivA A   
   

 (18)  

the magnetic vector potential verifies the Poisson’s vector equation: 

 A J  
 

 (19) 

and if 0J 


, it verifies the Laplace’s equation: 

 0A 


 (20) 

Solving Equations (19) and (20) requires the boundary condition to be known. The vector 
equations are divided after the Cartesian coordinates in scalar equations of Poisson type 

 x x y y z zA J A J A J            (21) 

respectively, scalar equations of Laplace type 

 0 0 0x y zA A A      . (22) 

The integral of Equation (19) in all space is determined by using the scalar forms (21). 

The magnetic vector potential of the filiform circuit with current i is expressed as: 

 
d

,
4

i l

R


 


 A




  (23)  

dl


 is line unit vector. 

 

 
Figure 2. Biot–Savart–Laplace relation for filiform conductors  

The magnetic field intensity is (Figure 2): 

 
3

rot d
.

4
i l

R  


  

A R
H

 
  (24) 

The Biot-Savart-Laplace relation becomes: 

 
34

D

J R
B

R







 

 
 (25) 
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2.4. The scalar magnetic potential 

The magnetic field is not irrotational for a circuit with current flow, therefore this can be 
deduced fom a scalar potential. But the rotor of magnetic field intensity is equal to zero if 
there is no current which flows, 0J 


. If there is no conductor in the considered space, the 

following equation is available (Mocanu, 1981): 

 0rot H 


 (26) 

Therefore, H


 can be deduced by a scalar potential: 

 mH gradV 


 (27) 

where is mV  is the scalar magnetic potential. 

In the presence of some conductors crossed by electric current, the scalar magnetic potential 
is not uniform: 

 
2 2 2

1 2
1 1 1

0m m mHdl i V dl dV V V          


 (28) 

For uniformity, a cut can be introduced an arbitrary surface bounded by the contour crossed 
by current (Figure 3). 

 
Figure 3. Cut in order to uniform the scalar magnetic potential  

In the absence of permanently magnetized bodies, the partial derivative equation of the 
scalar magnetic potential is deducted from the magnetic flux law: 

  0 0m mB V divB div V        
 

 (29) 

In homogeneous materials (where =cost), the Laplace equation is obtained: 

 0mV   (30) 

This expression is used to determine the scalar magnetic potential of the magnetic field 
produced by a filiform circuit crossed by electric current.  

Applying the magnetic circuit law for a closed curve which surrounds the conductor, the 
scalar magnetic potential is written as: 
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4m

i
V


   (31) 

where  is the solid angle under which the  contour is seen from the point where the field 
is calculated: 

 
3

S

R
dS

R


    (32) 

In this case, the magnetic field intensity H


is: 

 
1

4
H i


  


 (33) 

2.5. Energy of the stationary magnetic field 

Magnetic energy is located in a magnetic field with a volume density mw whose expression 
is (Şora, 1982): 

 
0

B

mw HdB 
 

 (34) 

If the medium is linear (µ=constant), then:  

  
2

2
H

HdB Hd H d


 
    

 
 (35) 

In this case, the following expressions are obtained: 

 
2 2

2 2 2m

H B HB
w




  
 

 (36) 

 
1
2m v

W HBdv 
 

 (37) 

Assuming that inside the field limited by a closed surface Σ and considering an isotropic 
medium, the magnetic energy can be written as: 

  div A H HrotA ArotH  
     

 (38) 

taking into account the vector operation. 

In other words, the magnetic energy is: 

  1 1 1
2 2 2m

v v v

W HrotAdv div A H dv AJdv     
    

 (39) 
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Applying the Gauss-Ostrogradski's theorem to the first term on the right-hand side, the 
following expression is obtained: 

  1 1
2 2m

v

W A H ds AJdv


   
   

 (40) 

2.6. Generalized forces in the stationary magnetic field 

In the case of the stationary magnetic field, the general expressions of the generalized forces 
Xk associated to a generalized coordinate xk are given by one of the two generalized forces 
theorems in a stationary magnetic field (Timotin, 1970): 

 em
k

k ct

W
X

x


 
  

  
 (41) 

 em
k

k i ct

W
X

x


 
  

  
 (42) 

in which the transformations are supposed to be done at constant fluxes on any surface, 
respectively to constant currents through any conducting contour. 

2.7. Uniqueness theorems of the solutions of the equations of stationary and 

magnetostatic magnetic fields 

2.7.1. The enunciation of stationary and magnetostatic magnetic field 

In stationary magnetic field problems, the electric currents distribution (the J


field) is 
supposed to be known (for example, by solving a stationary electrokinetic stationary regime, 
in the case of massive conductors, or by indicating the value of the current through the coils 
in the domain that is being studied). 

In magnetostatic field problems, the sources of the field are represented by the distribution 
of the permanent magnetization ( pM


 or the permanent magnetic polarization), which are 

supposed to be known (Andrei et al, 2012). 

In conformity to the general uniqueness theorem of the solutions of the stationary magnetic 
fields equations, the solution of the electromagnetic field equations in a domain D bounded 
by closed surface  =SHSB is uniquely determined by the following uniqueness conditions: 

The electric currents distribution in the domain: 

   ;J P P D   (43) 

The distribution of the permanent magnetization: 

   ;pM P P D   (44)  
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Boundary conditions, that can be of the following types (Figure 4): 

- tangent component of the magnetic field intensity on the surface SH: 

     ;tH P f p P S    (45) 

- normal component of the magnetic induction on the surface SB: 

     ;nB P g p P S    (46) 

 
Figure 4. The uniqueness theorem for the stationary magnetic field (Andrei et al. 2012)  

The theorem stands for linear materials, or for non-linear materials, but having B-H 
monotone magnetization characteristics. The case of materials which have hysteresis is not 
included. Particular forms can be deducted from this general formulation, expressed by field 
potentials. 

2.7.2. The enouncing by scalar magnetic potential (magnetostatic field problems) 

In magnetostatic regime problems, the sources of the magnetic field are represented by the 
permanent magnetization of the bodies (Andrei et al., 2012). 

The boundary conditions, expressed by the scalar magnetic potential, are of the following 
types: 

a. Dirichlet Conditions, which consist of imposing values for the scalar magnetic potential 
at the points on the surface, denoted by SD: 

     ; DV P f P P S    (47) 

These conditions imply knowing the value of the tangent component of the intensity of 
the magnetic field in the respective points, which is equal to the derivative by the 
tangent direction of the scalar magnetic potential (Flueraşu & Flueraşu, 2007). 
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b. Neumann Conditions, which consist of imposing the values of the derivative of the 
scalar magnetic potential iny the direction of the normal to the surface, denoted by SN. 
Practically, this type of conditions imposes the normal component of the magnetic 
induction in the respective points on the surface: 

   ;n N

dV
B g P P S

dn
      (48) 

c. mixed conditions, that consist of imposing a condition in the form of a linear 
combination between the two above condition types, on a portion SM of the surface. 

   ; M

dV
V h P P S

dn
      (49) 

3. Finite element analysis 

3.1. Triangular finite elements  

The first step in solving the problems using the Finite Element Method (FEM) begins by 
dividing the analysis area in finite elements, as well as the choice of the finite element type. 
Currently, a wide range of finite elements is used, but their classification, their description, 
as well as their criteria presentation for choosing adequate finite element types does not 
represent the subject of this chapter. In the presented application, the triangular finite 
element with three nodes is used. At the same time with the choice of finite element type, 
the shape functions are chosen, so that the description of finite elements is followed by the 
associated shape function presentation. Concerning the shape functions, the interpolating 
polynomials are mainly used due to the facility in their derivation and their integration. The 
interpolation on a triangle supposes a shape or interpolating function which links the nodal 
values (triangle vertices). An approximation of the solution of the magnetic vector potential 
A


 is allowed at the level of each triangular element „e” (Figure 5), according to the 
following interpolating polynomial (Stammberg, 1995): 

 k k k ka b x c y       (50) 

 
Figure 5. The triangular element „e” 
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The shape function coefficients ak, bk, and ck are called the generalized coordinates. These 
coefficients are constant because they depend on the constant coordinates of the nodes only. 

The values of the shape functions vary between 0 and 1. They are equal to 1 in node k and 
liniarly decrease in the elements adjacent to this node, being null in the rest of the nodes and 
elements (Figure 6). Thus: 

 
 
 

, 1 1,2,3

, 0
k k k

k i i

x x y y k

x x y y i k





   

   
 (51)  

 
Figure 6. Graphical representation of the shape function 

The shape function 1 for node 1 results from the formula (Stammberg, 1995): 

 
1 1 1

2 2 1

3 3 1

1 1
1 0
1 0

x y a

x y b

x y c

     
     

      
     
     

. (52) 

The shape function coefficients are: 

 

1 2 2 1

1 2

2 1

i i i i
k

i i
k

i i
k

x y x y
a

D
y y

b
D

x x
c

D

   

 

 

  








 (53)  

where:  

 2 3 3 2 1 3 1 2 3 1 2 1D x y x y x y x y x y x y       (54) 

and the index i takes the values by circular permutations in nodal set of an element „e”, in 
clockwise order. Writing with Se, the area of element „e”: 

 
1 1

2 2

3 3

1
1

1
2

1
e

x y

S x y

x y

  (55) 

Considering: 
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 2 eD S  (56) 

The magnetic vector potential in an arbitrary point (x,y,z) is obtained with the following 
equation: 

    
 

1

, , , ,
n e

k k
k

A x y z x y z A


   (57) 

where: 

k - shape function  
 n e - number of nodes on element  

kA - magnetic vector potential of node k  

3.2. FEM application for two-dimensional problems of stationary magnetic field 

Finite element methods (FEM) use most of the times a variation principle. According to the 
variation computation, solving a differential equation in a field and under certain boundary 
conditions is equivalent with minimizing, in that field, a functional corresponding to the 
differential equation with its boundary conditions. A functional integral is an integral 
expression, a function that depends on the unknown functions. The functional integral has a 
finite value. 

The problem concerning solving the system of differential equations of the electromagnetic 
field with some boundary conditions is equivalent with the problem of finding a function 
which gives the integral minimum by which the energy system is expressed. 

Let’s consider the energy functional associated with the arbitrary three-dimensional field D: 

  
0 0

E B

VDdE HdB JA V d
             
  

 
    

D

D  (58) 

where , , ,D E B H
   

 are the vectors associated with electric and magnetic fields, A


 is the magnetic 
vector potential, V  is the scalar electric potential, J


 is the density vector of conduction electric 

current and is the volume density of electric charge (Silvester & Ferrari, 1996).  

The first parenthesis of the integrand represents the difference between the volume density 
of the electric and magnetic energy. The second parenthesis represents the difference 
between the volume density of interaction energies between the conduction current and 
magnetic field, as well as between the electric charge and the electric field. The interaction 
energies are equal to the work done by the field forces in order to bring the current density, 
respectively electric charge, from infinity, where the potentials are considered 

 0, 0 ,A V 


, to the states characterized by the values A


 and V . 

The electromagnetic potentials A


and V define the vectors E


 and B


 of the electromagnetic 

field:  
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 E grad V 


 (59) 

and 

 B rot A
 

 (60) 

The energy functional associated with the stationary magnetic field produced by the direct 
currents and in case by permanent magnets is expressed as: 

  
0

B

A HdB JA d
 
   
 
 
 


   

D

D  (61) 

Two-dimensional problems of stationary magnetic field are by definition problems in which 
the unknown, the vector magnetic potential A


, is orientated as one axis of the coordinate 

system and depends on the other two coordinates of the system (Stammberg, 1995). 

2D problems in Cartesian coordinates (x,y,z) are called parallel-plane. The current density J


 
is oriented by the axis Oz and the magnetic vector potential has the structure A Ak


 and 

its orientation is also by the axis Oz. The magnetic induction is written as: 

 

 

 
0 0 ,

i j k

A A
B rotA i j k gradA

x y z y x

A x y

    
      

    

 

  
 (62) 

The square of magnetic induction is: 

    
2 2

2 22 .

0

A

y

A A A
B rot A grad A

x y x

 
  
       

               
 
 
 

 
 (63) 

The magnetic vector potential A


 is obtained by minimizing the functional: 

   0A  


 (64) 

In the case of stationary magnetic field, the functional is related to the physical size of a 
known issue, such as the total energy of the magnetic field inside the domain D:  

 
1
2m

V

W H Bdv 
 

 (65) 
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The magnetic energy is located in the magnetic field with the volume density mw : 

 
2

2 2m

H B B
w




 
  

 (66) 

Eckhardt describes in detail the solution to this problem. The magnetic field density is 
reduced to the following scalar equation (Stammberg, 1995; Eckhardt, 1978):  

 
22

21 1
2 2m

A A
w B J A J A

x y 

                   
 (67) 

In the case of the parallel-plane fileds, the boundary conditions are: 

    , , DA x y f P P C   (68) 

  1
,

N

N
C

dA
g P P C

dn
    (69) 

where Eq. (68) represents the Dirichlet boundary conditions on the boundary CD and Eq. 
(69) represents the Neumann boundary conditions on the boundary CN. The unknown 
function  ,A x y  is the solution of the Poisson’s equation in a two-dimensional domain, the 
boundary Γ being composed of two disjoint parts CD and CN where the Neumann and 
Dirichlet conditions are described (Figure 7): 

 

 
 

Figure 7. The domain of computation for a two-dimensional problem (Andrei et al. 2012) 
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1
2

S

A A
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x y

                     
  (70) 
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where the function  represents the magnetic energy computed on the surface SΓ bounded 
by the curve Γ. The unknown function  ,A x y  for node i is determined by minimizing the 
functional: 

 
2

1
0

i i i iS

A A A A A
J dxdy

A x A x y A y A

                                   



 (71) 

Therefore, the following equations system is obtained: 

 
 

1

0
q i

k
z i

f
A


 

 
 (72) 

Ai is the magnetic vector potential of the node i of the element z. 

The differentials involved in Eq. (71) are written according to the shape functions and have 
the following expressions (Stammberg, 1995; Eckhardt, 1978): 
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i

i

A
c

A y y
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A homogeneous medium is considered, thus the magnetic permittivity µ is constant for each 
finite element, being independent of the x and y coordinates:  

      1 1 1 2 2 2 3 3 3 0
2 6

e
i i i i i i

i

D D
A b b c c A b b c c A b b c c J

A 


         


 (79) 

where D is the determinant computed according to Eq.(56). 

Eq. (79) can be written under matrix form as: 
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The functional is sum of contributions other than the „ne” finite elements. Stationarization of 
the functional requires (Stammberg, 1995; Silvester & Ferrari, 1996): 

 
1

0
ne

e

e iA







 (81) 

where „ne” is the total number of finite elements. 

    F K A P Q               (82) 

The term P    is used for the case of the „source” type elements where the current density J  
is non-null, and the term Q    is used for the case of the elements which have in one of the 
sizes a non-homogeneous Neumann boundary. By assembling the„ne” equations in Eq. (81), 
a linear system of equations of magnetic vector potential values in the mesh nodes is 
obtained (Ioan, 1993). 

4. Applications  

Direct current (DC), which was one of the main means of distributing electric power, is still 
widespread today in the electrical plants supplying particular industrial applications. The 
advantages in terms of settings, offered by the applicants of DC motors and by supply through 
a single line, make direct current supply a good solution for railway and underground 
systems, trams, lifts and other transport means. Current-limiting circuit breakers play an 
important role in electrical low-voltage circuits. Due to the high short-circuit currents it is 
necessary a very short time to switch off the faulted branch. For this reason the current limiting 
circuit breakers are conceived as elaborated solutions especially for the arc quenching system, 
meaning the path of current and the arcing chamber (Vîrjoghe, 2010). 

This section presents the calculation of the magnetic field in the arcing chamber of a current-
limiting d.c. circuit breaker of 1250 A, 750 V, and in a DC circuit breaker-separator of 3150 
A, 1000 V. The authors present few optimization solutions of some quenching systems 
which will lead to more performing constructive choices. Two-dimensional (2D) and three-
dimensional (3D) problems of stationary magnetic field are addressed.  

The finite element software package ANSYS is used for calculation of the magnetic field 
components. This tool includes three stages: preprocessor, solver and postprocessor. The 
procedure for carrying out a static magnetic analysis consists of following main steps: create 
the physics environment, build and mesh the model and assign physics attributes to each 
region within the model, apply boundary conditions and loads (excitation), obtain the 
solution, and review the results (ANSYS Documentation). 
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A typical magnetic field problem is described by defining its geometry, material properties, 
currents, boundary conditions, and the field system equations. The computer requires the 
input data and provides the numerical solution of the field equation and the output of 
desired parameters. If the values are found unsatisfactory, the design is modified and 
parameters are recalculated. The process is repeated until optimum values for the design 
parameters are obtained. 

In order to define the physics environment for an analysis, it is necessary to enter in the 
ANSYS preprocessor (PREP7) and to establish a mathematical simulation model of the 
physical problem. In order to this, the following steps are presented below: set GUI 
Preferences, define the analysis title, define the element types and options, define the 
element coordinate systems, set real constants and define a system of units, and define the 
material properties (ANSYS Documentation). 

The Global Cartesian coordinate system is the default. A different coordinate system can be 
specified by the user by indicating its origin location and orientation angles. The coordinate 
system types are Cartesian, cylindrical (circular or elliptical), spherical, and toroidal.  

Some materials with magnetic properties are defined in the ANSYS material library. The 
materials can be modified to correspond more closely to the analysed problem and to be 
loaded in the ANSYS database. The copper property shows temperature which depends on 
resistivity and relative permeability. All other properties are described in terms of B-H 
curves. Most of the materials included in ANSYS are used for modeling the electromagnetic 
phenomenon. The element types are used to establish the physics of the problem domain. 
Some element types and options are defined to represent the different regions in the model. 
If some laminated materials are aligned in an arbitrary form, the element coordinate system 
or systems have to be identified and used. The applications presented in this chapter use the 
PLANE53 element in the two-dimensional problem and the SOLID97 element for the three-
dimensional problem. 

In order to obtain the magnetic field values, the Maxwell’s equations are solved by using the 
imput data. The nodal values of the magnetic vector potential are considered as main or 
primary unknows. Their derivatives (e.g., flux density) are the secondary unknows. After 
this, it is possible to choose the type of solver to be used. The available options include 
Sparse solver (default), Frontal solver, Jacobi Conjugate Gradient (JCG) solver, JCG out-of-
memory solver, Incomplete Cholesky Conjugate Gradient (ICCG) solver, Preconditioned 
Conjugate Gradient solver (PCG), and PCG out-of-memory solver (ANSYS Documentation). 

The results of the calculations are shown in the postprocessing phase, which is a graphical 
program. Here, it can be observed if the applied loads affect the design, if the finite element 
mesh is good, and so on. The resulting fields in the form of contour and density plots are 
displayed by this praphical program. The analysis of the field at arbitrary points, the 
evaluation of a number of different integrals, and the plot of some quantities along pre-
defined contours are also made with this program. The plotted results are saved in the 
Extended Metafile (EMF) format. 
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4.1. Numerical modelling of stationary magnetic field in area slope-slider- 

ferromagnetic profile of arc chamber in case of a current-limiting DC circuit 

breaker – 2D application 

The problem of magnetic field distribution in the arc chamber of DC a circuit breaker with 
rated current 1250A was numerically solved. The conductor where a current of 1250 A flows 
is located in the immediate vicinity of a ferromagnetic profile. This has the role of enhancing 
and orienting the magnetic field in the arc-quenching chamber for obtaining a strong force 
that moves the arc up inside the extinction chamber (Vîrjoghe, 2004).  

It is considered the plane parallel model, whose cross section is shown in Figure 8. This 
model is an I shaped ferromagnetic profile, with cross section in the vertical plane and the 
dimmensions of 60x3 mm2. The cross section of copper conductor is 5x15 mm2. The 
conductor is surrounded by a slider with U shaped cross section and a thickness of 1mm. 

 
Figure 8. The physical model in the area with ramp, slider and ferromagnetic profile  

For numerical computation the PLANE53 element was chosen, which allows two-
dimensional modeling of the magnetic field in plane parallel and axisymmetric problems. 
This element is based on the magnetic vector potential formulation with Coulomb 
calibration. This element is also applicable to the stationary magnetic field with the 
possibility of modeling the magnetic nonlinearities. The material used for other two 
ferromagnetic profiles is a steel chosen from the ANSYS library and having the properties in 
the emagM3.SI_MPL folder. The material is M3 steel and its magnetization curve is shown in 
Figure 9. This domain was discretized in a number of 2436 triangular finite elements 
uniformly distributed (Vîrjoghe, 2004).  

The boundary conditions and loads are applied to a 2-D static magnetic analysis either on 
the solid model (key points, lines, and areas) or on the finite element model (nodes and 
elements). The loads applied to the solid model to the mesh during solution are 
automatically transferred by ANSYS (ANSYS Documentation). 
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To observe the influence of the ferromagnetic slider and of the ferromagnetic plate on the 
magnetic fied distribution, the magnetic induction is computed and the magnetic flux lines 
are drawn. The slider and the ferromagnetic plate case were studied independently of each 
other. 

 
Figure 9. The magnetization characteristic for the M3 steel 

Figure 10 and Figure 11 respectively show the magnetic induction spectrum and the 
magnetic field lines only, for the case of ferromagnetic slider.  

 
Figure 10. The magnetic induction spectrum in the presence of the ferromagnetic slider 

Figure 12 and Figure 13 respectively show the magnetic induction spectrum and the 
magnetic field lines only, for the case of I shaped ferromagnetic profile. Figure 14 and Figure 
15 respectively show the magnetic induction spectrum and the magnetic field lines when 
using the ferromagnetic profile and the ferromagnetic slider (Vîrjoghe, 2004). 

Analyzing these simulations, a strong influence of the ferromagnetic slider on the 
orientation of the magnetic field was observed. When using only the ferromagnetic slider, a 
shielding of the field lines is observed, and the maximum values of the magnetic induction 
is 0.907 T. The I shaped ferromagnetic profile makes a good shielding of the field lines 
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obtaining the maximum values of magnetic induction of 0.153 T. If both methods of 
magnetic field orientation are used together then a maximum value of magnetic induction of 
0.947 T is obtained. To obtain the system optimization in this area, the simulations for a 
thickness of 2 mm have been repeated. 

 
Figure 11. The magnetic equipotential lines in the presence of the ferromagnetic slider 

 
Figure 12. The magnetic induction spectrum in the case with the ferromagnetic profile 

Thus, the obtained results are plotted in comparison with those presented for the slider of 1 
mm (Figure 16). For the slider with the thickness of 2 mm, the values of magnetic induction 
are lower (up to 0.5 T). Using the slider of 1 mm thickness a better orientation of the field 
lines, as well as a better arc transmission toward arc-quenching chamber are observed. The 
path for the displayed charts is chosen between two points placed symmetrically one from 
another in the middle of a figure which contains the conductor, slider and ferromagnetic 
profile (Vîrjoghe, 2004). 
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Figure 13. The magnetic equipotential lines in the presence of the ferromagnetic profile 

 
Figure 14. The magnetic induction spectrum in the area with ramp, slider and ferromagnetic profile.  

 
Figure 15. The magnetic equipotential lines in the area with ramp, slider and ferromagnetic profile.  
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Figure 16. Magnetic induction variation depending on the thickness of the slider. 

4.2. Numerical modelling of stationary magnetic field of arc-quenching chamber 

in case of a DC circuit breaker-separator – 3D application 

The physical model of the arc-quenching chamber in case of a DC circuit breaker-separator 
of 3125 A having the ramps-ferromagnetic profiles is shown in Figure 17. In this model, two 
profiles composed of a ferromagnetic material are presented. The magnetization curve of the 
two profiles is shown in Figure 9.  

 

 
Figure 17. The DC circuit breaker-separator model with a current of 3125A. 
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These profiles form a rectangular prism with length of 150 mm, height of 100 mm and 
thickness of 5 mm. The electric arc ramps 1 and 2 are made of copper and have width of 
10mm and thickness of 2.5 mm. The left ramp is inclined to the vertical with an angle of 45º. 

The arc chamber model together with ramps 1 and 2 are incorporated in a boundary 
volume, where the air is defined as material. In order to achieve the circuit continuity, two 
ramps have been unified with a bar 3 having the same dimensions of the ramps (Figure 18). 

In the preprocessing phase, the materials are defined and chosen. For the current path, 
consisting of two ramps and the connecting bar, the copper was chosen. For the two 
ferromagnetic plates, from ANSYS library a M3 steel is chosen, having the properties 
contained in the emagM3.SI_MPL file (ANSYS Documentation). The next step in the 
preprocessor phase is the mesh generation and load application upon the elements (Figure 
19). In this application, for modeling the three-dimensional stationary magnetic field a 
SOLID97 element is chosen. For the numerical computation of the stationary magnetic field, 
the model of the DC circuit-breaker together with the boundary volume is discretized in a 
number of 1268 nodes and 3623 triangular elements (Vîrjoghe, 2004).  

In the postprocessing phase is also applied the load on elements and boundary conditions. 

The load on elements is represented by the conduction current density. For 3D analysis, a 
positive value indicates current flowing in the +Z direction in the plan case and the -Z (loop) 
direction in the asymmetrical case. The current density is directly applied on the finite 
elements which form the conductors and its value is 125.106 A/m2. As boudary conditions 
the Dirichlet condition, A=0, is applied. 

 

 
Figure 18. The current path for DC circuit breaker – separator of 3125 A 
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Figure 19. The discretized model of the DC circuit breaker-separator of 3125 A 

The Maxwell’s equations solver is based on the Finite Element Method (FEM). The results 
are the nodal values of the primary unknowns (magnetic vector potential) and derivatives of 
these values for obtaining the secondary unknowns (magnetic induction). 

In the postprocessing phase, the tool allows visualization of magnetic induction spectrum, 
determination of magnetic sizes in arbitrarily chosen points, as well as the evaluation of the 
different charts. Figure 20 shows the magnetic induction spectrum in the arc-quenching 
chamber of DC circuit breaker-separator of 3125 A. A maximum value of magnetic 
induction 2.149 T is obtained. 

The DC circuit breaker-separator is designed as a particularly elaborated solution for the 
current path and the arc-quenching chamber. It is widely known that in electromechanic design 
of a switching device, the arc-quenching chamber together with current paths and contacts 
represent the essential element due to their switching performances in normal operating 
conditions and in abnormal conditions. An optimization criterion of this arc-quenching 
chamber concerns the ferromagnetic material used in the construction of the ferromagnetic 
profiles. Simulation was performed for three different steels. For the two ferromagnetic plates, 
three different steels from ANSYS library are chosen, namely (ANSYS Documentation): 

 carpenter (silicon) steel with material properties contained in emagSilicon.SI_MPL file; 
 iron cobalt vanadium steel with material properties contained in the emagVanad.SI_MPL file; 
 SA1010 steel with material properties contained in the emagSa1010.SI_MPL file. 

It was established that in the case of steel EmagSilicon utilization, the maximum value of 
magnetic induction is 1.883 T, in the case of EmagVanad the maximum value of magnetic 
induction is 1.975 T and in the case of EmagSa1010 the maximum value of magnetic 
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induction is 1.44 T. Hence, the optimal material for construction of these profiles is 
EmagVanad. Although the steel with vanadium is an expensive material, it assures an 
optimal value of magnetic induction. The high price is compensated by improving the arc-
quenching chamber performance and thus increase the breaking capacity of the device 
(Vîrjoghe, 2004). 

 
Figure 20. The magnetic induction spectrum in arc-quenching chamber of DC circuit breaker-separator 
of 3125 A 

 
Figure 21. Magnetic induction distribution for the ferromagnetic material EmagSilicon  
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Figure 22. Magnetic induction distribution for the ferromagnetic material EmagVanad 

 
Figure 23. Magnetic induction distribution for the ferromagnetic material EmagSa1010 

5. Conclusion 

It is well known that in electromechanical construction of a switching device, the arcing 
chamber along with current paths and contacts represents the all-important elements 
concerning switching performances of these in normal operating conditions as well as in 
operation under faults (Truşcă & Truşcă, 2001). 
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Comparing the magnetic flux density spectrums in the three cases it can be observed that 
the maximum arc-quenching effect is obtained by using EmagVanad for the ferromagnetic 
shapes. For this material an optimal distribution for the magnetic field in the circuit breaker 
arcing chamber is obtained, which leads to a rapid movement of the electric arc towards the 
ferromagnetic plates. Arc quenching and arc voltage limiting occur in base of the niche 
effect principle along with the electrode effect (Hortopan, 1996). 
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