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1. Introduction 

A smart structure typically comprises of one or more active (or functional) materials. These 

active materials act in a unique way in which couple at least two of the following fields to 

provide the required functionality: mechanical, electrical, magnetic, thermal, chemical and 

optical. Through this coupling, these materials have the ability to change their shape, 

respond to external stimuli and vary their physical, geometrical and rheological properties. 

In modern technologies there has been an intense interest in FGPMs which are used in smart 

structures. It is well known that piezoelectric materials produce an electric field when 

deformed, and undergo deformation when subjected to an electric field. The coupling 

nature of piezoelectric materials has conducted wide applications in electro-mechanical and 

electric devices, such as electro-mechanical actuators, sensors and transducers. For example, 

piezoelectric actuators can be used to modify the shape of an airfoil, thereby reducing 

transverse vortices [1], or to maintain proper tension with overhead electrical wires on a 

locomotive pantograph [2]. 

For homogeneous piezoelectric media, problems of radially-polarized piezoelectric bodies 

were considered and solved analytically by Chen [3]. Sinha [4] obtained the solution of the 

problem of static radial deformation of a piezoelectric spherical shell and under a given 

voltage difference between these surfaces, coupled with a radial distribution of temperature 

from the inner to the outer surface. Ghorbanpour et al. [5] investigated the stress and electric 

potential fields in piezoelectric hollow spheres. Stress in piezoelectric hollow sphere under 

thermal environment was developed by Saadatfar and Rastgoo [6]. Dai and Wang [7] 

presented the thermo-electro-elastic transient responses in piezoelectric hollow structures. 

Dai and Fu [8] studied the electromagneto transient stress and perturbation of magnetic 

field vector in transversely isotropic piezoelectric solid spheres.    
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In-homogenity was considered in a number of studies. Elastic analysis of internally 

pressurized thick-walled spherical pressure vessels of functionally graded materials (FGMs) 

investigated by You et al. [9]. Analytical solution for a non-homogeneous isotropic 

piezoelectric hollow sphere was presented by Ding et al. [10]. Effect of material in-

homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric 

rotating cylinder was considered by Ghorbanpour et al. [11]. Wang and Xu [12] studied the 

effect of material inhomogeneity on electromechanical behaviors of functionally graded 

piezoelectric spherical structures. Magnetothermoelastic problems of FGM spheres are 

studied by Ghorbanpour et al. [13].  

Sladek et al. [14] derived Local integral equations for numerical solution of 3-D problems in 

linear elasticity of FGMs viewed as 2-D axisymmetric problems while the meshless local 

Petrov-Galerkin method was applied to transient dynamic problems in 3D axisymmetric 

piezoelectric solids with continuously non-homogeneous material properties subjected to 

mechanical and thermal loads by Sladek et al.[15]. They concluded that this method is 

promising for numerical analysis of multi-field problems like piezoelectric or thermoelastic 

problems, which cannot be solved efficiently by the conventional boundary element method. 

Motivated by these ideas, new applications of piezoelectric sensors and actuators are being 

introduced and expanded for a number of geometric configurations. In this chapter, a 

hollow sphere composed of a radially polarized transversely isotropic piezoelectric material, 

e.g., PZT-4, which is subjected to mechanical and thermal loads, together with a potential 

difference induced by electrodes attached to the inner and outer surfaces of the annular 

sphere is considered. All mechanical, thermal and piezoelectric properties of the FGPM 

hollow sphere, except for the Poisson’s ratio, are assumed to depend on the radius r  and 

expressed in terms of its power functions. Hence, the equation of equilibrium in the radially 

polarized form is reduced to a system of second–order ordinary differential equation and is 

solved analytically for four different sets of boundary conditions. Finally, the thermal 

stresses, electric potential and displacement distributions are shown for different material 

in-homogeneity Also, a three-dimensional finite element analysis of asymmetric closed and 

open spheres with different boundary conditions subjected to an internal pressure and a 

uniform temperature field has also been carried out using ANSYS software. 

2. Electromechanical coupling 

The subsequent characterization of electromechanical coupling covers the various classes of 

piezoelectric materials. Details with respect to definition and determination of the constants 

describing these materials have been standardized by the Institute of Electrical and 

Electronics Engineers [16]. Stresses σ  and strains ε  on the mechanical side, as well as flux 

density D  and field strength E  on the electrostatic side, may be arbitrarily combined as 

follows [17,18] 

 
σ C e ε

,
D Ee

E

T 

            
        

  (1)  
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where EC ,  , e  and Te  are the fourth-order elasticity tensor, the dielectric permittivity 

tensor, third order tensor of piezoelectric coefficient and transpose of it, respectively.  

Assuming total strain tensor to be the sum of mechanical ( M ) and thermal ( T ) strains [19, 20] 

 ε ε ε ,M T   (2) 
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 (4) 

It is also noted that the electric field tensor E  can be written in terms of electric potential    

as [21] 

 E .grad    (5) 

3. Formulation for electrothermoelastic FGPM spheres 

A hollow FGPM sphere with an inner radius ir  and outer radius or  is considered. The sphere 

is subjected to an internal and external pressures iP  and oP , an electric potential  and a 

distributed temperature field  T r  (Fig. 1). It is assumed that, only the radial displacement 

rU  is nonzero and electric potential is the functions of radial coordinate r , Thus        

    , 0, .rU u r U U r        (6) 
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Figure 1. Hollow FGPM sphere subject to uniform temperature field, uniform internal pressure, 

uniform external pressure and applied voltage V. 

The equilibrium equation of the FGPM sphere in the absence of body force and the 

Maxwell's equation for free electric charge density are [18, 22] 

 ,

2( )
0,rr

rr r r
 




   (7) 

 ,

2
0,rr r rrD D

r
   (8) 

where  ,ii i r   is the stress tensor and rrD is the radial electric displacement. 

Also, the radial and circumferential strain and the relation between electric field and electric 

potential are reduced to  

 , ,rr ru     (9)   

   ,
u

r     (10)   

   , .rr rE    (11) 

The constitutive relations of spherically radially polarized piezoelectric media and the 

component of radial electric displacement vector also can be written as [23, 24]  
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 (12) 

For transversely isotropic properties, when the concerned axis of rotation is oriented in the 

radial direction, the elasticity and piezoelectric coefficient tensors are summarized to [25] 

 12 13 21 22 33 32 23 12 13, , , .C C C C C C C e e       (13) 

It is appropriate to introduce the following dimensionless quantities as 
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Using the above dimensionless variables, Eqs. (7) and (8) can be expressed as 
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Before substituting the component of the electric field in Maxwell’s equation, appropriate 

power functions for all properties are assumed as [26] 

  0 ,r


    (17) 

in which r represents the general properties of the sphere such as the elastic, piezoelectric,  

dielectric coefficients and thermal conductivity, and 0  corresponds to the value of the 

coefficients at the outer surface. Substituting Eqs. (14) and (17) into Eq. (12), yields 
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 (18) 

4. Electrothermoelastic analysis of FGPM spheres 

The solution of Eq. (16) is 
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2
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D


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where 1A is a constant. Substituting Eq. (19) into Eq. (18), we obtain 
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(20) 

In this study a distributed temperature field due to steady-state heat conduction has been 

considered. Using Eq. (17) for the thermal conductivity property, the heat conduction 

equation without any heat source is written in spherical coordinate as [22, 27] 
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where h  is the ratio of the convective heat-transfer coefficient and 0K  is the nominal heat 

conductivity coefficient. Integrating Eq. (21) twice yields 

 11
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1

B
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
 (23) 

Constants 1B and 2B are obtained using thermal boundary conditions which shown in Eq. (22). 

Finally, substituting Eq. (20) and (24) into Eq. (15) yields the following non-homogeneous 

Cauchy differential equation 

    2
1 12
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 (24) 

where  1,...8iD i  are defined in Appendix A. 

The exact solution for Eq. (24) is written as follows 
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The particular solution of the differential Eq. (24) may be obtained as 

 1 2
1 2 ,q q

pu u u    (27) 

where 

 

 
2 1

1 2
1 2 1 2

( ) ( )
, ,

( , ) ( , )

q qR R
u u

W q q W q q

   
     (28) 

in which  R   is the expression on the right hand side of Eq. (24) and  W   is defined as 
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Combining  Eqs. (25)-(29) one can obtain the particular solution as 
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The complete solution for mU  in terms of the non-dimensional radial coordinate is written as  

 ,g pU u u   (31) 

where 1K , 2K and 1A  are unknown constants. Substituting the displacement from Eq. (31) 

into Eq. (20) the radial and circumferential stresses are obtained as 
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Substituting U  from above into the last term of Eq. (18), ( , ) and combining with Eq. (19) 

and performing the integrating, electric potential is obtained as 
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 (34) 

where r ,   and    are radial stress, hoop stress and electric potential,  respectively. Two 

sets of mechanical and electrical loading boundary conditions are considered in this 

investigation which in normalized form are written as  

 case 1 : (1) 1, ( ) 0, (1) 0, ( ) 0r r           (35) 

 case 2 : (1) 0, ( ) 0, (1) 1, ( ) 0r r           (36) 

In case 1, the FGPM hollow sphere is subjected to an internal uniform pressure without any 

imposed electric potential and external pressure. However in this case the induced electric 

potential existed across the thickness. In this case, the sphere acts as an sensor. In the second 

case, an electrical potential difference is applied between the inner and outer surfaces of the 

sphere without any internal and external pressures. In this case, the sphere acts as an 

actuator.  

For the above mentioned cases 1, and 2 the system of linear algebraic equations for the 

constants 1K , 2K , 1A  and 2A  of the Eqs. (32), (33) and (34) can be written in the following 

from  
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22 21 22 23 24

31 32 33 34 31
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m m m m bA
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      
      
             
                 

  (37) 

where the ijm  and ib  ( , 1,...4)i j   are defined in Appendix B 

5. Numerical results and discussion 

5.1. Analytical solution 

The numerical results are showing the variation of stresses, electric potential and 

displacement across the thickness of the FGPM sphere for different material inhomogenity 

parameter  . Presented results are for the two cases of different boundary conditions with 

aspect ratio 1.3  . The plots in these figures correspond to 323iT K  and 298oT K . The 

piezoelectric material PZT-4 has been selected because of its technical applications. 

Mechanical and electrical properties of piezoelectric material, PZT-4 are tabulated in Table 

1[28].  

 

Property 
11C  12C  22C  23C  11e  12e  11e   0r  

 
PZT-4 115      

Gpa  

74.3     

Gpa  

139      

Gpa  

77.8 
    

Gpa  

15.1        
2/C m  

-5.2        
2/C m

3.87e-9   

/F m  

2 e - 5   

1 / K  

2 e -6    

1 / K  

7500       
3/kg m  

Table 1. Mechanical, electrical and thermal properties for PZT-4  

5.1.1. Case 1 

Results of the first case are illustrated in Figs.  2 to 5. Radial stresses for different material in-

homogeneity parameters  are shown in Fig. 2. Radial stresses satisfy the mechanical 

boundary conditions at the inner and outer surfaces of the FGPM sphere. The maximum 

absolute values of radial stresses belong to a material identified by in-homogeneity 

parameter 1.5   the minimum absolute values of which belong to 1.5   . In this case 

there is no imposed electric potential however, the induced electric potentials for different 

material in-homogeneity parameters   are shown in Fig. 3. Electric potentials satisfy the 

electrical boundary conditions at the inner and outer surfaces of the FGPM sphere. It is also 

obvious that higher induced electric potentials belong to higher absolute values of 

compressive radial stresses. In this case circumferential stresses shown in Fig. 4 are highly 

tensile throughout thickness and except for the material 1.5   their maximum values 

located at the inner and their minimum values located at the outer surfaces of the sphere. 

Displacements are illustrated in Fig. 5 for all material properties. Displacements are positive 

throughout the thickness and they smoothly decrease from their maximum value at the 
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inner surface to their minimum value at the outer surface of the FGPM sphere. Maximum 

values of displacements belong to 1.5    and minimum values belong to 1.5    

 

Figure 2. Case 1: Distributions of the radial stress for different values of .  

 

Figure 3. Case 1: Distributions of the circumferential stress for different values of .   
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Figure 4. Case 1: Distributions of the electric potential for different values of .   

 

 

Figure 5. Case 1: Distributions of the radial displacement for different values of .   
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5.1.2. Case 2 

Results of this case are illustrated in Figs. 6 to 9. In this case the imposed electric potential 

satisfies the electrical boundary conditions at the inner and outer surfaces of the sphere. The 

maximum electric potentials belong to 1.5    the minimum values of which belong to

1.5  . In this case there is no applied pressure at the inner and outer surfaces of the sphere 

however the induced compressive radial stresses satisfy the free mechanical boundary 

conditions. The maximum absolute values of the induced compressive radial stresses belong to 

the same maximum value of electric potential. Circumferential induced stresses are 

compressive throughout thickness for different material in-homogeneity parameters  . 

However, for negative parameters   the minimum values of circumferential stresses located 

at the inner surface while for positive parameters   their minimum values located at the outer 

surface of the FGPM sphere.  The induced displacement is negative across the thickness for all 

material parameters. Their minimum values located at the inner and their maximum values 

located at the outer surfaces of the FGPM sphere. It is interesting to compare the induced 

radial and circumferential stresses in this case with the residual stresses locked in the sphere 

during the autofrettage process of spheres made of uniform material. One might conclude that 

by easily imposing an electric potential there is no need to autofrettage these vessels. 

 

Figure 6. Case 2: Distributions of the radial stress for different values of .  

5.2. Validation 

The results of this investigation are validated with the recently published paper by Wang 
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results and the only small differences are due to thermal stresses which are not considered 

by Wang and Xu .  

 

Figure 7. Case 2: Distributions of the circumferential stress for different values of .  

 

Figure 8. Case 2: Distributions of the electric potential for different values of .   
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Figure 9. Case 2: Distributions of the radial displacement for different values of .   

 

 

Figure 10. Case 2: Comparison of the radial stress distributions with Ref. [12] for homogeneous 

piezoelectric hollow sphere. 
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Figure 11. Case 2: Comparison of the electric potential distributions with Ref. [12] for homogeneous 

piezoelectric hollow sphere. 

5.3. Finite element solution  

In order to develop the one-dimensional solution to a three-dimensional approach finite 

element analysis of a sphere subjected to an internal pressure and a uniform temperature 

field has been carried out using ANSYS finite element software. A three-dimensional 

element identified by solid 191 is selected because it is an appropriate element for the FGPM 

structures. Sphere has been divide into eight layers by a controlled mesh system along 

radius and the  mechanical, electrical and thermal properties are functionally defined 

according to power law Eq. (17) for 1.5  . A controlled mesh in which very fine elements 

are located at the supports where stress concentration existed is employed in this method.  

However farther from the supports a coarser mesh is dominated. In this work, two cases for 

sphere are considered as follows: 

5.3.1. Three- dimensional sphere  

In this case, consider a sphere with two asymmetric simply supported boundary conditions 

on the outer surface of the sphere as shown in Fig. 12. For this boundary condition 

dimensionless effective stresses versus normalized radius at two cross sections (i.e.  A-A and 

B-B) are depicted in Fig. 13.  Section A-A is selected to pass through supported point on the 

outer surface of the sphere and section B-B is an arbitrary section as shown in Fig. 12. It can 

be seen from this figure that the maximum effective stress for the above mentioned sections 

occur at the inner surface of the sphere and the effective stresses are decreasing with 

increasing radius for 1.3  . Total dimensionless displacement versus dimensionless radius 
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for 1.3   at two cross sections of A-A and B-B are demonstrated in Fig. 14. As can be seen 

from this figure the maximum displacement occur at the inner surface of the sphere and 

displacement value is decreasing with increasing dimensionless radius so that for section A-

A, the zero value of displacement at the outer surface  satisfies the boundary condition at 

this point.   

 

Figure 12. A schematic of asymmetric thick-walled sphere with simply-simply supported. 

 

Figure 13. Effective stress distribution along the radius of asymmetric closed sphere. 
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Figure 14. Total displacement distribution along the radius of asymmetric closed sphere. 

5.3.2. Three- dimensional open sphere  

The geometry and loading condition as well as its boundary conditions are shown in Fig. 15. 

Three different boundary conditions are considered in this case. These boundary conditions 

are clamped-clamped, clamped-simply and simply-simply supported respectively.   

The solution obtained by the software clearly indicates the most critical region of the sphere. 

In the most critical region normalized effective stress distribution and the total 

displacements are plotted in Figs. 16 and 17 along normalized radius at all node points for 

the above mentioned three boundary conditions. Fig 16 shows that in general the effective 

stresses are decreasing along radius to an absolute minimum and then increasing to their 

maximum values located at the outer surface of the vessel. For simply-simply supported 

boundary condition this absolute minimum is located near the outer surface of the vessel, 

however for the clamped-clamped condition it is nearly at the middle surface of the vessel. 

For the clamped-simply supported condition this minimum is somewhere between the 

previous two cases. 

It has been found that the magnitude of effective stresses at all node points are higher for the 

clamped-clamped condition and are lower for the simply-simply supported condition. It can 

be observed from Fig. 17 that the maximum displacements for the three boundary 

conditions are located at the inner surface and they are decreasing to zero value at the outer 

surface of the sphere. It is also found that the displacement curve for simply-simply support 

condition is higher than other boundary conditions. 
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Figure 15. The three-dimensional finite element model for open sphere subjected to internal pressure 

with clamped-clamped boundary conditions. 

 

 

Figure 16. Effective stresses distribution along the radius of the open sphere with different boundary 

conditions. 
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Figure 17. Total displacement distribution along the radius of the open sphere with different boundary 

conditions. 

6. Conclusions  

In this research, the electro-thermo-mechanical behavior of radially polarized FGPM hollow 

sphere was investigated. An analytic solution technique was developed for the electro-

thermo-mechanical problem, where stresses were produced under combined 

thermomechanical and electrical loading conditions. Variation of normalized stresses, 

electric potential and displacement of four sets of boundary conditions for different material 

in-homogeneity parameters   were plotted against dimensionless radius. In general, radial 

stresses and electric potentials satisfy the mechanical and electrical boundary conditions at 

the inner and outer surfaces of the FGPM sphere. It was concluded that higher absolute 

values of compressive radial stresses are associated with the higher induced electric 

potentials throughout the thickness in all cases. It was found that the induced radial and 

circumferential stresses of an imposed electric potential is similar to the residual stresses 

locked in the sphere during the autofrettage process of these vessels. Therefore, one might 

concluded that by easily imposing an electric potential there is no need to autofrettage these 

vessels. It was interesting to see that the compressive circumferential stresses due to an 

external pressure were very similar to the induced circumferential stresses resulted from 

imposing an electric potential. Moreover a three-dimensional finite element analysis of an 

asymmetric sphere subjected to an internal pressure and a uniform temperature field has 

been carried out using ANSYS software. In this study closed and opened spheres with 

different boundary conditions were considered. The finite element analysis indicated that 

the values of effective stress and total displacement at all node points along the thickness of 
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the open sphere were the highest and lowest for the clamped-clamped condition, 

respectively.  
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