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1. Introduction 

Autism (MIM 209850) comprises a heterogeneous group of disorders with a complex genetic 

etiology, characterized by impairments in reciprocal social communication and  presence of 

restricted, repetitive and stereotyped patterns of behavior [1]. With an early  onset prior to 

age 3 and prevalence as high as 0.9–2.6% [2,3], autism occurs predominantly  in males, with 

a ratio of male: female of 4 to 1. It is one of the leading causes of childhood  disability and 

inflicts serious suffering and burden for the family and society [4].  

Diagnosis of autism is based on expert observation and assessment of behavior and 

cognition, not etiology or pathogenic mechanism. This is further emphasized by the current 

trend in the DSM-V, in which the category of Asperger syndrome is removed and the 

diagnostic criteria for autism are modified under the new heading of autism spectrum 

disorder (ASD). The change in diagnostic criteria is not based on known similarities or 

differences in causation between these clinically defined categories, but rather on the 

consensus of opinions of expert clinicians. For autism, several diagnostic instruments are 

available. Two are commonly used in autism research: the Autism Diagnostic Interview-

Revised (ADI-R) that is a semi-structured parent interview [5], and the Autism Diagnostic 

Observation Schedule (ADOS) uses observation and interaction with the child(ren) [6]. The 

Childhood Autism Rating Scale (CARS) is used widely in clinical environments to assess 

severity of autism based on observation of children [7]. The M-CHAT was developed in the 

late 1990s as a first-stage screening tool for ASD in toddlers’ age 18 to 24 months, with a 

sensitivity of 0.87 and a specificity of 0.99 in American children [8, 9]. 

2. Clinical heterogeneity of ASD 

Autistic conditions are a spectrum of disorders, rather than a distinct clinical disorder, 

which means that the symptoms can be present in a variety of combinations with a range of 

severity. The disease has variable cognitive manifestations, ranging from a non-verbal child 

with mental retardation to a high-functioning college student with above average IQ with 
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inadequate social skills [10]. Clinical heterogeneity of autism showed three major categories: 

idiopathic autism, autistic spectrum disorder (ASD), and syndromatic autistics that usually 

resulted from an identified syndrome with known genetic etiology. Traditionally, ASD 

includes autism, Asperger syndrome, where language appears normal, Rett syndrome and 

pervasive developmental disorder not otherwise specified (PDD-NOS), in which children 

meet some but not all criteria for autism. Rett syndrome (RTT), occurring almost exclusively 

in females, is characterized by developmental arrest between 5 and 18 months of age, 

followed by regression of acquired skills, loss of speech, stereotypic movements (classically 

of the hands), microcephaly, seizures, and intellectual difficulties. These disorders share 

deficits in social communication and show variability in language and repetitive behavior 

domains [1]. Autistic individuals may have symptoms that are independent of the 

diagnosis. Mental retardation is present in approximately 75% of cases of autism, seizures in 

15 to 30% of cases, attention deficit hyperactivity disorder (ADHD) in 59-75% of cases, 

schizophrenia (SZ) in 5% of cases, obsessive-compulsive disorder (OCD) in about 60% of 

cases and electroencephalographic abnormalities in 20 to 50% of cases [11]. In addition, 

approximately 15 to 37% of cases of autism have a comorbid medical condition such as 

epilepsy, sensory abnormalities, motor abnormalities, sleep disturbances, and 

gastrointestinal symptoms. Five to 14% of cases had a known genetic disorder or 

chromosomal anomaly. The 4 most common conditions associated with autistic phenotypes 

are fragile X syndrome, tuberous sclerosis, 15q duplications, and untreated phenylketonuria. 

Other conditions associated with autistic phenotypes include Angelman syndrome, Cowden 

disease, Smith-Lemli-Opitz syndrome, cortical dysplasia-focal epilepsy (CDFE) syndrome, 

Neurofibromatosis, and X-linked mental retardation.  

3. Autism is a complex genetic disorder 

It is widely held that autism is largely genetic in origin; several dozen autism susceptibility 

genes have been identified in the past decade, collectively accounting for about 20% of 

autistic cases. There is strong evidence from twin and family studies for the importance of 

complex genetic factors in the development of autism [12, 13]. Family studies have shown 

that a recurrence rate of autism in siblings of affected proband is as high as 8–10% [12, 14]. 

Thus, the recurrence risk in siblings is roughly 100 times higher than that found in the 

general population. The substantial degree of familial clustering in ASD could reflect shared 

environmental factors, but twin studies strongly point to genetics. Several epidemiological 

studies among sex-matched twins have clearly demonstrated significant differences of 

concordance rates in the monozygotic (MZ) and dizygotic (DZ) twins. The largest of these 

studies [15] found that 60% of the MZ pairs were concordant for autism compared with 

none of the DZ pairs, suggesting a heritability estimate of >90% assuming a multifactorial 

threshold model. This is what is observed in every twin study in autism, and is overall 

consistent with heritability estimates of about 70–80% [15, 16]. One exception is a very recent 

study with a large sample of twins, which, despite showing a concordance of about 0.6 for 

MZ twins and 0.25 for DZ twins, comes to the conclusion that shared environment plays a 

larger role than genetic factors [17]. However, the question of how a shared environment 
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would have a more major role than genetics is not clear. Moreover, studies in families show 

that first-degree relatives of an autistic proband have a markedly increased risk for autism 

relative to the population, consistent with a strong familial or genetic effect observed in 

twins [18]. This is not to dispute the role of the environment but to emphasize that genes 

play an important role. Similar to other common diseases with genetic contributions, autism 

was thought to fit a model in which multiple variants, each with small to moderate effect 

sizes, interact with each other and perhaps in some cases, environmental factors, to lead to 

autism; a situation referred to as complex genetics [13]. 

4. Genetic heterogeneity of autism 

Although autism is highly heritable, the identification of candidate genes has been hindered 

by the heterogeneity of the disease. Autism genetics is highly complex, involving many 

genes/loci and different genetic variations, including translocation, deletion, single 

nucleotide polymorphism (SNP) and copy number variation (CNV) [13, 19, 20]. The most 

obvious general conclusion from all of the published genetic studies is the extraordinary 

etiological heterogeneity of autism. No specific gene accounts for the majority of autism; 

rather, even the most common genetic forms account for not more than 1–2% of cases [21]. 

Further, these genes, including those mentioned earlier, represent a diversity of molecular 

mechanisms that include cell adhesion, neurotransmission, synaptic structure, RNA 

processing/splicing, and activity-dependent protein translation. Genetic heterogeneity of 

autistic cases has been documented by identification of single gene mutations and genomic 

variations including CNV. The mutant genes identified from autistic patients are: FMR1, 

MECP2, CNTNAP2, PTEN, DHCR7, CACNA1C, UBE3A, TSC2, NF1, ARX, NLGN3, NLGN4, 

NRXN1, FOXP1, FOXP2, GRIK2, and SHANK3 (Table 1). Genomic variation including copy 

number deletion or duplication at loci of 1q21.2, 1q42.2, 2q31.1, 3p25.3, 7q11.23, 7q22.1, 

7q36.3, 11q13.3, 12q14.2, 15q11-13, 16p11.2, 16q13.3, 17q11.2, 17q12, 17q21.32, 22q13.33, or 

Xp22.11 may also associate with autism. 

5. Genotype/phenotype correlation in ASD 

The presence of genetic and phenotypic heterogeneity in autism with a number of 

underlying pathogenic mechanisms is highlighted in this current review. There are at least 

three phenotypic presentations with distinct genetic underpinnings: (1) autism with 

syndromic phenotype characterized by rare, single-gene defects (Table 2); (2) broad autistic 

phenotypes caused by genetic variations in single or multiple genes, each of these variations 

being common and distributed continually in the general population but resulting in variant 

clinical phenotypes when it reaches a certain threshold through complex gene-gene and 

gene-environment interactions; and (3) severe and specific phenotype caused by 'de-novo' 

mutations in the patient or transmitted through asymptomatic carriers of such mutations 

(Table 3) [48, 49]. Understanding the neurobiological processes by which genotypes lead to 

phenotypes, along with the advances in developmental neuroscience and neuronal 

networks at the cellular and molecular level, are paving the way for translational research 
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involving targeted interventions of affected molecular pathways and early intervention 

programs that promote normal brain responses to stimuli and alter the developmental 

trajectory [50]. Recent genetic results have improved our knowledge of the genetic basis of 

autism. Nevertheless, identification of phenotypic markers remains challenging due to 

phenotypic and genotypic heterogeneity. 

 

Gene Genetic alteration Location Reference 

FMR1 The number of CGG in FMR1 alleles 

is classified as intermediate mutation 

(45 to 55), premutation (55 to 200), or 

full mutation (＞200) 

5’untranslated region 22-24 

MECP2 T158M, T158A Missense mutation 25 

CNTNAP2 3709delG Exon 22 26 

G731S, I869T  

R1119H, D1129H, I1253T, T1278I 

Exon 14, 17 

Exon 20, 21, 23, 24 

27 

H275A Exon 6 28 

CNV (microdeletion) Promoter 29 

PTEN Deletion Exon 2 30 

CACNA1C G406R Missense mutation 31 

UBE3A D15S122 5' end of UBE3A 32, 33 

TSC2 SNP Intron 4, 9; exon 40 34 

NF1 SNP Intron 27 35 

NLGN3 R451C Missense mutation 36, 37 

NLGN4 1186insT Frameshift mutation 37 

NRXN1 De novo 320-kb deletion Promoter and initial 

coding exons 

38, 39 

Missense structural variant  Neurexin1ß signal 

peptide region 

40 

FOXP1 De novo intragenic deletion Exons 4-14 41 

FOXP2 Del CAA;  Exon 5 42, 43 

Frequency of the TT allele Intron 15 

GRIK2 SNP M867I 44 

SHANK3 De novo Q321R Stop codon  45 

1-bp insertion Exon 11  46 

De novo 7.9-Mb deletion 22q13.2-qter 47 

Table 1. Genetic alteration identified from autism 
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Gene/loci Chromosome Phenotype 

(human/mouse) 

Mechanism involved Risk of 

autism 

Reference 

CNTNAP2 7q35-q36.1 Recessive EPI 

syndrome, ASD, 

ADHD, TS, OCD

Chromosomal rearrangements and 

large deletions, disruption of the 

transcription factor FOXP2, SNP 

Not 

conclusive 

51-54 

CHD7 8q12.1 CHARGE  Mutations/deletions of gene CHD7, 

Chromatin remodeling; disruption of 

the transcription factor FOXP2; SNP; 

15–50% 55, 56 

TSC1 9q34.13 Tuberous 

Sclerosis type I. 

Mutation in gene TSC1 and subsequent 

hyperactivation of the downstream 

mTOR pathway, resulting in increased 

cell growth and proliferation. 

Not 

conclusive 

57 

PTEN 10q23.31 Cowden disease. Mutation of gene PTEN Not 

conclusive 

30 

DHCR7 11q13.4 Smith-Lemli-

Opitz syndrome 

Mutations of gene DHCR, leading to a 

deficiency of cholesterol synthesis and 

an accumulation of 7-

dehydrocholesterol 

15–50%  

 

3% 

58-60 

 

61, 62 

CACNA1C 12p13.33 Timothy 

syndrome.  

Missense mutations in the calcium 

channel gene CACNA1H  

Not 

conclusive 

63 

UBE3A 15q11.2 Angelman 

syndrome 

Maternal deletion, paternal UPD, 

deletions and epimutations at IC, 

mutations of UBE3A, Lack of 

expression of maternally expressed 

gene UBE3A  

Not 

conclusive  

32, 33 

TSC2 16p13.3 Tuberous 

Sclerosis type II 

Mutation in gene TSC2 and subsequent 

hyperactivation of the downstream 

mTOR pathway, resulting in increased 

cell growth and proliferation. 

Not 

conclusive 

57 

NF1 17q11.2 Neurofibromatosis Polymorphisms within the intron-27, 

including the (AAAT)(n) and two 

(CA)n 

Not 

conclusive 

35 

DMD Xp21.2 Duchenne muscular 

dystrophy 

Mutations of DMD gene resulting in 

absence of dystrophin protein  

Not 

conclusive 

64 

ARX Xp21.3 LIS, XLID, EPI, 

ASD 

Naturally occurring mutations. 

Nonsense mutations, polyalanine tract 

expansions and missense mutations 

Not 

conclusive 

65 

FMR1 Xq27.3 Fragile X 

syndrome 

CGG repeat expansion and DNA 

methylation of FMR1 gene, reduced 

FMR1 expression  

60–67% in 

males, 23% 

in female 

66 

MECP2 Xq28 Rett syndrome Mutations in MECP2 and CDKL5 Overlap in 

symptoms  

Infancy 

67, 68 

Abbreviations: LIS, lissencephaly; XLID, X-linked intellectual disability; EPI, epilepsy; OCD, obsessive compulsive 

disorder; TS, Tourette syndrome; ADHD, attention deficit hyperactivity disorder. 

Table 2. Autism plus syndromic ASD caused by rare, single-gene disorders 
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Gene Chromosome Phenotype 

(human/mou

se) 

Mechanism involved in ASD Reference 

NRXN1 2p16.3 ASD, ID, 

SCZ, 

Language 

delay 

De novo 320-kb deletion that removes the 

promoter and initial coding exons of the NRXN1 

gene, resulting in deletion of neurexin 1a 

39 

Missense structural variants in the neurexin 1b 

signal peptide region 

40 

CNV 69, 70 

Translocations and intragenic rearrangements 

in or near NRXN1gene 

71, 72 

FOXP1 3p13 ID, ASD, SLI De novo intragenic deletion encompassing exons 

4-14 of FOXP1, de novo nonsense mutation 

(c.1573C>T) in the conserved fork head DNA-

binding domain 

73 

GRIK2 6q16.3 ASD,  

Recessive ID 

SNP1 and SNP2 of gene GRIK2 were associated 

with autism 

74 

FOXP2 7q31.1 ASD, SLI Directly bind intron 1 of the CNTNAP2 gene 

and regulate its expression 

74 

 11p15.5 Beckwith- 

Wiedemann 

syndrome 

Overexpression of paternally expressed IGF2, 

due to a gain of DNA methylation at paternal 

allele of IC1 and suppression of maternally 

expressed suppressing factor CDKN1C  

75 

 15q11-q13 Prader-Willi 

syndrome 

Paternal deletions, maternal UPD at15q11–13, 

deletions and epimutations of IC, translocations 

disrupting SNRPN 

 

76, 77 

Maternal 

duplication of 

15q11-13 

region 

Maternal duplications of 15q11-13 region 78 

SHANK3 22q13.33 ASD Mutation at an intronic donor splice site, one 

missense mutation in the coding region 

79 

NLGN4X Xp22.32-

p22.31 

ASD, ID, TS, 

ADHD 

Frameshift mutation (1186insT) 37 

NLGN3 Xq13.1 ASD R451C mutation within the esterase domain of 

neuroligin 3 

36, 37 

Abbreviations: ID, intellectual disability; SCZ, schizophrenia; TS, Tourette syndrome; SLI, speech and language 

impairment; ADHD, attention deficit hyperactivity disorder 

Table 3. Severe and specific phenotype with rare variants of genes 

6. Copy number variation (CNV): A paradigm shift in autism  

The strong genetic contribution shown in family studies and the association of cytogenetic 

changes, but apparent lack of common risk factors in autism, led to a hypothesis that rare 

sub-microscopic unbalanced changes in the form of CNVs likely contribute to the autism 
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phenotype. With the development of microarrays capable of scanning the genome at sub-

microscopic resolution, there is accumulating evidence that multiple CNVs contribute to the 

genetic vulnerability to autism [80]. de novo CNV has been identified in up to 7–10% of 

sporadic autism [81, 82], but are less frequent in multiplex families, in which CNV accounts 

only for about 2% of families screened [80, 83]. This could possibly suggest different genetic 

liabilities in simplex and multiplex autism. Recurrent CNVs at 15q11-13 (1-3% of autism 

patients), 16p11 (1% of autism patients), and 22q11-13 have been confirmed in multiple 

studies [80, 83-86]. This hypothesis also has been proven largely successful in identifying 

autism-susceptibility candidate genes, including gains and losses at SHANK2 [87], SHANK3 

[88], NRXN1 [13], NLGN3 and NLGN4 [37], and PTCHD1 [89, 90]. Neurexins and neuroligins 

are synaptic cell-adhesion molecules (CAMs) that connect pre- and postsynaptic neurons at 

synapses, mediate trans-synaptic signaling, and shape neural network properties by 

specifying synaptic functions. The Shank family of proteins provides scaffolding for 

signaling molecules in the postsynaptic density of glutamatergic synapses. Genes encoding 

CAMs play crucial roles in modulating or fine-tuning synaptic formation and synaptic 

specification. Localization and interacting proteins at the synapse is shown in Figure 1.  

 

Figure 1. Localization of cell-adhesion molecules and their interacting proteins at the synapse. Proteins 

associated with ASD are underlined.  

It is apparent that many different loci, each with a presumably unique yet subtle 

contribution to neurodevelopment, underlie the phenotype of autism. These observations 

have resulted in a paradigm shift away from the previously held “common disease-common 

variant” hypothesis to a “common disease-rare variant” model for the genetic architecture 

of autism. The central tenet of this model suggests a role for multiple, rare, highly penetrant, 

genetic risk factors for ASD, many of which are in the form of CNV. To make sense of the 

contribution of CNVs to autism, a “threshold” model has been proposed [80]. The model 

posits that different CNVs exhibit different penetrance depending on the dosage sensitivity 

and function (relative to autism) of the gene(s) they affect. Some CNVs have a large impact 
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on autism susceptibility and these are typically de novo in origin, cause more severe autistic 

symptoms, are more prevalent among sporadic forms of autism, and are less influenced by 

other factors like gender and parent of origin. Other CNVs have moderate or mild effects 

that probably require other genetic (or non-genetic) factors to take the phenotype across the 

autistic threshold.  

7. Epigenetics plays an important role in autism 

In addition to structural genetic factors that play causative roles for autism, environmental 

factors also play an important role in autism by influencing fetal or early postnatal brain 

development, directly or via epigenetic modifications. Epigenetic modifications include 

cytosine methylation, post-translational modification of histones, small interfering RNA  

and genomic imprinting. Involvement of epigenetic factors in autism is demonstrated by the 

central role of epigenetic regulatory mechanisms in the pathogenesis of Rett syndrome and 

fragile X syndrome (FXS), both are the monogenic disorders resulted from single gene 

defects and commonly associated with autism [38-40]. FXS is a result of a triplet expansion 

of CGG repeats at the 5’ untranslated region of FMR1 gene, which encodes the FMRP 

(fragile X mental retardation protein). FMRP is proposed to act as a translation regulator of 

specific mRNAs in the brain and involved in synaptic development and maturation, 

through its nucleo-cytoplasmic shuttle activity as an RNA-binding protein. It has been 

shown that FMRP uses its arginine-glycine-glycine (RGG) box domain to bind a subset of 

mRNA targets that form a G-quadruplex structure. FMRP has also been shown to undergo 

the post-translational modifications of arginine methylation and phosphorylation [91, 92]. 

Our recent study demonstrated that alteration of methylation patterns at loci of Neurex1 and 

ENO2 are associated with autism [Wang and Zhong, manuscript in preparation].  

Genomic imprinting is the classic example of regulation of gene expression via epigenetic 

modifications, such as hypemethylation, that leads to parent of origin-specific gene 

expression. In addition, a growing number of genes that are not imprinted are regulated by 

DNA methylation, including Reelin (RELN) [41, 93-96], which has been considered as a 

candidate for autism. Several of the linkage peaks overlap or are in close proximity to 

regions that are subject to genomic imprinting on chromosomes 15q11-13, 7q21-31.31, 

7q32.3-36.3 and possibly 4q21-31, 11p11.2-13 and 13q12.3, with the loci on chromosomes15q 

and 7q demonstrating the most compelling evidence for a combination of genetic and 

epigenetic factors that confer risks for autism [97-101]. Genes in the imprinted cluster on 

chromosome 15q11–13 include MKRN3, ZNF127AS, MAGE12, NDN, ATP10A, GABRA5, 

GABRB3, and GABRG3 [102, 103]. Genes in the imprinted cluster on chromosome 7q21.3 

include SGCE, PEG10, PPP1R9A, DLX5, CALCR, ASB4, PON1, PON2, and PON3 [104, 

105]. 

Research has recently focused on the connections between the immune system and the early 

development of brain, including its possible role in the development of autism [106]. 

Immune aberrations consistent with a deregulated immune response may target neuronal 
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development and differentiation [107, 108]. Our study has suggested that a close contact 

with natural rubber latex (NRL) could trigger an immunoreaction to Hevea brasiliensis 

(Hev-b) proteins in NRL and resulted in autism [109]. This led us to a hypothesis that 

immune reactions triggered by environmental factors could damage synapse formation and 

neuronal connections, which would result in missing normal structure or function of 

synaptic proteins that are encoded by genes NLGNs, NRXN1, CNTNAPs, SHANKs, or in 

deregulation of gene expression of FMR1, PTEN, FOXPs, and GRIK2.  

8. Converging molecular pathways of autism 

Autism is a heterogeneous disorder with a fundamental question of whether autism 

represents an etiologically heterogeneous disorder in which a myriad of genetic or 

environmental risk factors perturb common underlying molecular pathways in the brain 

[110]. Two recent studies have suggested there could be convergence at the level of 

molecular mechanisms in autism. The first study on molecular convergence in autism 

identified protein interactors of known autism or autism-associated genes [111]. This 

interactome revealed several novel interactions, including between two autism candidate 

genes, SHANK3 and TSC1. The biological pathways identified in this study include synapse, 

cytoskeleton and GTPase signaling, demonstrating a remarkable overlap with those 

identified by the gene expression. The second, an analysis of gene expression in postmortem 

autism brain, provides strong evidence for a shared set of molecular alterations in a majority 

of cases of autism. This included disruption of the normal gene expression pattern that 

differentiates frontal and temporal lobes and two groups of genes deregulated in autistic 

brains: one related to neuronal function, and the other related to immune/inflammatory 

responses [111]. Genes associated with neuronal function were enriched in metabolic 

signal pathways, providing evidence that these changes were causal, rather than the 

consequence of the disease [112]. In contrast, the immune/inflammatory changes did not 

show a strong genetic signal, indicating a non-genetic etiology for this process and 

implicating environmental or epigenetic factors instead. These results provide strong 

evidence for converging molecular abnormalities in autism, and implicating transcriptional 

and splicing deregulation as underlying mechanisms of neuronal dysfunction in this 

disorder. 

9. In summary 

Autism is a heterogeneous set of brain developmental disorders with complex genetics, 

involving interactions between genetic, epigenetic and environmental factors. The 

heterogenerous genetics involves many genes/loci and different genetic variations in autism, 

such as deletion, translocation, SNP and CNV. Recent studies have also suggested there 

could be convergence at the level of molecular mechanisms in autism. Although the genetic 

basis is well documented, considering phenotypic and genotypic heterogeneity, 

correspondences between genotype and phenotype have yet to be well established. 
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