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1. Introduction 

Neoplasia, the accumulation of abnormal cells, occurs because tumor cells often lose control 

of proliferative signaling, escape growth suppression, can become invasive and metastasize 

and grow in abnormal environments, induce angiogenesis, withstand cell death, deregulate 

cellular energetic constraints, avoid immune destruction, promote inflammation and 

enhance genome instability and mutation (Hanahan and Weinberg 2011). Understanding 

the mechanisms underlying both the sensitivity and the resistance of tumor cells to 

anticancer agents first requires understanding the global view of the cancer genome 

(genetic, genomic, and epigenetic alterations) to identify driver events that decisively 

influence the viability and clinical behavior of a given tumor. This knowledge, together with 

an understanding of the mechanism of action of drugs, will lead to the identification of 

novel targets and the development of targeted therapeutics in the appropriate patient 

subpopulation. 

By 1982, mutations and chromosomal translocations had been established as key genetic 

mechanisms that are capable of driving cancer. Then, the MYC proto-oncogene was found 

to be activated by translocation as well as amplification, and amplification thus became 

recognized as an additional cardinal mechanism of cancer gene deregulation (Collins  

and Groudine 1982; Taub, Kirsch et al. 1982; Vennstrom, Sheiness et al. 1982; Alitalo, 

Schwab et al. 1983). Epigenetic modifications of genomic DNA or histones by methylation 

or acetylation also became recognized as key mediators of the cancer phenotype  

(Esteller 2007). 

One of the first pivotal discoveries of activating mutations was within BRAF (Figure 1), 

which encodes a serine/threonine kinase oncogene that transmits proliferative and survival 

signals downstream of RAS in the mitogen-activated protein (MAP) kinase cascade (Davies, 
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Bignell et al. 2002). This was after the discovery of HRAS mutations (Reddy, Reynolds et al. 

1982; Tabin, Bradley et al. 1982) and similar mutations within KRAS (Capon, Seeburg et al. 

1983; Shimizu, Birnbaum et al. 1983), NRAS (Bos, Toksoz et al. 1985), and other genes. Some 

of the driver mutations were found to be targets for therapy, whereas others play crucial 

roles in resistance to therapy. Here, we focus on activating mutations, small molecules that 

have been used to target mutated genes, and mutations that play crucial roles in resistance 

to certain therapeutic agents. 

 

Figure 1. The historical timelines for discovery of driver translocation, mutation and amplification. 

2. Types of mutations 

Oncogenesis results from mutations or alterations of genes that regulate cell functions such 

as proliferation, growth, invasion, angiogenesis, metastasis, death, energy metabolism, 

genome stability, and replication. Simple mutations can be induced in DNA by exposure to 

a variety of mutagens, such as radiation and chemicals, or by spontaneous errors in DNA 

replication and repair. Genes with mutations that cause cancer can be grouped into two 

classes: oncogenes and tumor suppressor genes. 

Oncogenes are the mutant form of proto-oncogenes, a class of normal cellular protein-coding 

genes that promote the growth and survival of cells. Oncogenes encode proteins such as: 

a. Growth factors (e.g., PDGF and IGF1); 

b. Growth factor receptors (e.g., ERBB2, EGFR, and MET); 

c. Intracellular signal transduction factors (e.g., RAS and RAF); 

d. Cell cycle factors (e.g., CDK4); 

e. Transcription factors that control the expression of growth promoting genes (e.g., FOS, 

JUN, and MYC); and 

f. Inhibitors of programmed cell death machinery (e.g., BCL2).  

Tumor suppressor genes, which control cell growth, can be grouped into two classes: 

gatekeeper and caretaker tumor suppressor genes. Gatekeeper tumor suppressor genes (e.g., 

RB1 and TP53) block tumor development by controlling cell division and survival, and 

caretaker tumor suppressor genes (e.g., MSH2 and MLH1) protect the integrity of the 

genome. 

Activation of proto-oncogenes (activating mutations) can occur either by large-scale 

alterations, such as gain/amplification, insertion, or chromosome translocation, or by small-

scale mutations, such as point mutation. Inactivation of tumor suppressor genes 
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(inactivating mutations) can occur either by small-scale mutation or by large-scale 

alterations, such as loss of region of tumor suppressor gene or whole chromosome. 

Small-scale mutations can be grouped into the following classes on the basis of the effect of 

the mutation on the DNA sequence: 

a. Base substitution mutation is the replacement (exchange) of a single nucleotide by 

another. Base substitutions can be either a transition—substitution of a pyrimidine by a 

pyrimidine (C↔T) or a purine by a purine (A↔G)—or a transversion—substitution of a 

pyrimidine by a purine or vice versa (A↔G, A↔C, G↔T, T↔C). Single nucleotide 

mutation can lead to qualitative rather than quantitative changes in the function of a 

protein. The biological activity can be retained, but the characteristics may differ, such 

as optimum pH and stability. Mutations that occur in coding DNA can be grouped into 

two classes: 

i. Synonymous (silent) mutations. In this type of mutation, even if the sequence changes, 

the amino acid is not altered due to the degenerate genetic code, except if the mutations 

affect splicing by activating a cryptic splice site or by altering an exonic splice enhancer 

sequence. Because silent mutations usually confer no advantage or disadvantage to the 

organism in which they arise, they are also called neutral mutations.  

ii. Non-synonymous mutations. In this type of mutation, the altered sequence changes the 

amino acid, which can be a polypeptide (gene product) or functional non-coding RNA. 

Non-synonymous mutations may have a harmful effect, no effect, or a beneficial effect 

in the organism. Non-synonymous mutations can be grouped into nonsense mutations, 

where the altered amino acid is replaced by a stop codon, which results in premature 

termination and is likely to cause loss of function or expression because of degradation 

of mRNA, and missense mutations, where the altered codon specifies a different amino 

acid, which may affect protein function or stability. Splice site mutations are likely to 

cause aberrant splicing, such as exon skipping or intron retention, and mutations in 

promoter sequences can result in altered gene expression. Finally, some mutations alter 

the normal stop codon, which terminates mRNA transcription so that a longer or 

shorter amino acid than normal is translated. 

b. Deletions. In this type of mutation, one or more nucleotides are lost from a sequence. 

i. Deletion of multiple codons (three bases) may affect protein function or stability. 

ii. A frameshift mutation—not of a multiple of three bases (codon)—is likely to result in 

premature termination with loss of function. 

iii. A large deletion—partial- or whole-gene deletion—is likely to result in premature 

termination with loss of function or expression. 

c. Insertions. In this type of mutation, one or more nucleotides are added into a sequence. 

i. Insertion of 3 nucleotides (a codon) or of multiple codons may affect protein function or 

stability. 

ii. A frameshift mutation, which occurs when either <3 or >3 nucleotides are inserted, is 

likely to result in premature termination with loss of function. 
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iii. A large insertion, which is partial-gene duplication, is likely to result in premature 

termination with loss of function. Whole-gene duplication may have an effect because 

of increased gene dosage. 

iv. A dynamic mutation, which is the expansion of a dinucleotide or a trinucleotide repeat, 

may alter gene expression or may alter protein stability or function. 

Whereas mutations in coding DNA have a phenotypic effect, mutations in non-coding DNA 

are less likely to have a phenotypic effect, except when the mutation occurs in a regulatory 

sequence such as a promoter sequence and miRNAs. Mutations exert their phenotypic effect 

through either gain of function or loss of function. Loss-of-function mutations result in 

either reduced activity or complete loss of the gene product. Gain-of-function mutations can 

result in either an increased level of expression or the development of a new function of the 

gene product. 

Important progress has been made in developing new technologies for identifying 

mutations. One of these is next-generation sequencing. This technology enables the 

identification of copy number changes, chromosomal alterations such as translocations and 

inversions, and point mutations. 

3. Activating mutations and targeted therapies  

Recent advances in molecular oncology and discoveries in genetic alterations have yielded 

new treatment strategies that target specific molecules and pathways in the cancer cell and 

thereby shed light on personalized therapy. In the past, treatment decisions were based on 

pathologic results. Now, diagnostic or therapeutic decisions are often also based on 

genetics/genomic alterations. Currently, the genomic view effectively guides cancer 

treatment decisions and predicts therapeutic response. Early clinical success was achieved 

with all-trans retinoic acid therapy in patients with acute promyelocytic leukemia 

(characterized by chromosomal translocations involving retinoic acid receptor α, the target 

of all-trans retinoic acid) (Huang, Ye et al. 1988; Castaigne, Chomienne et al. 1990), Herceptin 

(trastuzumab, a monoclonal antibody) and in patients with breast cancer in which ERBB2 is 

amplified and/or overexpressed (Baselga, Tripathy et al. 1999; Slamon, Leyland-Jones et al. 

2001; Vogel, Cobleigh et al. 2002). Also, imatinib mesylate and, subsequently, nilotinib (a 

selective ABL tyrosine kinase inhibitor [TKI]) have proved effective in patients with the 

BCR-ABL fusion gene, including most individuals (95%) with chronic myeloid leukemia 

(CML), which constitutively activates the ABL tyrosine kinase (Mauro, O'Dwyer et al. 2002). 

These successes motivated the discovery of new targets and selective inhibitors for those 

targets. Currently, targeted therapeutics are used to target receptor tyrosine kinases (EGFR, 

ERBB2, FGFR1, FGFR2, FGFR3, PDGFRA, PDGFRB, ALK, c-MET, IGF1R, c-KIT, FLT3, and 

RET), non-receptor tyrosine kinases (ABL, JAK2, and SRC), serine-threonine-lipid kinases 

(BRAF, Aura A and B kinases, mTOR, and PIK3), and DNA damage and repair genes (BRCA1 

and BRCA2), however not all therapeutics are selective inhibitors. Here, we focus on 

activating mutations that are targeted by selective inhibitors to inhibit only mutated genes; 

EGFR, ALK, c-KIT, BCR-ABL, JAK2, BRAF, IDH1, IDH2, FLT3 and PIK3CA (Table 1).  
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EGFR BRAF KRAS PIK3CA c-KIT BCR-ABL IDH1 JAK2 

G719A12 M117R13 G12C5, 12 E542K4, 5, 6, 28, 29 K642E13, 22 M244V10 
R132C2, 5, 8, 9, 19,

20, 21, 27 
V617F8, 19, 20 

G719C12 I326T4 G12R12 E545K4, 5, 6, 9, 12, 28, 29 L576P13 L248V10 
R132H1, 2, 9, 21, 26, 

27 
K539L19 

G719S12 K439Q12 G12S5, 12 E545Q4 W557R13 G250E10 R132S2, 9, 26 N542-E543del19 

T790M12 K439T12 G12A5, 9, 12 E545A4 V559A13 Q252H10 R132G2, 9, 26 F537-K539delinsK19 

L858R4, 12 T440P12 G12D5, 12 E545G4, 5, 29 V560D22 Y253F10 R132L2, 9, 26 H538-K539delinsL19 

L858Q12 V459L12 G12V5, 12 E545V4 D816H13, 22 Y253H10 R132V2, 9 F537-I546dupF547L19 

L858L21 G469A14 G13C5, 12 Q546K4, 6 F504L13 E255K10 R132G2 E543del19 

D761Y12 R462I5 G13R12 Q546E4 S502-Y503insFA13 E255V10 V71I14, 24 H538QK539L19 

L747S12 I463S5 G13S12 Q546P4 K550N13 D276G10 G123R24 I540-E543delinsMK19 

T854A12 G464E5, 11, 17 G13A12 Q546R4, 6 Y553N13 E279K10 G97D9, 25 F547V19 

P782L21 G464V5, 11, 17 G13D5, 12, 14 Q546L4 556insL13 V299L10

IDH2 

H538DK539LI540S19 

F788L21 G464R5, 11, 17 Q61K10, 12, 13 D549N4 K558N13 F311L10 F537-F547dup19 

R748K21, 22 G466A6, 12, 13 Q61L5, 10, 12 H1047L4, 6, 29 G565V13 T315I10 I540-N542delinsS19 

L747–S752del G466E12, 13 Q61R12, 13 H1047R4, 5, 6, 9, 28, 29 N566D13 T315A10 V294M13 V536-F547dup19 

E746-A750del4, 17, 28 G466R12, 13 Q61H5, 10, 12, 14 Q1064R6 V569G13 F317L10 R172K2, 9 V536-I546dup19 

S752-I759del4 G466V 12, 13 A146T5, 14 A1066V6 R634W13 F317V10 R172M2, 9  

L707S25 F468C5 Y64D14 Y1021C6 V654A13 F317C10 R172G2, 9

FLT3 T710A25 G469A3, 5, 10, 11, 12, 13,16 L19F14 G12-R19del6 N655K13 M351T10 R172S2

E711V25 G469E3, 5, 10, 11, 12, 13,16 K117N14 R38H6 D816H13 E355G10 R172W2, 9

E749K25 G469R3, 5, 10, 11, 12, 13,16 E63K14 R88Q4, 5, 6, 9 D816V2, 13 F359V10 R140Q2, 9, 19, 20 Y592A2 

E762G25 G469S3, 5, 10, 11, 12, 13,16 K147N28 G106A6 D820V13 F359C10 R140W2  

A767T25 G469V3, 5, 10, 11, 12, 13,16 G12F10, 12 E109del6 D820Y13 V379I10 R140L2, 26 Y599F2 

K745R28 K475E13 V344G6 N822I13 L384M10 F691L2 

G735S24 N581S5 E309NfsX106 N822K2, 13 L387M10  

R108K9 E586K17 E453K4, 6 Y823D13 H396R10  

T263P9 D587A5 M1043V6, 9 A829P13 H396P10 D835N2 

A289V9 D594G5, 13, 16, 23 M1043I6 I841V13 F486S10 D835Y2 

G598V9 D594K5, 13, 16, 23 E81K6 S864F13 E459K D835A2 

L861Q9 D594V5, 13, 16, 23 H1048R6 V120F29 D835E2 

R680G9 F595L5, 11 G1049R6 V560D22 D835H2 

G136A9 G596R5 E418K6 Y503-F504insAY22 D835V2 

G136C9 L597Q11, 12, 13, 17 C420R6 Y570-L576del22 D835F2 

G323A9 L597R11, 12, 13, 17 H701P6 A599T15 I836F2 

A787C9 L597S11, 12, 13, 17 LWGIHLM10del9 V833L10, 30 I836S2 

C866A9 L597V11, 12, 13, 17 P18del9 P577S10, 30 M837P2 

G865A9 T599I5 N345K9 V825A10, 30 Y842H2 

C866T9 T599-ins(T-T)13 C420R9 L576P30 Y842D2 

G971T9 
V600D3, 4, 5, 7, 9, 11, 12, 

13, 17, 22, 23, 24 
  E562K 30    

G988A9 
V600E3, 4, 5, 7, 9, 11, 12, 

13, 17, 22, 23, 24 
  N564S30    

D1006Y14 
V600G3, 4, 5, 7, 9, 11, 12, 

13, 17, 22, 23, 24 
  D816V2, 10, 17    

M178I28 
V600K3, 4, 5, 7, 9, 11, 12, 

13, 17, 18, 19, 23 
  D816H2, 10, 17, 26    

I475V28 
V600M3, 4, 5, 8, 9, 11, 12, 

13, 17, 22, 23, 24 
  D816I10    

S492R25 V600R D816G10  

F712S25 V600-K605 ins13 D816F10  

T725T25 K601E5, 13, 22 V825A2  

V742V21, 25 K601N5, 13, 22 D816Y2, 17, 26  

F795S25 R682Q6 R634R30  

G796S25 A728V1 D820G19  

G796V21  V825I19  

T751I21  E839K19  

R748K21  I957T19  

R836R25  P31L19  

T847I4  R956Q19  

Q820R21  T22A19  

E804G21  G961S19  

L828M21  K642E13  

F856Y21  V559D22  

F856L21  W557R22  
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A839V21  V559G22  

G863D12, 21  V559D13, 22  

V851I12, 21  V540L2  

I821T21  M541L2  

I789I21   

H870N21   

V834A21   

T725M17   

L858R17   

R832C17   

A868D17   

T852M17   

T725A17   

L703P17   

S720F17   

N700S17   

R836S17   

G721S17   

L703P17   

K708G17   

P772-H773insV12   

R108K9   

L62R9   

V651M9   

R222C9   

T263P9   

A289T9   

A289V9   

A597P9   

G598V9   

C620Y9   

S703F9   

1Acute lymphocytic leukemia; 2acute myleloid leukemia; 3Barret’s adenocarcinoma; 4breast carcinoma; 5colon 

carcinoma; 6endometrial carcinoma; 7ependymoma; 8essential thrombocyte; 9glioma; 10leukemia; 11hepatocellular 

carcinoma; 12lung cancer; 13melanoma; 14multiple myeloma; 15neuroblastoma; 16non-hodgkins lymphoma; 17ovarian 

carcinoma; 18pancreas cancer; 19polycythemia vera; 20primary myelofibrosis; 21prostate cancer; 22sarcoma; 23stomach 

cancer; 24thyroid cancer; 25colorectal cancer; 26myelodysplastic syndromes; 27paraganglioma; 28H&N (head and neck) 

cancer; 29esophageal cancer, 30lymphoma. 

Table 1. Mutations have been reported at EGFR, BRAF, KRAS, PIK3C, c-KIT, ABL, IDH1, IDH2 and JAK2 

in variety of cancers (Garnett and Marais 2004; Lee, Vivanco et al. 2006; Loeffler-Ragg, Witsch-

Baumgartner et al. 2006; Thomas, Baker et al. 2007; Balss, Meyer et al. 2008; The Cancer Genome Atlas 

Network 2008; Bleeker, Lamba et al. 2009; Hayes, Douglas et al. 2009; MacConaill, Campbell et al. 2009; 

Yan, Parsons et al. 2009; de Muga, Hernandez et al. 2010; Gravendeel, Kloosterhof et al. 2010; Green and 

Beer 2010; Reitman and Yan 2010; Yen, Bittinger et al. 2010; Chapman, Lawrence et al. 2011; Konopka, 

Janiec-Jankowska et al. 2011; Metzger, Chambeau et al. 2011; Murugan, Dong et al. 2011; Passamonti, Elena 

et al. 2011; Peraldo-Neia, Migliardi et al. 2011; Stransky, Egloff et al. 2011; Tanaka, Terai et al. 2011; The 

Cancer Genome Atlas Network 2011; Teng, Tan et al. 2011; Montagut, Dalmases et al. 2012; Weisberg, 

Sattler et al. 2010; Catalog of Somatic Mutations in Cancer: www.sanger.ac.uk/genetics/CGP/cosmic/) 

3.1. Activating mutations at BCR-ABL 

In a normal cell, ABL protein is located in the nucleus, but in cancer cells the BCR-ABL 

fusion protein is found in the cytoplasm and is constitutively active (Goldman and Melo 

2008). Studies have shown that BCR-ABL is oncogenic in hematopoietic cells, promoting 

leukemic cell proliferation and inhibiting apoptosis (Lugo, Pendergast et al. 1990; Stoklosa, 

Poplawski et al. 2008). Notably, BCR-ABL activity has also been found to stimulate the 
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generation of mutagenic reactive oxygen species and to inhibit DNA repair mechanisms 

(Koptyra, Falinski et al. 2006; Fernandes, Reddy et al. 2009). 

The discovery of this oncogenic fusion protein led to the development of imatinib mesylate. 

Imatinib, an ABL kinase inhibitor, was the first therapeutically successful treatment for CML 

and gained U.S. Food and Drug Administration approval in 2001. However, a substantial 

proportion of patients with CML developed resistance to imatinib because of mutation in 

BCR-ABL fusion gene (>90 mutations that affect >55 amino acid residues in BCR-ABL) (Table 

1) (Branford 2007). Interestingly, BCR-ABL mutations were found in 57% of patients with 

acquired resistance to imatinib compared with 30% of patients with primary resistance 

(Soverini, Colarossi et al. 2006). The point mutation(s) in the BCR-ABL kinase domain result 

in the resistance to imatinib by reducing the flexibility of the kinase domain and its binding 

to imatinib, and inhibiting the activity of the kinase (Burgess, Skaggs et al. 2005; O'Hare, 

Walters et al. 2005). 

T315I is the most common imatinib-resistant mutation in BCR-ABL; among the other highly 

imatinib-resistant mutations are L248V, Y253F/H, E255K/V, H396P/R, and F486S 

(Houchhaus, La Rosee et al. 2011). These discoveries were followed by the development of 

second-generation TKIs to inhibit BCR-ABL: dasatinib, and nilotinib. The response rate to 

these second-generation BCR-ABL inhibitors in patients harboring imatinib-resistant 

mutations is variable, depending on the mutation: L248V (40%), G250E (33%), E255K (38%), 

and E255V (36%), but response rates are low in those harboring F317L (7%) or Q252H (17%) 

(Muller, Cortes et al. 2009). The following imatinib-resistant mutations are sensitive to 

nilotinib: M351T, G250E, M244V, H396R, F317L, E355G, E459K, F486S, L248V, D276G, 

E279K, and V299L. The following are sensitive to dasatinib: M351T, G250E, F359V, M244V, 

Y253H, H396R, E355G, E459K, F486S, L248V, D276G, E279K, Y253F, F359C, and F359I. The 

following mutations are resistant to dasatinib: V299L, T315A, and F317I/L. The following are 

resistant to nilotinib: Y253F/H, E255K/V, and F359C/V (Hochhaus, La Rosee et al. 2011). All 

three these inhibitors inhibit the catalytic activity of BCR-ABL by binding to the ATP-

binding pocket of the ABL kinase domain. 

3.2. Activating mutations at BRAF 

One of the discoveries of mutations affecting cancer prognosis is BRAF mutations. BRAF has 

been discovered to be the most commonly mutated oncogene in melanoma (50–60%) 

(Davies, Bignell et al. 2002), papillary thyroid carcinoma (36–53%) (Yeang , McCormick et al. 

2008), colon carcinoma (57%), serous ovarian carcinoma (~30%) (Yeang , McCormick et al. 

2008), and hairy cell leukemia (100%) (Tiacci, Trifonov et al. 2011). To date, >60 distinct 

mutations in the BRAF gene have been identified (Table 1) (Garnett and Marais 2004; Catalog 

of Somatic Mutations in Cancer: www.sanger.ac.uk/genetics/CGP/cosmic/). The most 

prevalent mutation is a missense mutation in BRAF, which results in a substitution of 

glutamic acid to valine at codon 600 (BRAFV600E) and occurs in 90% of all BRAF mutations 

(Garnett and Marais 2004). BRAF encodes BRAF, a member of the RAF family of 

cytoplasmic serine/threonine protein kinases. BRAF phosphorylates MEK protein and 
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activates ERK signaling, downstream of RAS, which regulates multiple key cellular 

processes that are required for cell proliferation, differentiation, apoptosis, and survival. The 

RAF family (A-RAF, B-RAF, C-RAF) members are components of a signal transduction 

pathway downstream of the membrane-bound small G-protein RAS, which is activated by 

growth factors, hormones, and cytokines (Robinson and Cobb 1997). 

MEK inhibitors suppress ERK signaling in all normal and tumor cells. In contrast, the RAF 

inhibitor vemurafenib inhibits the ERK pathway and cell proliferation only in tumor cells 

with mutant BRAF. Targeted therapy and selective inhibitors for certain altered genes are 

crucial to enable targeting of tumor cells but not normal cells. 

Mutated BRAF activates and deregulates the kinase activity of BRAF. The recently 

developed BRAF inhibitor vemurafenib (PLX4032) inhibits RAF activation selectively only 

in cells carrying the BRAF V600E mutation. Clinically, vemurafenib has an 80% response 

rate in metastatic melanoma patients harboring the BRAF V600E mutation, but 18% of 

patients treated with vemurafenib develop at least one squamous-cell carcinoma of the skin 

or keratoacanthoma as an adverse event (Chapman, Hauschild et al. 2010). The remaining 

20% of patients who harbor the BRAF V600E mutation, and also patients who do not harbor 

the BRAF V600E mutation, are resistant to vemurafenib. Other mechanisms that cause 

vemurafenib resistance are mutations in NRAS and c-KIT alterations. c-KIT alterations 

(mutations and/or amplifications) are found more frequently (28-39%) in melanomas from 

acral, mucosal, and chronically sun-damaged sites (Curtin, Busam et al. 2006), whereas 

uveal melanomas uniquely harbor activating mutations in the a-subunit of a G proteins of 

the Gq family, GNAQ and GNA11 (Van Raamsdonk, Bezrookove et al. 2009; Van 

Raamsdonk, Griewank et al. 2010). NRAS mutations are observed in 15–30% of cutaneous 

melanomas and are mutually exclusive of BRAF mutations; the most common change occurs 

at G12 or Q61 (Brose, Volpe et al. 2002). Currently, no selective inhibitor for those mutations 

exists. In contrast, BRAF mutations are also found in colon cancer (8%) (Hutchins, 

Southward et al. 2011), papillary thyroid cancer (44%) and anaplastic thyroid cancer (24%) 

(Xing, Westra et al. 2005), but limited study has reported to date. However, vemurafenib has 

limited therapeutic effects in BRAF (V600E) mutant colon cancers because inhibition of 

BRAF (V600E) causes a rapid feedback activation of EGFR, which induces continued 

proliferation in BRAF (V600E) inhibited cells. Therefore, blocking the EGFR by gefitinib, 

erlotinib or cetuximab has strong synergistic with inhibition of BRAF (V600E) by 

vemurafenib in colon tumor cell in vivo and in vitro (Prahallad, Sun et al. 2012). The question 

remains to answer whether the same BRAF selective inhibitor can be effective in other 

tumor types due to lack of evidence. 

3.3. Activating mutations at PIK3CA 

Shortly after BRAF mutations were found and selective inhibitors of the mutant BRAF were 

developed, activating point mutations were found in PIK3CA (Samuels, Wang et al. 2004) in 

a variety of cancers, including breast (20–30%) (Bachman, Argani et al. 2004; Campbell, 

Russell et al. 2004), colorectal (Parsons, Wang et al. 2005), endometrial (Samuels and Ericson 
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2006), ovarian, and hepatocellular cancers and medulloblastoma (Broderick, Di et al. 2004), 

among others (Kang, Bader et al. 2005; Lee, Soung et al. 2005). PIK3CA encodes the p110α 

catalytic subunit of phosphatidylinositol 3-kinase (PI3K), a lipid kinase that drives AKT 

signaling to govern cell growth and survival. PI3Ks are heterodimers, composed of catalytic 

(p110α; PI3Kα) and regulatory (p85) subunits. Catalytic units include the ABD, RBD, C2, 

helical, and kinase domains, whereas the regulatory unit comprises the SH3, GAP, nSH2, 

iSH2, and cSH2 domains. Mutations mostly cluster between the kinase domain and other 

domains within the catalytic subunit (Huang, Mandelker et al. 2007). The family of receptor 

tyrosine kinase, together with the MAP kinase and PI3K cascades, forms part of the obsolete 

growth factor signaling pathway governing tumor cell growth and survival (Samuels, Diaz 

et al. 2005). Due to complexity and diverse activation of PI3K signaling, such as activating 

mutations or amplification of PIK3CA, or upstream of RTK, loss of PTEN or activating 

mutations of RAS in human cancers (Courtney, Corcoran et al. 2010), developing the 

effective therapeutic agents against PIK3CA might be more challenging (Zhao and Vogt 

2008). Hereby, either single agents or combination with other therapeutic agents against to 

PIK3CA are under development (Courtney, Corcoran et al. 2010). 

3.4. Activating mutations at EGFR 

This finding was followed by the identification of activating point mutations and small 

insertions/deletions in EGFR, an oncogene encoding a receptor tyrosine kinase, which is 

present more frequently in East Asian individuals with non–small-cell lung cancer (NSCLC) 

(25%) than in Caucasian people (10–15%) and occurs most frequently in lung 

adenocarcinomas (Lynch, Bell et al. 2004; Paez, Janne et al. 2004; Pao, Miller et al. 2004). 

Activating mutations were initially identified in 3 kinase domain exons (18, 19, and 21), 

encoding G719S and G719C in exon 18 and L861Q in exon 21; the most common mutations 

are small in-frame deletions in exon 19 and the leucine-to-arginine substitution mutation 

L858R. L858R mutation causes constitutive activation of the tyrosine kinase of EGFR. 

Oncogenic mutation of EGFR activates downstream signaling pathways of EGFR, which are 

implicated in tumor cell growth, proliferation, and survival. This discovery led to the 

development of the selective EGFR TKIs erlotinib and gefitinib. Inhibition of EGFR by EGFR 

inhibitors blocks the activity of tyrosine kinase, and hence the activation of the downstream 

cellular pathways. Individuals with lung adenocarcinoma harboring the G719S and L858R 

mutations are sensitive to gefitinib or erlotinib. Although patients harboring these 

mutations have a high response rate to the EGFR inhibitors gefitinib and erlotinib, the 

duration of the response is not long, and patients relapse after about a year of treatment 

(Pao and Chmielecki 2010). 

One of the mechanisms by which resistance to erlotinib or gefitinib develops in 50% of 

relapsed patients is acquisition of a resistant mutation in exon 20 (T790M) in EGFR 

(Kobayashi, Boggon et al. 2005; Pao, Miller et al. 2005) or activating mutation in KRAS (Pao, 

Wang et al. 2005). A second mutation in EGFR (T790M) is also found rarely in the germline 

to be associated with an inherited susceptibility to lung cancer (Bell, Gore et al. 2005; Vikis, 

Sato et al. 2007). This mutation has been shown to decrease the affinity of EGFR to gefitinib 
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in the L858R mutant by increasing the affinity of EGFR to ATP (Yun, Mengwasser et al. 

2008). This resistant mutant led to the development of promising new agents as second-

generation EGFR inhibitors (Li, Shimamura et al. 2007; Li, Ambrogio et al. 2008; Zhou, Ercan 

et al. 2009). Another mechanism by which resistance to erlotinib or gefitinib develops is 

amplification (20%) or mutation (Y1230H) in MET, an oncogene encoding receptor tyrosine 

kinase (Bean, Brennan et al. 2007; Engelman, Zejnullahu et al. 2007). Overexpression of HGF, 

a specific ligand of MET, is another mechanism by which resistance to EGFR inhibitors 

develops (Yano, Wang et al. 2008). 

Gefitinib and erlotinib are first-generation, reversible EGFR inhibitors. Currently being 

developed are second-generation irreversible EGFR inhibitors, which inhibit EGFR kinase 

activity even when the T790M mutation is present. Neratinib (HKI-272) (Li, Shimamura et 

al. 2007; Wong, Fracasso et al. 2009; Sequist, Besse et al. 2010) and afatinib (BIBW 2992) 

(Eskens, Mom et al. 2008; Li, Ambrogio et al. 2008; Yap, Vidal et al. 2010) are dual inhibitors 

against EGFR and HER2, and PF-00299804 is a multi-inhibitor against EGFR, ERBB2, and 

ERBB4 (Engelman, Zejnullahu et al. 2007). For MET gene amplification, the MET inhibitor 

PHA-665752 has been developed (Engelman, Zejnullahu et al. 2007). Recently, new EGFR 

inhibitors (WZ4002, WZ3146, and WZ8040) have been reported that suppress the growth of 

EGFR T790M-containing cell lines by inhibiting phosphorylation (Zhou, Ercan et al. 2009). 

Erlotinib has a statistically significantly higher response rate than chemotherapy (83% vs 

36%) (Friedrich 2011). In fact, some activating mutations, like those of KRAS, may not be 

drug targets but may rather govern the resistance to selective inhibitors of EGFR (Allegra, 

Jessup et al. 2009). Activating mutations of EGFR are also present in glioma, breast, 

endometrial and colorectal carcinomas. KRAS mutations at G12 and G13 are associated with 

resistance to erlotinib or gefitinib in EGFR mutated lung adenocarcinoma parients (Pao, 

Wang et al. 2005) and metastatic colorectal carcinoma (Allegra, Jessup et al. 2009). 

Shortly after the discovery of EGFR mutations, somatic activating mutations of ERBB2 were 

found in 2–4% of patients with lung adenocarcinoma. ERBB2 is a receptor tyrosine kinase, 

one of the members of ERBB family, and the only one that does bind to any known ligand 

but activates downstream signaling pathways by homo- or hetero-dimerization with other 

ERBB family members. Small in-frame insertion mutations span exon 20 of the kinase 

domain of ERBB2, and these are analogous to the mutations in the paralogous exon 20 in the 

EGFR gene that confer resistance to erlotinib or gefitinib. ERBB2 is a receptor tyrosine kinase 

that heterodimerizes or homodimerizes with EGFR and other members of the ERBB family, 

ERBB3 and ERBB4, to activate downstream signaling pathways (Hynes and Lane, 2005).. 

3.5. Activating mutations at JAK2 

The discovery of the somatic gain-of-function mutation (V617F) in Janus kinase 2 (JAK2) in 

>90% of individuals with polycythemia vera, 50% of individuals with primary 

myelofibrosis, and 60% of those with essential thrombocytopenia (Levine, Wadleigh et al. 

2005), all of which are Philadelphia chromosome -negative myeloproliferative neoplasms, 

generated interest in developing JAK2 inhibitors. The JAK kinases (JAK1, JAK2, JAK3, and 

JAK4) were first identified in 1989 (Wilks 1989). Structurally, all members of the JAK family 
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contain seven distinct domains: JAK homology (JH) domains 1 to 7 (JH1–7). The tyrosine 

kinase domain (JH1) is located at C-terminus of the protein and is responsible for the kinase 

activity. The pseudokinase domain (JH2) has no kinase activity, but deletion of the JH2 

domain leads to increased kinase activity. JH3 and JH4 are similar to the SH2 domain, and 

their roles are still unclear (Wilks, Harpur et al. 1991; Lindauer, Loerting et al. 2001; 

Giordanetto and Kroemer 2002; Saharinen and Silvennoinen 2002). JH5, JH6, and JH7 are 

located at the amino-terminus of the protein and play a role in binding the JAK molecule to 

the cytokine receptor and in maintaining receptor expression at the cell surface (Huang, 

Constantinescu et al. 2001). JAK2 is a nonreceptor tyrosine kinase that mediates signals 

between cytokine receptors and downstream targets. 

An activating mutation of JAK2, a valine-to-phenylalanine substitution at position 617 (V617F) 

(Scott, Tong et al. 2007), leads to constitutive activation of STAT5. The JAK inhibitors 

INCB01824, TG101348, and lestaurtinib (CEP701), which inhibit JAK1 and JAK2, results in a 

marked reduction (>50%) in massive splenomegaly (Verstovsek, Kantarjian et al. 2010).  

3.6. Activating mutations at c-KIT 

Other kinase activating mutations have been found in the oncogene c-KIT in gastrointestinal 

stromal tumors (GIST), acral or mucosal melanoma, endometrial carcinoma, germ cell tumors, 

myeloproliferative diseases, and leukemias, which is the mutations cause constitutive 

activation of c-KIT (Malaise, Steinbach et al. 2009). c-KIT is a transmembrane cytokine receptor 

tyrosine kinase that is expressed on the surface of hematopoietic stem cells. Most GIST patients 

who harbor c-KIT mutations have a response to imatinib mesilate (80%). This raises the 

question of whether imatinib or nilotinib (TKIs) may elicit clinical responses in KIT-mutant 

melanoma or endometrial carcinoma or in other cancers that harbor KIT mutations. Acquired 

resistance to imatinib commonly occurs via secondary gene mutations in the c-KIT kinase 

domain in GIST. For example, the V560G mutation in KIT is sensitive to imatinib, although the 

D816V mutation is resistant to imatinib (Mahadevan, Cooke et al. 2007). 

3.7. Mutations at IDH1 and IDH2 

IDH1 encodes a nicotinamide adenine dinucleotide phosphate (NADP)+-dependent enzyme 

that converts isocitrate to 2-ketoglutarate in the cytoplasm. Somatic mutations were found to 

be present in IDH1 and IDH2 in 88% of individuals with secondary glioblastomas, 68% of 

those with grade II glioma (lower grade diffuse astrocytomas), 78% of those with grade III 

anaplastic astrocytomas, and 69% of those with grade III anaplastic oligodendrogliomas 

(Dang, Jin et al. 2010; Dang, White et al. 2010) as well as 31% of patients with 

myeloproliferative neoplasm (Green and Beer 2010) and 10% of those with acute myeloid 

leukemia (AML) (Dang, Jin et al. 2010; Yen, Bittinger et al. 2010). Mutations in IDH were first 

reported to be activating mutations, but subsequent studies of mutations at arginine R132 

(in IDH1) and at R140 or R172 (in IDH2) in the enzyme showed a gain of new function and 

the ability to convert alpha-ketoglutarate to 2-hydroxyglutarate (Dang, White et al. 2009). 

Mutations that have been reported in IDH1 and IDH2 are summarized in Table 1. Mutations 

in these metabolic enzymes uncover novel avenues for the development of anticancer 
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therapeutics, but specific inhibitors are needed for the mutated forms R132, R140, or R172. It 

is not clear what the role of this mutation is in cancer and whether it is crucial for 

tumorigenesis, although the 2-hydroxyglutarate metabolite is a biomarker that can be 

measured in whole blood and used to select targeted therapy (Yen, Bittinger et al. 2010). 

3.8. Fusion genes 

Another recent breakthrough was the discovery of translocations or other chromosomal 

rearrangements between ETS transcription factors (ERG, ETV1, and ETV4) in >40% of prostate 

cancers (Tomlins, Rhodes et al. 2005; Tomlins, Laxman et al. 2007; Berger, Lawrence et al. 2011) 

and the fusion of anaplastic lymphoma kinase (ALK) with other genes in NSCLC (Soda, Choi 

et al. 2007; Choi, Soda et al. 2010). Echinoderm microtubule-associated protein-like 4 (EML4) is 

fused to ALK, which leads to a fusion-type tyrosine kinase between the N-terminus of EML4 

and the C-terminus of the ALK that is a chimeric oncoprotein and is found in 3–5% of NSCLC 

tumors (Soda, Choi et al. 2007; Choi, Soda et al. 2010). The inversion on chromosome 2p 

[inv(2)(p21p23)] leads to formation of the ELK4-ALK fusion oncogene. The chromosomal 

inversion occurs in different locations, and multiple EML4-ALK variants have been reported; 

all involve the intracellular tyrosine kinase domain of ALK (exon 20) but different truncation of 

EML4 (exon 2, 6, 13, 14, 15, 17, 18, or 20), TFG, and KIF5B; the most common inversion is in 

exon 13 of EML4 (Hernandez, Pinyol et al. 1999; Choi, Takeuchi et al. 2008; Takeuchi, Choi et 

al. 2009). The amino-terminal coiled-coil domain within EML4 is necessary and sufficient for 

the transforming activity of EML4-ALK (Soda, Choi et al. 2007). This fusion tyrosine kinase 

may activate downstream signaling pathways of ALK, such as RAS/RAF. This recent 

discovery of the genetic rearrangement between ALK and the aforementioned genes has led to 

the development of another targeted agent, crizotinib (PF-02341066), for the treatment of 

NSCLC. Crizotinib, a TKI that was initially designed as an inhibitor of MET, is currently used 

to inhibit both tyrosine kinases, MET and ALK in NSCLC. ALK rearrangement has been found 

mostly in younger and more likely to be never or light smoker lung adenocarcinomas and is 

more frequent in the Asian population than in the American or European population (Sasaki, 

Rodig et al. 2010). Patients who developed resistance to BRAF inhibitors were found to be 

harboring the C1156Y (46.6%) and L1196M (15.1%) mutations in the ALK gene (Choi, Soda et 

al. 2010) and also the F1174L mutation (Sasaki, Okuda et al. 2010). 

3.9. Activating mutations at FLT3 

FLT3 encodes a receptor tyrosine kinase that is involved in stem cell development and 

differentiation, stem and/or progenitor cell survival, and the development of B-progenitor 

cells, dendritic cells, and natural killer cells in the bone marrow (Small, Levenstein et al. 

1994). Two common mutations have been found in AML: internal tandem duplication (ITD) 

in-frame mutations of 3–400 base pairs in the juxtamembrane region, and point mutations in 

the tyrosine kinase domain (TKD) D835 (7%). Mutations in the ITD and TKD lead to 

constitutive activation of tyrosine kinase (Abu-Duhier, Goodeve et al. 2001), and this finding 

led to the design of the first-generation FLT3 inhibitors lestaurtinib (CEP701) (Smith, Levis 

et al. 2004), midostaurin (PKC412A) (Stone, DeAngelo et al. 2005), sunitinib 
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(SU11248)(O'Farrell, Foran et al. 2003), sorafenib (BAY43-9006), and tandutinib (MLN518), 

followed by the second-generation FLT3 inhibitors KW2449 (Pratz, Cortes et al. 2009) and 

AC220 (Zarrinkar, Gunawardane et al. 2009). 

4. Future directions 

Drugs targeting some of these mutations are now either undergoing clinical testing or have 

protocols in the approval process. The discovery of base mutations through systematic DNA 

sequencing has provided decisive genetic evidence that these same pathways play crucial 

roles in tumorigenesis and maintenance and has also opened up new avenues for the 

deployment of targeted therapeutics. We are just starting to understand the genetic 

mechanisms that lead to the development of cancer and play a role in treatment. Hence, we 

are still at the beginning of the road map to targeted therapy. We still need to discover all 

activating mutations or other chromosomal rearrangements, inactivating mutations, and 

epigenetic alterations in the genome that drive cells to tumorigenesis for each type and 

subtype of cancer, and we need to identify resistant and sensitive mutations to find the 

correct targets for the development of new selective therapeutic agents, and use 

combination of selective therapeutic agents. 
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