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1. Introduction 

1.1. Photoaffinity labeling 

Elucidation of protein functions on the basis of structure–activity relationships can reveal 

the mechanisms of homeostasis functions in life and is one of the greatest interests of 

scientists. In the human body, many proteins are activated and/or inactivated by ligands to 

maintain homeostasis. Understanding the mechanism of molecular interactions between 

small bioactive ligands and proteins is an important step in rational drug design and 

discovery.  

Photoaffinity labeling, which is one of the most familiar approaches for chemical biology 

analysis, was initiated using diazocarbonyl derivatives in 1962 (Singh et al., 1962). Many 

researchers have subsequently tried to establish alternative approaches for the direct 

identification of target proteins for the bioactive small ligands. These approaches are based 

on the affinity between the ligand and the target protein (Figure 1). Several reviews are 

published for the recent applications of photoaffinity labeling (Tomohiro et al., 2005; 

Hashimoto & Hatanaka, 2008).  

To archive photoaffinity labeling, researchers have to prepare photoaffinity labeling ligands. 

The native ligands must be modified by photoreactive compounds (photophores) by organic 

synthesis.  
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Figure 1. Schematic representation of photoaffinity labeling 

1.2. Photophore synthesis and their properties 

1.2.1. Selections of photophores 

It is important which photophores are used for effective photoaffinity labeling (Figure 2). 

Typically, aryl azide, benzophenone, or trifluoromethylphenyldiazirine (TPD) have been 

used.  

Aryl azides are photoactivated below a wavelength of 300 nm, which sometimes causes 

damage to biomolecules. In addition, these generate nitrenes (Platz, 1995) as active species 

and these sometimes rearrange to ketimines as undesired side products (Karney & Borden, 

1997). 

Benzophenones are photoreactivated with light over 350 nm and generate reactive triplet 

carbonyl states (Galardy et al., 1973). These regenerate ground-state carbonyl compounds 

and so benzophenone ligands are reusable for other photolabeling experiments, although 

the photophores sometimes need long photoirradiation times for labeling.  

TPD, with a three membered ring and nitrogen-nitrogen double bond, are also 

photoreactivated with light over 350 nm. These generate carbenes, which are more highly 

reactive species than other photophores, and rapidly form cross-links to biomolecules with 

short photoirradiation times (Smith & Knowles, 1973). It has been reported that the 

photolysis of diazirines can cause diazo isomerization, giving undesired intermediates in 

photoaffinity labeling. Diazo isomerization can be suppressed by introduction of a 

trifluoromethyl group into a diazirinyl three-membered ring (Brunner et al., 1980; Nassal, 

1983).  
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Figure 2. Photophores and their reactive intermediates following irradiation 

Comparative irradiation studies of these three photophore types in living cells suggested 

that the irradiation needed for the generation of active species from azide and 

benzophenone caused cell death because long irradiation times are needed to incorporate 

the photophores into cell membrane surface biomolecules. By contrast, a carbene precursor 

– trifluoromethylphenyldiazirine (TPD) – did not cause cell death in the generation of active 

species (Hashimoto et al., 2001). Never-the-less, benzophenones (such as those attached to -
secretase) are sometimes preferred for photoaffinity labeling experiments in vitro (Fuwa et 

al., 2006 & 2007). 

1.2.2. Synthesis of trifluoromethylphenyldiazirine (TPD) 

There are more several steps involved in the the constructions of the TPD skeleton than are 

needed for synthesis of other photophores. Synthesis of the TPD three-membered ring 

required at least five steps from the corresponding aryl halide derivatives (Figure 3).  

Although TPD is commercially available many are very expensive (1200 USD/0.5g for the 

simple TPD). In many previous synthetic routes the functional groups, which can be 

connected to ligands, tags and isotopes, should be pre-installed onto the benzene ring 

before constructions of three membered rings. The repeated construction of a diazirine 

moiety for each derivative is a drawback for application of the photophore for 

photoaffinity labeling.  
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Figure 3. Synthesis of trifluoromethylphenyldiazirine derivatives 

1.2.3. Post-functional synthesis of TPD derivatives 

Our breakthrough work on “post-functional” adaptation of diazirinyl compounds 

(Hatanaka et al., 1994, a & b) revealed that the trifluoromethyl-substituted three-membered 

ring was stable under many organic reaction conditions. Although the 3-

(trifluoromethyl)diazirinyl moiety is categorized as an alkyl substituent, polarization means 

that the quaternary carbon atom is slightly positively charged, so the moiety is less activated 

towards electrophilic aromatic substitution than its unsubstituted counterpart (Hashimoto 

et al., 2006). We first selected the m-methoxy- substituted TPD (Fig. 4 R = OCH3) as the 

mother skeleton, because: 1) the methoxy group strongly activates for electrophilic aromatic 

substitution, 2) the orientation of the substitution favors the o-position against the methoxy 

group, because the p-position is sterically hindered by the 3-(trifluoromethyl)diazirinyl 

moiety, and 3) demethylation of m-methoxy-TPD was easier than for p-methoxy-TPD, and 

realkylation of phenol derivative after demethylation was utilized for introduction of the 

tag.  

 

Figure 4. Post-functional synthesis of trifluoromethylphenyldiazirine derivatives 

It is somewhat difficult to derivatize unsubstituted TPD (Fig. 4, R=H) as this is less 

susceptible to aromatic substitution than m-methoxy TPD. It would need harsh conditions 

for the substitutions on aromatic ring. For example, the formylation with dichloromethyl 

methyl ether was performed using titanium chloride in dichloromethane for the 3-methoxy 

diazirine at 0 °C while the unsubstituted TPD did not afford formyl derivatives under the 

same condition. It is only archived when the trifluoromethanesulfonic acid, which is 

stronger acid than titanium chloride, was used as promoter for the reaction. These 
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considerations directed our synthesis strategies towards derivatizations on the benzene ring 

after constructions of the trifluoromethyl diazirinyl ring (post-functional derivatizations). 

During the course of the studies, applications of hydrogenations to the TPD derivatives for 

post-functional synthesis are very important in associated derivatizations. However, the 

diazirinyl group consists of a nitrogen-nitrogen double bond in the structure and could be 

easily hydrogenated under the certain conditions. In this chapter, we would like to present a 

comprehensive summary for the hydrogenations that are compatible with or incompatible 

with the reaction conditions used for the trifluoromethylphenyl diazirinyl derivative. These 

considerations lead to effective post-functional derivatization approaches. 

2. Selective hydrogenation methods over diazirinyl moiety for post-

functional synthesis of TPD derivatives 

2.1. Selective hydrogenation of carbon-iodine bond to carbon-hydrogen bond with H2-
Pd/C 

It has been reported that hydrogenation of diazirinyl compounds under H2-Pd/C at 

atmospheric pressure caused diazirinyl moiety reduction to diaziridine and further 

reduction of diaziridine moiety over a long time of treatment. Ambroise et al. found that 

hydrogenations of carbon-iodine bond in iodoarene are chemoselective.  

This occurs selectively over other easily reducible functional groups using Pd/C (10 mol%) 

under a hydrogen atmosphere, in the presence of triethylamine and within an hour 

(Ambroise et al., 2000). The selective hydrogenations can be applied for TPD derivatives. 

The iodoarene TPD derivative (1) was subjected to hydrogenation under the H2-Pd/C 

condition at atmospheric pressure (Fig.5).  

 

Figure 5. Selective hydrogenation of iodoarene TPD derivatives (1). Selectivity for carbon- iodine bond 

to carbon-hydrogen bonds (2) occurs on Pd/C under a hydrogen atmosphere 

Detailed analysis revealed that the hydrogenation of carbon-iodine bond proceeded in 

parallel to the consumption of the starting material for 50 min. The hydrodeiodinated 

product (2) was subjected to further hydrogenolysis at the diazirinyl nitrogen-nitrogen 

double and compound 2 was completely consumed within an additional hour of 

hydrogenation. The chemoselective hydrogenation was applied to the synthesis of 

radiolabeled tritium TPD compounds from the corresponding iodoarene derivatives 
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(Ambroise et al., 2001) (Fig. 6). The synthesis of compounds with isotope incorporation has 

also been studied with other photophores including phenylazides and benzophenones 

(Faucher et al., 2002).  

 

Figure 6. Selective tritiations of iodoarene TPD derivatives (1, 3 and 4) for carbon-iodine bond to 

carbon-tritium bond on Pd/C under tritium atmosphere. Parentheses are isolated yields. 

Sammelson et al. performed selective hydrogenation for iodoarene derivative (7) over the 

chloroarene and trifluoromethyldiazirinyl group in the synthesis of photoreactive fipronil 

(8) using Pd/C under a H2 or 3H2 atmosphere. The resulting compound was a high-affinity 

probe for GABA receptor (Sammelson and Casida, 2003) (Fig. 7). 

 

Figure 7. Selective hydrogenation or tritiations of carbon-iodine bond over carbon-chlorine bond and 

trifluoromethyldiazirinyl group of 7 with Pd/C under hydrogen or tritium atmosphere. 
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2.2. Selective hydrogenation of carbon-nitrogen double bonds (imines, Schiff’s 

bases, reductive amination) 

Imine (Schiff’s base) TPD derivatives have been readily prepared from aldehyde (9) and 

primary amine (10). Catalytic hydrogenations of imines with H2-Pd/C were potentially 

available to afford amines, but side reactions at the nitrogen-nitrogen double bond on TPD 

derivatives prevented use of these catalytic hydrogenations. Hydride reductions for imines 

are acceptable for TPD derivatives and sodium cyanoborohydride has been used for the 

reductive amination leading to (11) (Fig. 8) (Daghish et al., 2002).  

 

Figure 8. Reductive amination of TPD derivative (9) with biotin derivative (10) 

Although this type of reaction is distinct from hydrogenation, we would like to briefly 

summarize reductions with hydride for use in TPD derivatization. NaBH4 or LiAlH4, which 

were most common hydride sources, were compatible for TPD derivative chemistry that 

involved reduction of carbonyl groups. However those reduction reagents that incorporated 

a cofactor (ie CoCl2, NiCl2 etc) promoted destruction of the diazirinyl ring (Hashimoto, 

unpublished results).  

Many other hydride sources were compatible with TPD derivatizations. 

Hydrazones derivatives of TPD (13) have been prepared with moderate yield from the 

corresponding TPD acetophenone (12) using hydrazine hydrate (1.5 eq). In early stages the 

acetophenone moieties were more reactive for the nucleophilic substitution with hydrazine 

hydrate than the reaction involving reduction of the diazirinyl group to diaziridines.  

 

Figure 9. Selective TPD hydrazone formation (13) from acetophenone derivative (12) 
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The selective reduction of the carbon-nitrogen double bond in hydrazone to form carbon-

nitrogen single bond was not archived under various conditions (alcoholic KOH with reflux, 

t-BuOK-DMSO at room temperature, or t-BuOK-toluene with reflux). Instead the side 

reaction involving loss of the diazirinyl group occurred (Hashimoto, unpublished results). 

(Fig. 9)  

2.3. Selective hydrogenation of carbon-oxygen double bonds (carbonyl and 

carboxyl) for the TPD derivatives. 

Many methods for the reduction of carbon-oxygen double bonds have been reported. The 

carbonyl groups, which can be introduced by Friedel-Crafts acylation, are one of the most 

important synthetic methods for the post-functional synthesis. Friedel-Crafts reactions of 

TPD derivatives are not attainable because the trifluoromethyldiazirinyl moiety has slight 

electron withdrawing properties (due to polarity of the quaternary carbon, which is 

connected directly to benzene ring). Furthermore the diazirinyl moiety was not stable over 

25 °C in the presence of Lewis acids, which are the conditions generally used for catalysis in 

Friedel-Crafts reaction (Moss et al., 2001). TPD derivatives (14 and 15) can react at room 

temperature with the reactive acyl donor acetyl chloride when using aluminum chloride to 

introduce acetyl moiety (12 and 16) (Hashimoto et al., 2003, 2004) (Fig. 10) . 

 

Figure 10. Friedel-Crafts acetylation of TPD derivatives (14 and 15) with acetyl chloride and aluminum 

chloride. 

On the other hand incorporation of less active acyl donors such as dichloromethyl methyl 

ether has to use stronger the Lewis acid, TiCl4. These conditions allow reaction with 

compound 14 to proceed (Hashimoto et al. 1997). Dichloromethane was used as solvent in 

early synthesis of this type but dichloromethyl methyl ether can also be used as solvent. This 

has enabled improvement in the yield of compound 17. (Fig. 11) 

Hydrogenation of the Friedel-Crafts acylated products has been studied. Clemmensen 

reduction, Wolff-Kishner reduction and catalytic hydrogenation with Pd/C cannot be 

applied to synthesis of TPD derivative as these conditions lead to breakage of the diazirinyl 

moiety.  

During the course of these trial screening reactions, it was found that transfer hydrogenation 

with triethylsilane in trifluoroacetic acid could be applied to TPD derivatives (12). The 
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conversions from benzyl carbonyl to methylene are very smooth and afforded the product 

(18) in very high yield without breaking the diazirinyl ring. (Fig. 12) (Hashimoto et al. 2003 

& 2004) 

 

Figure 11. Synthesis of benzaldehyde TPD derivative (17) with Friedel-Crafts alkylation, followed by 

hydrolysis from m-methoxy TPD (14) 

 

Figure 12. Transfer hydrogenation of TPD acetophenone derivative (12) with triethylsilane and 

trifluoroacetic acid 
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methods (Zhao et al., 2002), Suzuki-coupling (Barfoot, et al., 2005), diastereoselective 

Michel addition (Yamada et al., 1998) and catalytic asymmetric hydrogenation (Xie, et al., 

2000). These methods require the preparation of special reagents or precursors for the 

asymmetric synthesis of both enantiomers, especially aromatic compounds. Therefore one 

has to spend time and effort on establishment of TPD derivatizations without 

decomposition of diazirine.  
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aromatics and a side chain of aspartic acid (Asp) or glutamic acid (Glu) are some of the key 

reactions for asymmetric synthesis for both homo- or bishomo- phenylalanine enantiomers’ 

skeletons. (Reifenrath, et al. 1976; Nordlander et al., 1985; Melillo et al., 1987; Griesbeck & 

Heckroth, 1997; Xu et al., 2000; Lin et al., 2001)  

It has been reported that synthesis of homophenylalanine using a Friedel-Crafts reaction of 

Asp anhydride (N-unprotected or N-protected) with AlCl3 requires use of large excesses of 

aromatics and reflux in organic solvent for long durations (Xie, et al., 2000). These synthesis 

conditions cannot apply the equivalent condition of amino acid and TPD derivatives. 

Furthermore, the diazirinyl ring did not tolerate heating in the presence of Lewis acids. 

After Friedel-Crafts acylation, the constructed benzyl carbonyl group was hydrogenated to 

methylene under H2-Pd/C, which is not suitable for TPD derivatives. These difficulties were 

overcome Friedel-Crafts acylation of TPD derivative (14) and side chain derivatives of Asp 

(19) or Glu (20) using trifluoromethanesulfonic acid followed by ionic hydrogenation of 

benzylcarbonyl group to methylene with triethylsilane - trifluoroacetic acid. After 

constructions of the homo- (23) or bishomo- (24) phenylalanine skeletons, removal of the 

protective groups afforded TPD containing homo- (25) or bishomo- (26) phenylalanine while 

maintaining the stereochemistry of starting Asp or Glu (Murai et al., 2009; Murashige et al. 

2009) (Fig. 13). 

 

Figure 13. Stereo controlled synthesis of homo- (25) and bishomo- (26) phenylalanine TPD derivatives 

from m-methoxy TPD (14) and optically pure Asp (19) or Glu (20) derivatives 
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2.3.1. Selective hydrogenation of carbon-oxygen double bonds with stable isotope labeling 

Established methods for the post-functional synthesis (described in the previous section) 

have facilitated the preparation of stable isotope labeled TPD. Stable isotopes act as a tag 

for the exogenous ligand derivatives on mass spectrometry. The methodologies will be 

very useful for the field of photoaffinity labeling to detect the labeled components. 

Friedel-Crafts acylation with 1-13C acetyl chloride, which is a relatively inexpensive 

reagent compared with other 13C labeled compounds, afforded 13C labeled acetophenone 

derivative ([13C]-12) in moderate yield. Hydrogenations by deuterium atom of the 

acetophenone has been applied using various conditions. Deuterium was effectively 

introduced to the methylene moiety by deuterium labeled triethylsilane (Et3SiD) and 

unlabeled trifluoroacetic acid (CF3COOH) to afford [1-13C-1, 1-D2]-18). It is not necessary 

to use deuterium labeled trifluoroacetic acid for the deuteration. (Hashimoto & Hatanaka, 

2004) 

 

Figure 14. Synthesis of stable isotope labeled TPD derivatives with transfer hydrogenation 

The -position of the carbonyl groups was susceptible to very fast hydrogen-deuterium 

exchange using sodium hydroxide (NaOH) and methanol-OD (CH3OD) at room 

temperature. There are no serious decrements of deuterium incorporation with various 

work up to synthesis [2,2,2-D3]-12. After that, ionic hydrogenation with Et3SiD and 

trifluoroacetic acid afforded 5 deuterium incorporated TPD derivatives ([1,1,2,2,2-D5]-18). 

(Fig. 14). These synthetic methodologies have also been applied to synthesis of deuterium 

incorporated photoreactive fatty acid derivatives. (Murai et al. 2010) 
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2.4. Selective hydrogenation of carbon-carbon double bonds for the TPD 

derivatives 

The synthetic strategies for the Wittig reaction, followed by hydrogenation are amongst the 

major methods for carbon elongation derivatizations. These synthetic methods have not 

been compatible with synthesis of the TPD derivatives. This is because conditions for 

establishment for the selective hydrogenation (reduction) for the carbon-carbon double 

bond over that for nitrogen- nitrogen double bond on TPD are not easily achieved. 

We found Wilkinson's catalyst, chlorotris(triphenylphosphine)rhodium(I) in methanol has 

specificity for the target reaction. The alkene containing TPD derivatives (27-29), which are 

synthesized from Wittig reaction for TPD aldehyde (17) and stable ylides, were subjected to 

hydrogenation with H2-Wilkinson’s catalyst at atmospheric pressure. It was observed that 

25mol% of Wilkinson’s catalyst required for complete hydrogenation. The , -unsaturated 

ester (27), nitrile (28) and aldehyde (29) were also hydrogenated under these conditions. The 

aldehyde carbonyl group conversion to primary alcohol (33) was only partially complete. 

(Fig. 15) 

 

 

 

Figure 15. Synthesis of , -unsaturated carbonyl TPD derivatives and their hydrogenation with 

Wilkinson’s catalyst 

The hydrogenation of 27 and 28 with deuterium gas allowed effective incorporation of the 

deuterium atom intro these compounds (Hashimoto et al., 2007).  

3. Conclusions 

Hydrogenations are very important for post-functional synthesis of TPD compounds.  

It is very important for synthesis of TPD compounds that a range of hydrogenation methods 

are investigated. Selective hydrogenations in the presence of nitrogen-nitrogen double 
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bonds in TPD have been established. Very strict conditions are necessary as the important 

nitrogen-nitrogen double bond can easily be lost. The establishments of a range of 

hydrogenation methods, together with the limitations of these methods that are described in 

this review, will facilitate further progress in the post-functional preparations of TPD. These 

chemical considerations could generate further widespread use of these biochemically ideal 

photoaffinity labels. 
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