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1. Introduction 

In 2002, the FCC in the US authorized the unlicensed use of the ultrawideband (UWB) 

frequency spectrum for commercial applications in the range from 3.1 to 10.6 GHz with an 

emission limit of -41.3 dBm/MHz which is near to the thermal noise floor [1]. UWB 

communication systems operating in such a wide frequency band and low power emission 

level could easily be interfered by the existing nearby communication systems such as the 

Wireless Local Area Networks (WLANs) operating in the frequency bands of 2.45-GHz (2.4–

2.484 GHz), 5.25-GHz (5.15–5.35 GHz) and 5.75-GHz (5.725–5.825 GHz) [2] and the 

Worldwide Interoperability for Microwave Access (WiMAX) systems operating in the 2.35-

GHz (2.3-2.4 GHz), 2.6-GHz (2.5–2.69 GHz), 3.35-GHz (3.3-3.4 GHz), 3.5-GHz (3.4–3.6 GHz), 

3.7-GHz (3.6-3.8 GHz) and 5.8-GHz (5.725–5.85 GHz) bands[3]. Many countries such as the 

UK, Canada, France, Germany, Argentina and India etc. will allow at least four of these 

bands in operations [3]. In such cases, the UWB systems could be affected by several 

interference signals. These interference signal could be suppressed by using RF filtering.  

Traditional filtering is implemented using lumped elements, which however increases the 

cost and system complexity and occupies more space in the wireless devices. Another 

feasible solution is to design the UWB antennas with band-notched characteristics to 

suppress the interference signals [4, 5]. Figure 1 shows a general design concept for a band-

notched UWB antenna. An UWB antenna, as shown in Figure 1(a), has an impedance 

bandwidth from fL to fH, which are the lowest and highest -10-dB cut-off frequencies, 

respectively, of the S11. A bandstop resonant structure, as shown in Figure 1(b), also has a 

bandwidth from fL to fH, but with a resonant frequency at fN to stop the undesired signal 

passing through. Combining the UWB antenna with the resonant structure as shown in 

Figure 1(c), a band-notched antenna is formed. The band-notched antenna will not interfere 

with other communication systems nearby using the same frequency band at fN. 
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Figure 1. Basic design concept for band-notched UWB antenna 

In general, the design procedure for a band-notched antenna can be described as follows. 

An UWB antenna without band-notched function is designed to have good impedance 

matching over the UWB, which is used as a reference antenna. Proposed resonant structures 

are added to the reference antenna to create notches at some specific frequencies. The 

dimensions of the resonant structures can be used to control the center frequencies and 

bandwidths of the notches. Different designs have been proposed to realize the band-

notched characteristic for UWB planar monopole antennas [5-18]. These include using 

parasitic elements [6], folded strips [7], split-ring resonators (SRRs) [8], quarter-wavelength 

tuning stubs [9], meander-ground structures [10, 11], resonated cells on the coplanar-

waveguide (CPW) [12], fractal tuning stub [13], slots on the radiator [14-16] or ground [17], 

and slots or folded-striplines along the antenna feed line [18]. However, most of these 

designs targeted at creating a single-notched band and only one design targeted at a triple-

notched band using meander lines [11]. 

In this chapter, we study the applications of CPW resonators, λ/4-resonators and MLs to 

design single, dual, triple and quadruple band-notched characteristics for compact UWB 

monopole antennas. The studies are carried out using computer simulations and the 

simulated results are verified using the antenna measurement system, Satimo Starlab. The 

simulated and measured results on the return loss, radiation pattern, peak gain and 

efficiency agree well. The pulse responses and fidelities of the single, dual, triple and 

quadruple band-notched antennas are also measured and compared with those of the 

reference antenna.  

2. Dual band-notched antenna design using CPW resonators 

2.1. Design of dual band-notched UWB antenna  

The compact CPW antenna used for studies is shown in Figure 2. It has a semi-circular 

radiator fed by a 50-Ω CPW. The antenna is designed on a Rogers substrate, RO4350B, with 

an area of 32 mm×35 mm, a relative dielectric constant of εr=3.48, a thickness of 0.762 mm 

and a loss tangent of 0.0037. The width, S, of the central-strip conductor and the distance, W, 

between the feed line and ground plane are 3 and 0.3 mm, respectively, in order to have a 

characteristic impedance of 50 Ω. The ground plane is rectangular in shape plus a half 
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ellipse with a minor-radius-to-major-radius ratio of 0.5 to reduce the beam tilt of the antenna 

[12]. Detail dimensions of the dual band-notched antenna are listed in Table 1. 

 

Figure 2. (a) Layout and (b) side view of CPW antenna with two CPW resonators, and (c) layout of 

CPW resonator  

 

Parameter Value (mm) Parameter Value (mm) 

L 35 Ld 0.3 

Wg 32 W1 0.3 

Lg 20 W2 0.3 

Rr 15 W3 0.3 

R1 4 S 3 

R2 4.5 W 0.3 

t 0.0035 Lca 5.3 

H 0.762 Lcb 9 

(a) Notched band at 5.5GHz 

(b)Notched band at 3.5GHz 

Table 1. Antenna dimensions for dual-band notch 

 

Figure 3. Simulated return losses of reference UWB antenna for different values of (a) R1 and (b) R2 
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The small area connecting the CPW and the semi-circular radiator is quite critical for 

impedance matching and so is smoothed by using two arc shapes with radii R1 and R2. 

Figures 3(a) and 3(b) show the effects of different values of R1 and R2 on the return loss. It 

can be seen from Figure 3(a) that, when R1 is small, say R1 = 3 mm, the bandwidth (for return 

loss > 10 dB) of the reference antenna covers only few GHz, from around 2.5 to 6.3 GHz. 

Increasing R1 improves the impendence matching in the lower frequency band, but 

degrades it in the higher frequency band. For R2, Figure 3(b) shows an opposite effect. That 

is, decreasing R2 improves the impendence matching in the lower frequency band, but 

degrades it in the higher frequency band. Increasing R2 improves the bandwidth towards 

the high frequency, but if R2 is too large, say R2 = 6 mm, the return loss at around 7 GHz 

reduces to less than 10 dB.  

2.2. Design of simple CPW resonator 

λg/2-open-ended CPW resonators and λg/4-CPW resonators can be used to design bandstop 

filters [19, 20]. However, the sizes of these resonators are too large to be integrated onto the 

compact UWB antennas. Here we propose a new simple structure having a much smaller 

size, as shown in Figure 2(c), for the CPW resonator. The resonator is a simple rectangular 

slot with three open stubs from the opposite sides. With such a small structure, two CPW 

resonators with a separation of 2 mm can be etched on the feed line, as shown in Figure 2(a), 

to generate 2 band notches for the antenna. The lower CPW resonator is at a distance 8 mm 

from the lower edge of the ground plane. The resonance of the CPW resonator is 

determined by the length Lc and the small gap Ld as indicated in Figure 2(c). The narrowest 

microstrip line that we can make using the prototype-machine in our laboratory is 0.1 mm. 

So for convenience in our design process, we fix the stub width W2 and stub spacing W3 of 

the CPW resonator to 0.3 mm. The simulated return loss and insertion loss of a CPW 

resonator, with W1 = W2 = W3 = Ld = 0.3 mm and Lc = 9 mm, are shown in Figure 4. It can be 

observed that the CPW resonator has a bandstop characteristic of about 27 dB at 3.5 GHz. 

 

Figure 4. Simulated return loss and insertion loss of CPW resonator 
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2.3. Parametric study on dual band-notched CPW antenna 

In the notched antenna shown in Figure 2(a), two CPW resonators are placed in series, 

known as a dual-band CPW resonator, and used to create two different notched bands. 

Simulation results on the return loss with different values of Lca and Lda in the CPW 

resonator using computer simulation are shown in Figures 5(a) and 5(b), respectively. It can 

be seen that the resonant frequency varies with Lca and Lda, but the return loss in the rest of 

the UWB remains almost unchanged. This property provides the antenna designers a great 

freedom to set the frequency of the notched bands. It should be noted that a spurious 

response at about 7.9 GHz is observed in Figure 5, which is due to the 1st odd-harmonic 

resonance. 

 

 

Figure 5. Simulated return loss of dual band-notched antenna with different values of (a) Lca and (b) Lda 

To better understand the antenna operation, the surface-current distributions on the antenna 

in the passband and notched bands are studied using computer simulation and results are 

shown in Figure 6. In the passbands of 3 GHz and 11 GHz, Figures 6(a) and 6(d) show that 

majority of the current flows through the CPW into the radiator and then radiates to free 

space. However, at the notched frequencies of 3.5 GHz and 5.5 GHz, Figures 6(b) and 6(c) 

show that the energies are well confined in the upper and lower CPW resonators, 

respectively, and do not get radiated, while the radiator remains cool. 

 

 

Figure 6. Distribution of surface current at (a) 3 GHz, (b) 3.5 GHz, (c) 5.5 GHz and (d) 11 GHz 
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2.4. Results and discussions 

To validate the simulation results, the antenna is fabricated on a Roger substrate, RO4350B, 

as shown in Figure 7, and measured using the antenna measurement system, Satimo Starlab.  

 

Figure 7. Photograph of CPW antennas without and with dual-band CPW resonator 

2.4.1. Frequency-domain performance 

The return loss, efficiency and peak gain across the UWB, and the radiation patterns in the 

passbands and notch frequencies of the reference antenna and dual band-notched antenna 

are all studied using computer simulation and measurement.  

The return losses of the two antennas are shown in Figure 8. Across the UWB, excluding the 

notched bands, both the simulated and measured return losses of the reference antenna are 

larger than 10 dB which satisfies the UWB requirement. In the notched bands, the return loss 

of the notched antenna is substantially smaller than 10 dB. The measured results in Figure 8 

show that the two notches at the frequencies of 3.5 and 5.5 GHz have the bandwidths of 585 

and 758 MHz, respectively. A spurious response at about 7.9 GHz is observed in Figure 8, 

which is due to the 1st odd-harmonic of the resonant frequency at 3.5 GHz. The 

discrepancies between the simulated and measured results are due to the tolerances in 

prototype fabrication and measurements and also partly due to the SMA connector which is 

not included in our simulation. 

 

Figure 8. Simulated and measured return losses of reference and dual band-notched antennas 
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The simulated and measured results on the peak gain and radiation efficiency of the two 

antennas are shown in Figures 9(a) and 9(b), respectively. At the notch frequencies of 3.5 

and 5.5 GHz, the measured gain is suppressed to -7.6 and -4.3 dBi, respectively, with the 

corresponding efficiency substantially reduced to 8.3% and 9.7%. Thus the dual-band 

resonator can work effectively to generate a dual band-notched characteristic for the UWB 

antenna. The spurious stopband at around 7.9 GHz causes a 10% drop in efficiency, as can 

be seen in Figure 9(b). Note that there are substantial discrepancies between the simulated 

and measured results in peak gain and efficiency, especially at low frequencies. This is 

mainly due to the small ground plane of the antenna, which results in leakage current 

flowing from the ground plane to the outer conductor of the feeding coaxial cable [21-23].  

 

Figure 9. Simulated and measured (a) peak gains and (b) efficiencies of antennas 

The simulated and measured radiation patterns of the dual band-notched antenna at the 

frequencies of 3, 3.5, 5.5 and 11 GHz and in the vertical and horizontal cuts, i.e., in the x-z and 

x-y planes, respectively, are shown in Figure 10. It can be seen that the measured radiation 

patterns agree well with the simulated results. For UWB applications, an omnidirectional 

radiation pattern is normally preferred (i.e., in the x-y plane). The results of Figures 10(a) and 

10(g) show that the radiation patterns in the passbands satisfy this requirement well. In the x-z 

plane, the radiation patterns in Figures 10(b) and 10(h) show two nulls occurring at the 

positive and negative z-directions, which is typical for monopole antennas. For the radiation 

patterns at the notch frequencies of 3.5 and 5.5 GHz, the gain is almost evenly suppressed in all 

directions by the resonators and the average gain is about -10 dBi. 

2.4.2. Time-domain performance 

UWB radio systems typically employ pulse modulation where extremely narrow (short) 

bursts of RF energy are used to convey information [1]. Antennas with notches will 

introduce distortion to these bursts. To investigate this, the pulse response of the proposed 

antenna in the time domain is studied as follows [24]. Two antennas of the same type are 

placed side-by-side or face-to-face at a distance of 50 cm (to ensure in the far field region) 

inside the quiet zone of an anechoic chamber. The antennas are connected using coaxial 

cables to the two ports of the Agilent PNA N5230C. The transfer function (or S21) of the two-

antenna setup is measured in the frequency domain. The time response is then obtained by 

using the time-domain function (inverse FFT) of the PNA.  
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Figure 10. Simulated and measured radiation patterns with dual-band CPW resonator. (a) 3 GHz in x-z 

plane; (b) 3 GHz in x-y plane; (c) 3.45 GHz in x-y plane; (d) 3.45 GHz in x-y plane; (e) 5.5 GHz in x-z 

plane; (f) 5.5 GHz in x-y plane; (g) 11 GHz in x-y plane; and (h) 11 GHz in x-y plane 

To fully utilize the FCC’s UWB, it would be better to select the transmitted pulse with 

spectrum as close as possible to the FCC’s emission limit mask [25]. However, due to the 

limitation of the equipment, i.e. Agilent PNA N5230C, used in our laboratory, we only 

manage to generate pulses with a rectangular spectrum from 3.1 to 10.6 GHz as the 

transmitted pulses.  

 

Figure 11. Measured pulse responses for (a) reference UWB antenna and (b) proposed dual band-

notched antennas 

For comparison, the measured results on pulse responses of the reference antenna and dual 

band-notched antenna are plotted in Figure 11. It can be seen that, in both cases, the 

magnitudes of the received pulses are larger in the face-to-face arrangement than in the 

side-by-side arrangement. This is because, at higher frequencies, the planar structure of the 

monopole antennas causes the radiation patterns to become slightly directional at the face 
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direction. Figure 11(b) shows that the received pulse for the dual band-notched antenna has 

late time ringing (or distortion) and lower power.  

To evaluate the quality of the received pulses, we define the fidelity as [22, 26]: 

 ( )max ( )F f t r t dt
τ

τ
∞

−∞
= +  (1) 

where ( )f t  and ( )r t  are the transmitted and received pulses, respectively, normalized to 

have unity energy, and τ  is the time delay chosen to maximize the integral term. The 

calculated fidelities F given by (1), for using the reference and notched antennas, are shown 

in Table 2. It can be seen that the fidelities in the face-to-face and side-by-side arrangements 

for both antennas used are about the same, which should be the case for antennas with an 

omnidirectional radiation pattern. As expected, the reference antenna achieves the fidelity of 

more than 97%, very close to the transmit signal. Table 2 also shows that the antenna with a 

dual band-notch still can achieve a fidelity of more than 95%. 

 

 Reference Antenna Dual Band-Notched Antenna 

Face-to-Face 0.9825 0.9570 

Side-by-Side 0.9744 0.9531 

Table 2. Calculated Fidelity for Reference and Band-Notched Antennas 

3. Design of band-notched microstrip monopole antenna using λ/4-

resonator 

3.1. Design of UWB monopole antenna 

In our design of a single band-notched antenna for UWB applications, we propose to use a 

planar monopole antenna with microstrip feed to achieve a compact size for applications in 

wireless devices. The geometry of the design is shown in Figure 12 which consists of an 

elliptical radiator fed by a 50-Ω microstrip line, and a rectangular ground plane on the other 

side of the substrate. The antenna is designed on a polytetrafluoroethylene (PTFE) substrate 

PCB with a dimension of 30 × 39.3 mm2, a relative dielectric constant of rε = 3.5, a thickness 

of 0.8 mm and a loss tangent of 0.003. 

The parameters r2 (gap) and w2 of the antenna shown in Figure 12 are optimized for 

wideband operation using computer simulation and results are shown in Figure 13. The 

impedance bandwidth of a monopole can be increased by widening the radiator shape. In 

our case, Figure 13(a) shows that with r2 = 3 mm (i.e., a thin vertical elliptical radiator), the 

antenna has two distinct narrow bands, resonating at about 2.8 and 7.4 GHz. The overall 

bandwidth is less than the UWB. When the width r2 of the radiator increases, the bandwidth 

improves. However, with r2 = 15 mm, the radiator is too wide which reduces the return loss 

at high frequencies. Figure 13(b) shows that the effects of the distance, gap, between the 

elliptical radiator and the upper edge of ground on the return loss. It can be seen that gap is 
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quite sensitive to impedance matching (same as in the previous design of the CPW antenna). 

With smaller values of gap, the antenna has low return loss at high frequencies. With larger 

values of gap, it has low return loss at low frequencies. In our design, the optimized value 

for gap is 0.5 mm. Figure 13(c) shows the return loss for different values of w2, the width of 

the microstrip feed-line at the radiator end. Using the characteristic parameters of the 

substrate, the width w1 needs to be 1.73 mm in order to achieve a 50-Ω characteristic 

impedance for the microstrip line [27]. It can be seen that, if w1 = w2 = 1.73 mm, the 

impedance bandwidth (for return loss > 10 dB) of the antenna cannot cover the whole UWB. 

Thus, the width of the upper 6 mm of the microstrip feed-line is tapered linearly to improve 

matching. With w2 = 0.6 mm, the antenna has an impedance bandwidth (10-dB return loss) 

from around 2.5 GHz to over 12 GHz, which fully satisfies the FCC requirements for the 

UWB. This final design is used as a reference UWB antenna for comparison with our band-

notched antenna design. The dimensions are listed in Table 3. 

 

Figure 12. Layout of UWB antenna: (a) top view and (b) side view 

 

Parameter Value Parameter Value Parameter Value 

gl 15 h 0.762 w1 1.73 

gw 30 gap 0.5 w2 0.6 

l 39.3 s1 0 Rvia 0.3 

r1 12 s2 0.5 fl 6 

r2 9 s3 9   

t 0.035 s4 1.0   

Table 3. Antenna dimensions (in mm) 
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Figure 13. Simulated return loss of the planar monopole antenna with different values of (a) r2 , (b) gap, 

and (c) w2  

3.2. λ/4-resonator  

To generate a band-notched characteristic for the antenna, we propose to use a pair of 

coupled-fed λ/4-resonators (a λ/4-microstrip line with a shorting end) which has the 

advantages of simple structure, easy design and fabrication, and low cost. To create an 

effective notch for the antenna, the λ/4-resonators should be placed in the positions where 

majority of the current passes through before radiating into space. Figure 14 shows the 

simulated current distribution of the UWB antenna at 5.5 GHz. The current is mainly 

distributed at the edges of the microstrip line, the upper edges of the ground plane and the 

edges of the radiator. Thus, we should place the λ/4-resonators along these edges to create a 

notch for the antenna. Figure 15 shows our proposed design, where the two λ/4-resonators 

are symmetrically placed at a distance s4 from the center of the microstrip feed line and are 

connected to the ground through a via.  

 

 
 

Figure 14. Current distribution of proposed UWB antenna at 5.5 GHz 
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Figure 15. Layout of single band-notched UWB antenna: (a) top view and (b) side view 

The guided wavelength of the waves propagating along a substrate can be approximated 

by [27]: 

 0λ  λ / ( +1) / 2g rε≈  (2) 

with λ0 being the free space wavelength and εr the relative permittivity of the substrate. In 

our design, the PTFE substrate used has a relative dielectric constant of εr = 3.5. To design a 

notch at 5.5 GHz which is the center frequency of the IEEE 802.11a WLAN band [28], 

applying (2) yields λg ≈ 36.34 mm or λg /4 ≈ 9.085 mm. While in our simulation studies, the 

required length of the λ/4-resonator for a notch at 5.5 GHz is s3 = 9 mm. Thus the difference 

between numerical calculation using (2) and simulation (or practical implementation) is 

only about 4.5%, which may be caused by the approximation of the expression for λg in (2). 

The dimensions of the λ/4-resonators are listed in Table 3. 

3.3. Current flow on λ/4-resonators 

To better understand the working principle of the λ/4-resonators on the antenna, the 

currents flowing around the areas of the resonators and feed line at the notch frequency of 

5.5 GHz and passband frequency of 3.5 GHz are simulated and shown in Figure 16. At 5.5 

GHz, Figure 16(a) shows that the current is coupled from the feed line and the upper edge of 

the ground plane to the resonators and then flows to ground through the vias. This stops the 

energy on the feed line flowing into the elliptical radiator and radiating into free space. 

However, at the passband of 3.5 GHz, as shown in Figure 16(b), majority of the current 

flows to the radiator and radiates to free space. 
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Figure 16.  Current flow around λ/4-resonators and feed line of single band-notched antenna at (a) 

notch frequency 5.5 GHz and (b) passband frequency 3.5 GHz 

3.4. Parametric study on λ/4-resonators 

The width s1 of the resonators, and the distances s2 between the resonators and the upper 

edge of ground plane and s3 between the feed line and resonators, determine the capacitance 

of the resonators. A parametric study of the single band-notched UWB antenna is carried 

out using computer simulation to explore how the dimensions of the λ/4-resonators affect 

the characteristic of the band notch. Simulation results on the effects of the dimensions s1, s2 

and s3 on the return loss of the antenna are shown in Figures 17. Figures 17(a) and 17(c) 

show that s1 and s3 determine the notch frequency. s3 is more sensitive and so can be used 

for coarse adjustment of the notch frequency, while s1 can be used for fine adjustment. 

Figure 17(b) shows that s2 mainly affects the notch bandwidth. These plots also reveal that 

when the values of s1, s2 and s3 are changed, the return loss in the rest of the UWB band 

remains nearly unchanged. This property provides the designers with a great freedom to 

select the notched-band frequency and bandwidth for the antenna.   

 

Figure 17. Simulated return loss of single band-notched antenna with different values of (a) s1 , (b) s2, 

and (c) s3 

3.5. Current distribution 

Figures 18(a) – 18(d) show the surface current distributions of the antenna at 3.5, 5.5, 7 and 

12 GHz, respectively. At the passband frequencies, i.e., 3.5, 7 and 12 GHz, Figures 18(a), 

18(c) and 18(d) show that majority of the current flows from the microstrip line to the 

radiator and so finally radiates into free space. However, at the notch frequency 5.5 GHz, 

Figure 18(b) shows that the current is confined much more around the areas near the λ/4-
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resonators than those in the main radiator of the antenna. As a result, the energy does not 

get radiated. 

 

Figure 18. Surface current distribution of single band-notched antenna at (a) 3.5, (b) 5.5, (c) 7, and (d) 12 

GHz 

3.6. Results and discussions 

The design of the band-notched antenna is fabricated using a Rogers substrate, RO4350B, as 

shown in Figure 19. The return loss, peak gain and efficiency across the UWB band, and the 

radiation patterns at 3, 5.5, 7 and 12 GHz are simulated and measured using the Satimo 

Starlab measurement system. The pulse responses between a pair of the antennas placed 

face-to-face and side-by-side are investigated. 

 

Figure 19. Photograph of single band-notched antenna 

3.6.1. Frequency-domain performance 

The simulated and measured return losses of the single band-notched antenna are shown in 

Figure 20. It can be seen that, the antenna can operate from 2.57 GHz to over 12 GHz with 

return loss > 10 dB, except in the WLAN band from 5.18 to 6.23 GHz, where the measured 

return loss is substantially less than 10 dB. 

The simulated and measured radiation patterns of the antenna at the frequencies of 3, 5.5, 7 

and 12 GHz in the two principle planes, the x-y and x-z planes, are shown in Figure 21. At 3, 

7 and 12 GHz, Figures 21(a), 21(e) and 21(g) show that the antenna has approximately 

omnidirectional radiation patterns in the x-y plane. In the x-z plane, Figures 21(b), 21(f) and 
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21(h) show that there are two nulls in the z-direction, which is typical for monopole 

antennas. The radiation patterns in Figures 21(c) and 21(d) at the notch frequency of 5.5 GHz 

indicate that the gain is almost evenly suppressed in all directions by the λ/4-resonators with 

an average peak gain of about -10 dBi. 

 

Figure 20. Simulated and measured return losses of single band-notched antenna 

 

Figure 21. Simulated and measured radiation patterns of single band-notched antenna. (a) 3 GHz in x-y 

plane, (b) 3 GHz in x-z plane, (c) 5.5 GHz in x-y plane, (d) 5.5 GHz in x-z plane, (e) 7 GHz in x-y plane, 

(f) 7 GHz in x-z plane, (g) 12 GHz in x-y plane, and (h) 12 GHz in x-z plane 

The peak gain and efficiency of the antenna are shown in Figures 22(a) and 22(b), 

respectively. The measured average peak gain over the UWB, computed by excluding the 

notched band, is around 3.5 dBi. However, at the notched band, significant reductions in 

gain and radiation efficiency can be observed. The measured peak gain is suppressed from 
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about 2.5 dBi to -5.4 dBi and the radiation efficiency is reduced from about 80% to 15%. 

These results indicate that the λ/4-resonators effectively generate a single band-notched 

characteristic for the antenna. 

 

Figure 22. Simulated and measured (a) peak gains and (b) efficiencies of proposed antenna 

3.6.2. Time-domain performance 

The measurement procedure for the time-domain performance is described in the 

previous section. For comparison, the pulse responses of the reference UWB antenna 

(without having the notched characteristic) are also measured and shown in Figure 23. It 

can be seen that, the pulse responses in the face-to-face arrangements have larger 

amplitudes than those in the side-by-side arrangements. This agrees with the radiation 

patterns shown in Figure 21 where radiations in the x-direction are slightly larger than 

those in the y-direction in most of the frequencies tested. The pulse responses for the 

reference antenna are only slightly larger than those for the notched antenna in the same 

arrangements. Late time ringing (or distortion) and lower power are observed in the 

received pulses for both antennas.  

 

Figure 23.  Measured pulse responses for (a) reference and (b) single-band notched antennas 

The fidelities F of the time responses using (1) are computed and shown in Table 4. In both 

the face-to-face and side-by-side arrangements, the fidelities are about the same. As 

expected, the reference UWB antenna has the fidelity of more than 97%, very close to the 

source signal. The results in Table 4 show that the antenna with a single-band notch can 

achieve the fidelity of more than 94%.  
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 Reference Antenna Single Band-Notched Antenna 

Face-to-Face 0.9825 0.9481 

Side-by-Side 0.9744 0.9413 

Table 4. Calculated Fidelity for Reference and Band-Notched Antennas 

4. Multiple band-notched characteristics using meander lines (MLs) 

4.1. Design multiple band-notched antennas using MLs 

Meander line (ML), also known as serpentine line, consisting of a number of transmission 

lines closely packed and jointed to each others, as shown in Figure 24, is an effective way 

for size reduction of a transmission line [29-36]. The idea behind meandering is to increase 

the electrical length per unit area of circuit board space when the signal is propagating 

along the ML. 

 

Figure 24. Typical ML with 8 segments 

To design multiple band-notched characteristics for compact UWB antennas, the λ/4-

resonator used in section 3 is too large to be used. By folding the λ/4-resonator into a ML, we 

can obtain a compact structure. Due to the mutual coupling between the adjacent segments 

of the ML, the total physical resonator length is no longer λ/4 long. Studies have shown that 

we can make the electrical length of the MLs to be λ/4 with a smaller size. With the compact 

structures of MLs, we can easily place several pairs of MLs in different positions of the 

antenna to obtain a multiple band-notched characteristic. In our proposed design, two 

different types of feeding techniques, known here as parallel-coupled feeding (PCF) and 

direct-connected feeding (DCF), as shown in Figures 25(a) and 25(b), respectively, are 

employed. In the PCF ML, the signal is coupled from the transmission line to the ML, while 

in the DCF ML, the signal is fed directly to the ML. Details of the different band-notched 

designs for a compact UWB antenna using MLs are described in the following sections. 

 

Figure 25. MLs with (a) parallel-coupled fed and (b) direct-connected fed 
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The design procedure for our band-notched antennas is as follows. An UWB antenna 

without any ML is designed and used as a reference antenna for comparison. Several pairs 

of MLs are then added to the reference antenna to make it a multiple band-notched antenna. 

(A single notched-band antenna requires only one pair of MLs.) The dimensions of the 

individual MLs are adjusted to achieve the desirable center frequencies and bandwidths for 

the notches. For convenience, we use the same antenna in section 2 as the reference antenna 

for our band-notched antennas design here.  

As previously described and shown in Figure 14, the surface current concentrates most at 

the edges of the feed line, the ground plane and the radiator. So we can place the resonators 

implemented using MLs along these edges as shown in Figures 26(a), 26(b), 26(c) and 26(d) 

to create a single-, dual-, triple- and quadruple-band notches, respectively, for the antenna. 

Two different types of feeding techniques, i.e. PCF and DCF, are used. The MLs with PCF 

are etched on the same side as the radiator on the substrate and connected to ground 

through vias, while the MLs with DCF are etched on the ground plane on the other side of 

the substrate.  

 

Figure 26. Top views and side views of (a) single, (b) dual, (c) triple, (d) quadruple band-notched 

antennas, (e) PCF and (f) DCF MLs 
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In the single and dual band-notched designs shown in Figures 26(a) and 26(b), respectively 

[10, 11, 37], the notches are designed at the frequencies of existing communication systems 

such as the WiMax system, upper and lower bands of the WLAN systems. In the triple 

band-notched design of Figure 26(c), the notches are designed at 3.5, 5.25 and 5.775 GHz. In 

the quadruple band-notched antenna design of Figure 26(d), we select four notch 

frequencies with around 1 GHz separation to show the flexibility in designing the notch 

frequencies. To avoid duplicated description, the quadruple band-notched antenna is used 

here to explain creating notches using MLs. In Figure 26(d), the four pairs of MLs, labeled as 

MLs #1, #2, #3 and #4, are designed to create the notches at 3.14, 4.34, 5.4 and 6.4 GHz, 

respectively. Detailed dimensions of the MLs for single, dual, triple and quadruple band-

notched antennas are listed in Tables 5 to 8, respectively.  

 

ML d1 d2 d3 d4 

#1 0.3 0.3 0.4 1.9 

Table 5. Dimensions of PCF MLs and DCF MLs for Single Band-Notched Antenna 

 

ML d5 d6 d7 d8 w3 

#1 0.25 0.25 0.25 2.9 5 

#2 0.25 0.25 0.25 2.6 8.5 

Table 6. Dimensions of PCF MLs and DCF MLs for Dual Band-Notched Antenna 

 

ML d1 d2 d3 d4 ML d5 d6 d7 d8 w3 

#1 0.3 0.3 0.25 2.2 #3 0.3 0.3 0.3 2.7 5.2 

#2 0.3 0.3 0.3 2       

Table 7. Dimensions of PCF MLs and DCF MLs for Triple Band-Notched Antenna 

 

ML d1 d2 d3 d4 ML d5 d6 d7 d8 w3 

#1 0.3 0.3 0.25 3 #3 0.2 0.2 0.2 2.5 5.2 

#2 0.3 0.3 0.25 2.1 #4 0.2 0.2 0.2 2.1 8.5 

Table 8. Dimensions of PCF MLs and DCF MLs for Quadruple Band-Notched Antenna 

4.2. Parallel-coupled fed (PCF) and direct-connected fed (DCF) MLs 

The PCF MLs, i.e., MLs #1 and #2 in Figure 26(d), on both sides of the feed line have open 

circuit at one end and short circuit to the ground through a via at the other end. With an 

electrical length of λg/4, where λg is the guided wavelength approximately given by (2), the 

MLs are λg/4-resonators with parallel-coupled fed. At resonant frequencies, the signal on the 

feed line is coupled to the MLs and then flowing through the vias to the ground plane. This 

creates high impedance for the signal and prevents the signal from flowing into the radiator. 

A λg/4-resonator operating in the fundamental mode will have a λg/4-length standing wave 
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formed along it. Computer simulation has been carried out to study the surface current on 

ML #2 at the resonant frequency of 4.34 GHz and results show that, at any instance, the 

currents on the whole ML always have the same phase (in the same direction), i.e. a 

standing wave is formed on the ML which is expected for a λg/4-resonator operating in the 

fundamental mode. This confirmed that MLs #1 & #2 are λg/4-resonators. Figure 27(a) shows 

a snap-shot from the simulation result on the surface current of ML #2. It can be seen that, 

the current is quite small at the open end of the ML but substantially larger near the via, 

which is typical for a λg/4-resonator. 

The DCF MLs, i.e., MLs #3 and #4 in Figure 26(d), at the upper edges of the ground plane 

are stubs having open circuit at one end and directly connect to ground at the other end. 

With an electrical length of λg/4, the MLs are λg/4-resonators with direct-connected fed. At 

resonance, the MLs prevent the signal from passing through, creating high input 

impedance. This causes severely mismatching to the antenna and reduces the return loss. As 

mentioned before, a λg/4-resonator operating in the fundamental mode has a λg/4-length 

standing wave formed along it. Computer simulation has also been carried out on the 

surface current of ML #3 at the resonant frequency of 5.4 GHz. Results show that, at any 

instance, the currents along the ML all have the same phase (in the same direction), as 

expected for a λg/4-resonator operating in the fundamental mode. This again confirms that 

MLs #3 & #4 are λg/4-resonators. Figure 27(b) shows a snap shot from the simulation result 

on the surface current of ML #3. The current is substantially smaller at the open end of the 

ML than that at the connected end, which is expected for a λg/4-resonator. 

 

Figure 27. Current distribution on (a) ML #2 at 4.34 GHz and (b) ML #3 at 5.4 GHz 

4.3. Discussions on electrical lengths of PCF and DCF MLs 

For a λg/4-resonator implemented using a straight microstrip line, if εr in (2) is known, the 

physical length of the microstrip line, for the λg/4-resonator to work at a particular 

frequency, can easily be calculated. Unfortunately, this does not work with the MLs in our 

design. For example, the total lengths measured along the internal perimeters of MLs #1 and 

#2 in Figure 26(d) for the resonant frequencies of 3.14 and 4.34 GHz are 26.1 and 17.7 mm, 

respectively, which are quite different from the computed λg/4=15.95 and 11.54 mm using 

(2). Then for MLs #3 and #4, the internal perimeters for the resonant frequencies of 5.4 and 
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6.4 GHz computed using Table 8 are 16.2 and 15 mm, respectively, which again are very 

different from the corresponding lengths λg/4=9.27 and 7.825 mm when computed using (2). 

These results show that (2) cannot be used in our MLs to determine the notch frequencies for 

the antennas. The reason can be explained as follows. 

(2) is derived using the distributed-elements model and can be applied quite accurately to a 

straight microstrip line. For complicated structures which are many times, say 10, less than 

the free space wavelength, the lumped-elements model should be used [38]. In our design, 

the sizes of MLs #1, #2, #3 and #4 are 3×4.5 mm2, 2.1×4.5 mm2, 2.8×2.7 mm2, 2.8×2.3 mm2, 

respectively. The maximum lengths of these structures are less than 1/10th of the 

corresponding guided wavelengths of 51.18, 38.82, 29.76 and 25.11 mm at the resonant 

frequencies of 3.14, 4.34, 5.4 and 6.4 GHz, respectively, thus both the distributed-elements 

model and the lumped-elements model together should be used [38-40]. In the lumped-

element model, there will be capacitance formed by the shunt capacitance between the ML 

and the substrate, series capacitance formed between segments of the ML, inductance 

formed by the series inductance along the ML plus shunt inductance formed between the 

segments of the ML, and inductance formed by the via [41], so the models are extremely 

complicated [35, 42-44]. These models will have different resonant modes of operation. In 

the fundamental mode, only the largest capacitances and inductances are in effect and form 

an LC resonator which will have the fundamental resonant frequency rf  proportional to 

1 /  eq eqL C , i.e., 

 
1

r

eq eq

f
L C

∝  (3) 

where Leq and Ceq are the equivalent inductance and capacitance, respectively, resulted from 

the self inductance and self capacitance of the ML. 

For the PCF MLs, at resonance, the signals will be electrically coupled from the feed line to 

MLs #1 and #2 via a mutual coupling capacitor Cm between them [38]. This coupling will 

detune the resonant frequency as will be shown later. For the DCF MLs, the signals will be 

directly fed to MLs #3 and #4. Since it is not easy, if not impossible at all, to relate Leq and Ceq 

to the dimensions of the MLs, full-wave simulation needs to be used for the design. 

4.4. Setting the notch center frequencies and bandwidths 

Parametric study of the quadruple band-notched antenna is carried out using computer 

simulation to explore how the dimensions of the MLs affect the characteristics of the band 

notches.  

For the PCF resonators, ML #1 is used for studies. The smallest dimension we can make for 

our antenna using the prototype-machine in our laboratory is 0.1 mm. So for convenience in 

our design process, we fix the segment width d1 and segment spacing d2 of the ML to be the 

same value. Simulation results show that, with d1 = d2 < 0.2 mm, the notch bandwidth is too 
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large (more than 1 GHz). Thus for having a low percentage of tolerance and compact size, 

we fix d1 and d2 to a slightly larger value of 0.3 mm. The segment length d4 and distance d3 

between the ML and the feed line are then used for parametric studies using computer 

simulation. Results show that d4 and d3 affect the notch frequency and bandwidth, 

respectively. The effect of d4 on the notch frequency is shown in Figure 28(a), indicating that 

d4 is inversely proportional to the notch frequency. This is because increasing the segment 

length d4 increases the series inductance and capacitance along the ML and hence lowering 

down the resonant frequency through (3). With d4 increased from 2.8 to 3.2 mm, the 

resonant frequency shifts from 2.85 to 3.23 GHz, which is quite significant. ML #1 is parallel-

coupled fed via the mutual capacitance between the feed line and the ML. At the resonant 

frequency, the signal travelling along the feed line is coupled to the ML. When d3 is 

increased, the coupling effect (or the mutual capacitance) between them is reduced, leading 

to a lower reactance and hence a lower quality factor Q. For a given resonant frequency fr, 

the bandwidth is given by fr/Q. Thus d3 is inversely proportional to the notch bandwidth and 

so can be used to adjust the notch bandwidth. The effect of d3 on the notch bandwidth is 

shown in Figure 28(b). With d3 increased from 0.1 to 0.5 mm, the 10-dB bandwidth changes 

from 0.31 to 0.11 GHz. It should be noted that the notch frequency is dominated by the ML’s 

equivalent self-capacitance Ceq and inductance Leq given by (3) and so d3 will only slightly 

affect the notch frequency, as can be seen in Figure 28(b). 

For the DCF resonators, ML #3 in Figure 28(d) is used for parametric studies. Again, for 

convenience, we fix the segment width d6 and segment spacing d5 of the ML to have the 

same value. Simulation results show that a smaller value of 0.2 mm for the segment width d6 

and segment spacing d5 can be used without having a too large notch bandwidth, so we fix 

d6 = d5 = 0.2 mm for having a smaller size. The segment length d8, the distance d7 between the 

ML and the ground, and the distance w3 between the center of the feed line and the ML are 

used for parametric studies. Simulation results show that d8 affects the notch frequency, for 

the same reason as described for the PCF resonators. The effect of d8 on the notch frequency 

is shown in Figure 28(c). With d8 increased from 2.3 to 2.7 mm, the notch frequency shifts 

from 5.71 to 5.04 GHz.  

Simulation results show that both d7 and w3 in ML #3 affects the notch bandwidth, with w3 

having significantly higher effects, so w3 is used for studies and results are shown in Figure 

26(d). MLs #3 and #4 are λg/4-resonators with DCF. There is series inductance on the ground 

plane between the feed line and the ML. This inductance is connected in series with the ML 

and increases with the current flowing through it [45]. Since the current density is higher in 

the region closer to the feed line than far away from it, the inductance is larger with a 

shorter distance w3, leading to a larger reactance and a higher quality factor Q. For a given 

resonant frequency fr, the bandwidth given by fr/Q is therefore smaller. This is confirmed by 

the simulation results of Figure 28(d) which shows that, with w3 increased from 4.6 to 5.8 

mm, the 10-dB bandwidth changes from 0.74 to 0.28 GHz. Thus w3 can be used to adjust the 

notch bandwidth. Similar to the case for the PCF resonators, the notch frequency is 

dominated by the self-capacitance and inductance of the ML, so w3 will only slightly affect 

the notch frequency as can be seen in Figure 28(d). It should be noted that, if ML #3 is too 
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close to the feed line, e.g. w3 = 2 mm, the notch bandwidth will be too wide and, together 

with the adjacent notches, form a very wide stopband. Moreover, the small distance gap is 

very critical for impedance matching of the antenna. Placing the ML too close to this gap 

will affect the matching performance and reduce the impedance bandwidth, as evident in 

Figure 28(d). 

 

Figure 28.  Return loss with different values of (a) d4 and (b) d3 for ML #1, and (c) d8 and (d) w3 for ML 

#3 of the quadruple band-notched antenna 

For a parallel-coupled fed λg/4-resonator implemented using a straight microstrip line, the 

first spurious response always occurs at three times the resonant frequency [46]. ML #1 is a 

parallel-coupled fed resonator at around 3 GHz. Figures 28(a) and 28(b) show that it has a 

spurious response at about 8.5 GHz, slightly less than three times the resonant frequency. In 

this respect, ML #1 again behaves like a parallel-coupled fed resonator. Note that ML #2 also 

has the first spurious response at about three times the resonant frequency, which is not 

shown in Figure 28(a) due to the small scale. 

These results also reveal that when the values of d4, d3, d8 and w3 are changed, the return loss 

in the rest of the UWB band remains about the same. This provides the designers with a 

great freedom to select the notched-band frequency and bandwidth for the antenna. 

4.5. Results and discussions 

4.5.1. Frequency-domain performance 

The return loss, efficiency and peak gain across the UWB, and the radiation patterns at the 

passband and also the notch frequencies of all the four band-notched antennas are studied 
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using computer simulation. To validate the simulation results, the antennas are also 

fabricated on PCBs with PTFE substrate with parameters described previously, as shown in 

Figure 29, and measured using the antenna measurement system, Satimo Starlab.  

 

Figure 29. Top and bottom views of prototyped (a) single, (b) dual, (c) triple and (d) quadruple band-

notched antennas 

4.5.2. Single band-notched antenna 

The simulated and measured return losses of the single band-notched antenna of Figure 29(a) 

are shown in Figure 30. It can be seen that, the antenna can operate from 2.76 GHz to over 12 

GHz with return loss ≥ 10 dB which fully satisfies the UWB requirement. In the WLAN band 

from 4.98 to 5.93 GHz, the measured return loss is substantially lower than 10 dB. 

 

Figure 30. Simulated and measured return losses of single band-notched antenna 
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The simulated and measured radiation patterns of the single band-notched antenna at the 

frequencies of 3, 5.5, 7 and 10 GHz in the two principle planes, the x-y and x-z planes, are 

shown in Figure 31. At 4, 7 and 10 GHz, Figures 31(a), 31(e) and 31(g) show that the antenna 

has approximately omnidirectional radiation patterns in the x-y plane. In the x-z plane, 

Figures. 31(b), 31(f) and 31(h) show that there are two nulls at the z-direction, typical for 

monopole antennas. At the notch frequency of 5.5 GHz, the radiation patterns in Figures 

31(c) and 31(d) indicate that the gain is almost evenly suppressed in all directions by the 

pair of MLs and the average gain drops to about -10 dBi. 

The simulated and measured peak gains of the single band-notched antenna are shown in 

Figure 32(a) and the efficiencies are shown in Figure 32(b). The average gain over the UWB, 

computed by excluding the notched band, is about 3.5 dBi. However, at the notched band of 

about 5.5 GHz, the antenna gain is suppressed from about 3 dBi to -7.1 dBi and the radiation 

efficiency is reduced from about 85% to 8.7%. These phenomena indicate that the MLs work 

effectively to introduce a single band-notched characteristic for the antenna. 

 

 

 

 

 
 

 

 

 

Figure 31.  Simulated and measured radiation patterns of single band-notched antenna. (a) 3 GHz in x-

y plane; (b) 3 GHz in x-z plane; (c) 5.5 GHz in x-y plane; (d) 5.5 GHz in x-z plane; (e) 7 GHz in x-y plane; 

(f) 7 GHz in x-z plane; (g) 10 GHz in x-y plane; and (h) 10 GHz in x-z plane 
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Figure 32. Simulated and measured (a) peak gains and (b) efficiencies of single band-notched antenna 

4.5.3. Dual band-notched antenna 

The simulated and measured return losses of the dual band-notched antenna of Figure 29(b) 

are shown in Figure 33. It can be seen that, the antenna can operate from 2.95 GHz to about 

11.8 GHz with return loss ≥ 10 dB. In the lower and upper WLAN bands from 5.01 to 5.48 

GHz and 5.63 to 5.92 GHz, respectively, the measured return loss for the lower WLAN band 

is much lower than 10 dB. In the upper WLAN band, the return loss is larger. This is 

because the MLs are further away from the center feed line and so couple less energy 

compared to the MLs for the lower WLAN band.  

The simulated and measured radiation patterns of the antenna at 3.5 and 9 GHz in the 

two principle planes, the x-z and x-y planes, are shown in Figure 34. The antenna has 

approximately omnidirectional radiation patterns in the x-y plane. The x-z plane patterns 

show two nulls at the z-direction, which are similar to that of a typical monopole 

antenna. 

 

 
 

Figure 33. Simulated and measured return losses of dual band-notched antenna 
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Figure 34. Simulated and measured radiation patterns of dual band-notched antenna. (a) 3.5 GHz in x-

y plane; (b) 3.5 GHz in x-z plane; (c) 5.25 GHz in x-y plane; (d) 5.25 GHz in x-z plane; (e) 5.775 GHz in x-

y plane; (f) 5.775 GHz in x-z plane; (g) 9 GHz in x-y plane; and (h) 9 GHz in x-z plane 

The measured peak gain and efficiency of the dual band-notched antenna are shown in 

Figure 35. The average antenna gain over the UWB, computed by excluding the notched 

bands, is about 3 dBi. While at the notch frequencies, a significant gain and radiation 

efficiency reductions can be seen. At the notch frequencies of 5.25 and 5.83 GHz, the peak 

gain drops to -6 dBi and -2 dBi and the radiation efficiency reduces to below 20% and 45%, 

respectively. These phenomena indicate that by introducing two pairs of MLs, a dual band-

notched characteristic can be achieved. 

 

Figure 35. Measured peak gain and efficiency of dual band-notched antenna 
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4.5.4. Triple band-notched antenna 

The simulated and measured return losses of the triple band-notched antenna of Figure 

28(c) are shown in Figure 36. The antenna can operate from 2.68 GHz to 11.15 GHz with 

return loss ≥ 10 dB. In the three desired notched bands, the measured return loss is 

substantially less than 10 dB. 

The simulated and measured radiation patterns of the antenna at the frequencies of 2, 3.45, 

5.25, 5.775 and 11 GHz in the x-y and x-z planes are shown in Figure 37. At 2 and 11 GHz, 

Figures 37(a) and 37(i) show that the antenna has approximately omnidirectional radiation 

patterns in the x-y plane. In the x-z plane patterns, Figures 37(b) and 37(j) show that there 

are two nulls in the positive and negative z directions. The radiation patterns in Figures 

37(c) and 37(d) for 3.45 GHz, in Figures. 37(e) and 37(f) for 5.25 GHz, and in Figures 37(g) 

and 37(h) for 5.775 GHz indicate that the gain is almost evenly suppressed in all directions 

in the three notched bands by the MLs and the average gain is about -10 dBi. 

The simulated and measured peak gains and efficiencies of the antenna are shown in 

Figures 38(a) and 38(b), respectively. The measured peak gain is between 2 to 4.75 dBi over 

the UWB, except in the notched bands. In the three notched bands, i.e., the WiMax, lower 

WLAN and upper WLAN frequency bands, the peak gain is suppressed to -3.4 dBi, -2.3 dBi 

and -2.1 dBi, respectively. The radiation efficiency is between 55% - 99%, but substantially 

reduced to 14.6%, 15.2% and 22.8%, respectively, in these frequency bands. These results 

indicate that the MLs work effectively to introduce a triple band-notched characteristic for 

the UWB antenna. 

 

 

 

 
 

 

Figure 36. Simulated and measured return losses of the triple band-notched antenna 
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Figure 37. Simulated and measured radiation patterns of triple band-notched antenna. (a) 2 GHz in x-y 

plane; (b) 2 GHz in x-z plane; (c) 3.45 GHz in x-y plane; (d) 3.45 GHz in x-z plane; (e) 5.25 GHz in x-y 

plane; (f) 5.25 GHz in x-z plane; (g) 5.775 GHz in x-y plane; (h) 5.775 GHz in x-z plane; (i) 11 GHz in x-y 

plane; and (j) 11 GHz in x-z plane 

 

 
 

Figure 38. Simulated and measured (a) peak gains and (b) efficiencies of triple band-notched antenna 
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4.5.5. Quadruple band-notched antenna 

The return losses of the reference and quadruple band-notched antennas are shown in 

Figure 39. The simulation and measurement return losses agree well and are larger than 10 

dB across the UWB. In the notched bands, the return loss is substantially smaller than 10 dB. 

In the rest of the UWB, the return loss is larger than 10 dB, indicating good radiation 

performance. Figure 39 also shows that ML #1, being a parallel-coupled resonator at 3.14 

GHz, has a spurious response at about 8.65 GHz, which is caused by the harmonic responses 

of the resonator. The measured results in Figure 39 show that the four notches at the 

frequencies of 3.14, 4.34, 5.4 and 6.4 have the bandwidth of 178, 374, 495 and 862 MHz, 

respectively. 

The simulated and measured results on the peak gain and radiation efficiency of the 

antenna are shown in Figures 40(a) and 40(b), respectively. A relatively flat peak gain and 

constant efficiency are observed over the UWB, except in the notch bands. At the notch 

frequencies of 3.14, 4.34, 5.4 and 6.4 GHz, the measured gain is suppressed to -5.4, -4.1 and -

3.7 and -2.5 dBi, respectively, with the corresponding efficiency substantially reduced to 

13.2%, 26.5%, 26.8% and 35.4%. Thus the MLs work effectively to generate a quadruple 

band-notched characteristic for the UWB antenna. Comparing the PCF MLs to the DCF MLs 

in terms of peak gain and efficiency reduction, the PCF MLs perform better than the DCF 

MLs. This is because the PCF MLs are closer to the feed line and thus couple more energy. 

There are discrepancies between the simulated and measured peak gains and efficiencies, 

especially in the lower frequency bands. This is mainly due to the small ground plane of the 

antenna, which results in current flowing back from the ground plane to the outer 

conductor of the feeding coaxial cable [21, 22]. 

 

 

 
 
 

Figure 39. Simulated and measured return losses of reference antenna and quadruple band-notched 

antenna 
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Figure 40.  Simulated and measured (a) peak gains and (b) efficiencies of quadruple band-notched 

antenna 

The simulated and measured radiation patterns of the quadruple band-notched antenna at the 

notch frequencies of 3.14 and 6.4 GHz and passband frequencies of 2.5, 7 and 11 GHz in the x-y 

and x-z planes are shown in Figure 41. At all the frequencies tested, Figures 41(a), 41(c), 41(e), 41 

(g) and 41(i) show that the radiation pattern for co-polarization is approximately 

omnidirectional and stable in the x-y plane. While Figures 41(b), 41(d), 41(f), 41(h) and 41(j) 

show two nulls occurring in the positive and negative z-directions, which is typical for 

monopole antennas. At the notch frequencies of 3.14 and 6.4 GHz, Figures 41(c), 41(d), 41(e) and 

41(f) show that the gain is almost evenly suppressed in all directions. The cross-polarization 

level is quite low, except at the highest frequency of 11 GHz, as can be seen in Figure 41. 

4.5.6. Time-domain performance 

For comparison, the studies of time-domain performances are carried out as described in 

previous sections on the single, dual, triple and quadruple band-notched antennas and 

results are all plotted in Figure 42. The single, dual and triple band-notched antennas have 

notches at 5.5 GHz, 5.25 & 5.775 GHz, 3.5 & 5.25 & 5.775 GHz, respectively, while the 

quadruple band-notched antenna has notches at 3.14 & 4.34 & 5.4 & 6.4 GHz. It can be seen 

that, as the number of notches increases, more late time ringing (distortion) and lower 

powers are observed in the received pulses. To evaluate the quality of the received pulses, 

the fidelity F is used. The calculated fidelities F for the four band-notched antennas are 

shown in Table 9. It can be seen that the fidelities in the face-to-face and side-by-side 

arrangements are about the same, which should be the case for monopole antennas. As 

expected, the reference UWB antenna has the fidelity of more than 97%, the best among the 

antennas tested. With quadruple notches, the proposed antenna has the fidelity of more 

than 85%. It was expected that the fidelities F would drop when the number of notches 

increased. However, Table 9 shows that the fidelity of the single band-notched antenna is 

less than that of the dual band-notched antenna. This is because the dual band-notched 

antenna has the two notches in the lower and upper WLAN bands of 5.15-5.35 GHz and 

5.725-5.825 GHz, respectively. While the single band-notched antenna has the single 

notched-band from 5.15 GHz to 5.825 GHz, which is larger than the total of the two notches 

in the dual band-notched antenna. Thus the fidelity depends not only on the number of 

notches, but also the bandwidths and locations of the notches. 
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Figure 41. Simulated and measured radiation patterns of quadruple band-notched antenna. x-y plane: 

(a) 2.5 GHz, (c) 3.14 GHz, (e) 6.4 GHz, (g) 7 GHz and (i) 11 GHz. x-z plane: (b) 2.5 GHz, (d) 3.14 GHz, (f) 

6.4 GHz, (h) 7 GHz and (j) 11 GHz 
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Figure 42. Measured transmit pulses with spectrum from 3.1 to 10.6 GHz and received pulses of (a) 

single, (b) dual, (c) triple and (d) quadruple band-notched antennas 

 

 
Reference 

Antenna 

Single 

Band-

Notched 

Antenna 

Dual 

Band-

Notched 

Antenna 

Triple 

Band-

Notched 

Antenna 

Quadruple 

Band-Notched 

Antenna 

Face-to-Face 0.9825 0.9444 0.9590 0.9184 0.8918 

Side-by-Side 0.9744 0.9463 0.9557 0.9281 0.8538 

Table 9. Calculated Fidelity For Different Band-Notched Antennas 

5. Conclusions 

In this chapter, the designs of band-notched characteristics for compact UWB antennas have 

been presented. The single, dual, triple and quadruple band-notched UWB antennas using 

different resonator structures including the CPW resonators, the λ/4-resonators and the MLs 

have been designed and studied using computer simulation. For verification of the 

simulation results, these antennas have been fabricated and measured using the antenna 

measurement system, Starlab. The bandwidths and center frequencies of all these notches 

can be controlled independently by adjusting the dimensions of the resonators. In the 

frequency domain, the simulated and measured return losses of the antennas agree well. 

The UWB monopole antennas have approximately omnidirectional radiation patterns with 
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good band-notched characteristics. The simulated and measured results have shown that 

substantial reductions in efficiency and peak gain can be achieved at the notch frequencies. 

In the time domain, the pulse responses of these notched antennas have been measured 

inside the quiet zone of the anechoic chamber in The University of Hong Kong. Fidelity has 

been used to evaluate the time-domain performance of these antennas. Results have shown 

that all these band-notched antennas designed have the fidelities of more than 85%, 

compared to 97% for the reference UWB antenna. 
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