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1. Introduction

Over the past decades, there is an explosion of data composed by huge information, because
of rapid growing up of computer and database technologies. Ordinarily, this information is
hidden in the cast collection of raw data. Because of that, we are now drowning in informa‐
tion, but starving for knowledge [1]. As a solution, data mining successfully extracts knowl‐
edge from the series of data-mountains by means of data preprocessing [1]. In case of data
preprocessing, feature selection (FS) is ordinarily used as a useful technique in order to reduce
the dimension of the dataset. It significantly reduces the spurious information, that is to say,
irrelevant, redundant, and noisy features, from the original feature set and eventually retain‐
ing a subset of most salient features. As a result, a number of good outcomes can be expect‐
ed from the applications, such as, speeding up data mining algorithms, improving mining
performances (including predictive accuracy) and comprehensibility of result [2].

In the available literature, different types of data mining are addressed, such as, regression,
classification, and clustering [1]. The task of interest in this study is classification. In fact,
classification problem is the task of assigning a data-point to a predefined class or group
according to its predictive characteristics. In practice, data mining for classification techni‐
ques are significant in a wide range of domains, such as, financial engineering, medical diagnosis,
and marketing.

In details, FS is, however, a search process or technique in data mining that selects a sub‐
set of salient features for building robust learning models, such as, neural networks and
decision trees.  Some irrelevant and/or redundant features generally exist  in the learning
data that not only make learning harder, but also degrade generalization performance of
learned models. More precisely, good FS techniques can detect and ignore noisy and mis‐
leading features. As a result, the dataset quality might even increase after selection. There
are two feature qualities that need to be considered in FS methods: relevancy and redun‐
dancy. A feature is said to be relevant if it is predictive of the decision feature(s); other‐
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wise, it is irrelevant. A feature is considered to be redundant if it is highly correlated with
other features.  An informative feature is the one that is  highly correlated with the deci‐
sion concept(s), but is highly uncorrelated with other features.

For a given classification task, the problem of FS can be described as follows: given the original
set, N, of n features, find a subset F consisting of f relevant features, where F ⊂ N and f <n.
The aim of selecting F is to maximize the classification accuracy in building learning mod‐
els. The selection of relevant features is important in the sense that the generalization perform‐
ance of learning models is greatly dependent on the selected features [3-6]. Moreover, FS assists
for visualizing and understanding the data, reducing storage requirements, reducing train‐
ing times and so on [7].

It is found that, two features to be useless individually and yet highly predictive if taken to‐
gether. In FS terminology, they may be both redundant and irrelevant on their own, but
their combination provides important information. For instance, in the Exclusive-OR prob‐
lem, the classes are not linearly separable. The two features on their own provide no infor‐
mation concerning this separability, because they are uncorrelated with each other.
However, considering together, the two features are highly informative and can provide
good predictive accuracy. Therefore, the search of FS is particularly for high-quality feature
subsets and not only for ranking of features.

2. Applications of Feature Selection

Feature selection has a wide-range of applications in various fields since the 1970s. The rea‐
son is that, many systems deal with datasets of large dimensionality. However, the areas, in
which the task of FS can mainly be applied, are categorized into the following ways (see
Figure 1.).

Figure 1. Applicable areas of feature selection.
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Figure 2. Picture taken by a camera from a fish processing industry, adapted from [8].

In the pattern recognition paradigm, the FS tasks are mostly concerned with the classifica‐
tion problems. Basically, pattern recognition is the study of how machines can monitor the
environment, learn to differentiate patterns of interest, and make decision correctly about the
categories of patterns. A pattern, ordinarily, contains some features based on classifying a
target or object. As an example, a classification problem, that is to say, sorting incoming fish
on a conveyor belt in a fish industry according to species. Assume that, there are only two
kinds of fish available, such as, salmon and sea bass, exhibited in Figure 2. A machine gives
the decision in classifying the fishes automatically based on training of some features, for
example, length, width, weight, number and shape of fins, tail shape, and so on. But, prob‐
lem is that, if there are some irrelevant, redundant, and noisy features are available, classifi‐
cation performance then might be degraded. In such cases, FS has a significant performance
to recognize the useless features from the patterns, delete the features, and finally bring the
improved classification performance significantly in the context of pattern recognition.

FS technique has successfully been implemented in mobile robot vision to generate efficient
navigation trajectories with an extremely simple neural control system [9]. In this case,
evolved mobile robots select the salient visual features and actively maintain them on the
same retinal position, while the useless image features are discarded. According to the anal‐
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ysis of evolved solutions, it can be found that, robots develop simple and very efficient edge
detection to detect obstacles and to move away among them. Furthermore, FS has a signifi‐
cant role in image recognition systems [10]. In these systems, patterns are designed by im‐
age data specially describing the image pixel data. There could be hundreds of different
features for an image. These features may include: color (in various channels), texture (di‐
mensionality, line likeness, contrast, roughness, coarseness), edge, shape, spatial relations, tem‐
poral information, statistical measures (moments- mean, variance, standard deviation,
skewness, kurtosis). The FS expert can identify a subset of relevant features from the whole
feature set.

In analysis of human genome, gene expression microarray data have increased many folds
in recent years. These data provide the opportunity to analyze the expression levels of thou‐
sand or tens of thousands of genes in a single experiment. A particular classification task
distinguishes between healthy and cancer patients based on their gene expression profile.
On the other hand, a typical gene expression data suffer from three problems:

a. limited number of available examples,

b. very high dimensional nature of data,

c. noisy characteristics of the data.

Therefore, suitable FS methods (e.g., [11, 12]) are used upon these datasets to find out a min‐
imal set of gene that has sufficient classifying power to classify subgroups along with some
initial filtering.

Text classification is, nowadays, a vital task because of the availability of the proliferated
texts in the digital form. We need to access these texts in the flexible ways. A major prob‐
lem in regard to the text classification is the high dimensionality of the feature space. It is
found that, text feature space has several tens of thousands of features, among which most
of them are irrelevant and spurious for the text classification tasks. This high number of
features resulting the reduction of classification accuracy and of learning speed of the clas‐
sifiers. Because of those features, a number of classifiers are being unable to utilize in their
learning tasks. For this, FS is such a technique that is very much efficient for the text classi‐
fication task in order to reduce the feature dimensionality and to improve the perform‐
ance of the classifiers [13].

Knowledge discovery (KD) is an efficient process of identifying valid, novel, potentially use‐
ful, and ultimately understandable patterns from the large collections of data [14]. Indeed,
the popularity of KD is caused due to our daily basis demands by federal agencies, banks,
insurance companies, retail stores, and so on. One of the important KD steps is the data min‐
ing step. In the context of data mining, feature selection cleans up the dataset by reducing
the set of least significant features. This step ultimately helps to extract some rules from the
dataset, such as, if---then rule. This rule signifies the proper understanding about the data
and increases the human capability to predict what is happening inside the data.

It is now clear that, FS task has an important role in various places, where one can easily
produce better performances from the systems by distinguishing the salient features. Among
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the various applications, in this chapter, we are interested to discuss elaborately in a particu‐
lar topic of “pattern recognition”, in which how FS task can play an important role especial‐
ly for the classification problem. The reason is that, in the recent years, solving classification
problem using FS is a key source for the data mining and knowledge mining paradigm.

3. Feature Selection for Classification

In the recent years, the available real-world problems of the classification tasks draw a high
demand for FS, since the datasets of those problems are mixed by a number of irrelevant
and redundant features. In practice, FS tasks work on basis of the classification datasets that
are publicly available. The most popular benchmark dataset collection is the University of
California, Irvine (UCI) machine learning repository [15]. The collection of UCI is mostly
row data that must be preprocessed to use in NNs. Preprocessed datasets in it include Pro‐
ben1 [16]. The characteristics of the datasets particularly those were used in the experiments
of this chapter, and their partitions are summarized in Table 1. The details of the table show
a considerable diversity in the number of examples, features, and classes among the data‐
sets. All datasets were partitioned into three sets: a training set, a validation set, and a test‐
ing set, according to the suggestion mentioned in [16]. For all datasets, the first P 1 examples
were used for the training set, the following P 2 examples for the validation set, and the final
P 3 examples for the testing set. The above mentioned datasets were used widely in many
previous studies and they represent some of the most challenging datasets in the NN and
machine learning [12, 17].

Datasets Features Classes Examples Partition sets

Training Validation Testing

Cancer 9 2 699 349 175 175

Glass 9 6 214 108 53 53

Vehicle 18 4 846 424 211 211

Thyroid 21 3 7200 3600 1800 1800

Ionosphere 34 2 351 175 88 88

Credit Card 51 2 690 346 172 172

Sonar 60 2 208 104 52 52

Gene 120 3 3175 1587 794 794

Colon cancer 2000 2 62 30 16 16

Table 1. Characteristics and partitions of different classification datasets.

The description of the datasets reported in Table 1 is available in [15], except colon cancer,
which can be found in [18]. There are also some other gene expression datasets like colon
cancer (e.g., lymphoma and leukemia), that are described in [19] and [20].
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4. Existing Works for Feature Selection

A number of proposed approaches for solving FS problem that can broadly be categorized
into the following three classifications [2]:

a. wrapper,

b. filter, and

c. hybrid.

d. Other than these classifications, there is also another one, called as, meta-heuristic.

In the wrapper approach, a predetermined learning model is assumed, wherein features are
selected that justify the learning performance of the particular learning model [21], whereas
in the filter approach, statistical analysis of the feature set is required, without utilizing any
learning model [22]. The hybrid approach attempts to utilize the complementary strengths
of the wrapper and filter approaches [23]. The meta-heuristics (or, global search approaches)
attempt to search a salient feature subset in a full feature space in order to find a high-quali‐
ty solution using mutual cooperation of individual agents, such as, genetic algorithm, ant
colony optimization, and so on [64]. Now, the schematic diagrams of how the filter, wrap‐
per, and hybrid approaches find relevant (salient) features are given in Figures 3(a,b,c).
These figures are summarized according to the investigations of different FS related works.

Subsets can be generated and the search process carried out in a number of ways. One method,
called sequential forward search (SFS[24,25]), is to start the search process with an empty set
and successfully add features; another option called sequential backward search (SBS[4,26]),
is to start with a full set and successfully remove features. In addition, a third alternative, called
bidirectional selection [27], is to start on both ends and add and remove features simultane‐
ously. A fourth method [28, 29], is to have a search process start with a randomly selected
subset using a sequential or bidirectional strategy. Yet another search strategy, called com‐
plete search [2], may give a best solution to an FS task due to the thoroughness of its search,
but is not feasible when dealing with a large number of features. Alternatively, the sequen‐
tial strategy is simple to implement and fast, but is affected by the nesting effect [3], wherein
once a feature is added (or, deleted) it cannot be deleted (or, added) later. In order to over‐
come such disadvantages of the sequential search strategy, another search strategy, called the
floating search strategy [3], has been implemented.

Search strategy considerations for any FS algorithm are a vital part in finding salient fea‐
tures of a given dataset [2]. Numerous algorithms have been proposed to address the prob‐
lem of searching. Most algorithms use either a sequential search (for example, [4,5,24,26,30])
or a global search (e.g., [11,23,31-35]). On the basis of guiding the search strategies and evalu‐
ating the subsets, in contrast, the existing FS algorithms can be grouped into the following
three approaches: wrapper (e.g., [4,6,30,36-38]), filter (e.g., [40,41]), and hybrid (e.g., [23,42]).
It is well-known that wrapper approaches always return features with a higher saliency than
filter approaches, as the former utilize the association of features collectively during the learning
process, but are computationally more expensive [2]).

Ant Colony Optimization - Techniques and Applications8



In solutions for FS, filter approaches are faster to implement, since they estimate the perform‐
ance of features without any actual model assumed between outputs and inputs of the da‐
ta. A feature can be selected or deleted on the basis of some predefined criteria, such as, mutual
information [39], principal component analysis [43], independent component analysis [44],
class separability measure [45], or variable ranking [46]. Filter approaches have the advant‐
age of computational efficiency, but the saliency of the selected features is insufficient, be‐
cause they do not take into account the biases of classification models.

In order to implement the wrapper approaches, a number of algorithms ([4,24,26,30,47])
have been proposed that use sequential search strategies in finding a subset of salient fea‐
tures. In [24], features are added to a neural network (NN) according to SFS during training.
The addition process is terminated when the performance of the trained classifier is degrad‐
ed. Recently, Kabir et al. [47] proposed approach has drawn much attention in SFS-based
feature selections. In this approach, correlated (distinct) features from two groups, namely,
similar and dissimilar, are added to the NN training model sequentially. At the end of the
training process, when the NN classifier has captured all the necessary information of a giv‐
en dataset, a subset of salient features is generated with reduced redundancy of information.
In a number of other studies (e.g., [4,26,30]), SBS is incorporated in FS using a NN, where
the least salient features have been deleted in stepwise fashion during training. In this con‐
text, different algorithms employ different heuristic techniques for measuring saliency of
features. In [24], saliency of features is measured using a NN training scheme, in which only
one feature is used in the input layer at a time. Two different weight analysis-based heuristic
techniques are employed in [4] and [26] for computing the saliency of features. Furthermore,
in [30], a full feature set NN training scheme is used, where each feature is temporarily de‐
leted with a cross-check of NN performance.

The value of a loss function, consisting of cross entropy with a penalty function, is consid‐
ered directly for measuring the saliency of a feature in [5] and [6]. In [5], the penalty func‐
tion encourages small weights to converge to zero, or prevents weights from converging to
large values. After the penalty function has finished running, those features that have small‐
er weights are sequentially deleted during training as being irrelevant. On the other hand, in
[6], the penalty function forces a network to keep the derivatives of the values of its neurons’
transfer functions low. The aim of such a restriction is to reduce output sensitivity to input
changes. In the FS process, feature removal operations are performed sequentially, especial‐
ly for those features that do not degrade accuracy of the NN upon removal. A class-depend‐
ent FS algorithm in [38], selects a desirable feature subset for each class. It first divides a C
class classification problem into C two-class classification problems. Then, the features are
integrated to train a support vector machine (SVM) using a SFS strategy in order to find the
feature subset of each binary classification problem. Pal and Chintalapudi [36] has proposed
a SBS-based FS technique that multiplies an attenuation function by each feature before al‐
lowing the features to be entered into the NN training. This FS technique is the root for pro‐
posing another FS algorithm in [48]. Rakotomamonjy [37] has proposed new FS criteria that
are derived from SVMs and that are based on the sensitivity of generalization error bounds
with respect to features.
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Unlike sequential search-based FS approaches, global search approaches (or, meta-heuris‐

tics) start a search in a full feature space instead of a partial feature space in order to find a

high-quality solution. The strategy of these algorithms is based on the mutual cooperation of

individual agents. A standard genetic algorithm (GA) has been used for FS [35], where fixed

length strings in a population set represent a feature subset. The population set evolves over

time to converge to an optimal solution via crossover and mutation operations. A number of

other algorithms exist (e.g., [22,23]), in which GAs are used for solving FS. A hybrid ap‐

proach [23] for FS has been proposed that incorporates the filter and wrapper approaches in

a cooperative manner. A filter approach involving mutual information computation is used

here as a local search to rank features. A wrapper approach involving GAs is used here as

global search to find a subset of salient features from the ranked features. In [22], two basic

operations, namely, deletion and addition are incorporated that seek the least significant

and most significant features for making a stronger local search during FS.

ACO is predominantly a useful tool, considered as a modern algorithm that has been used in

several studies (e.g., [11,31,42,49-52]) for selecting salient features. During the operation of this

algorithm, a number of artificial ants traverse the feature space to construct feature subsets

iteratively. During subset construction (SC), the existing approaches ([11,42,49-52]) define the

size of the constructed subsets by a fixed number for each iteration, whereas the SFS strat‐

egy has been followed in [31,49], and [51]. In order to measure the heuristic values of fea‐

tures during FS, some of the algorithms ([11,31,50,52]) use filter tools. Evaluating the constructed

subsets is, on the other hand, a vital part in the study of ACO-based FS, since most algo‐

rithms design the pheromone update rules on the basis of outcomes of subset evaluations. In

this regard, a scheme of training classifiers (i.e., wrapper tools) has been used in almost all of

the above ACO-based FS algorithms, except for the two cases, where rough set theory and the

latent variable model (i.e., filter tools) are considered, which are in [11] and [31], respectively.

A recently proposed FS [34] approach is based on rough sets and a particle swarm optimiza‐

tion (PSO) algorithm. A PSO algorithm is used for finding a subset of salient features over a

large and complex feature space. The main heuristic strategy of PSO in FS is that particles fly

up to a certain velocity through the feature space. PSO finds an optimal solution through the

interaction of individuals in the population. Thus, PSO finds the best solution in the FS as

the particles fly within the subset space. This approach is more efficient than a GA in the

sense that it does not require crossover and mutation operators; simple mathematical opera‐

tors are required only.

Ant Colony Optimization - Techniques and Applications10



Figure 3. a)Schematic diagram of filter approach. Each approach incorporates the specific search strategies. (b)Sche‐
matic diagram of wrapper approach. Each approach incorporates the specific search strategies and classifiers. Here,
NN, KNN, SVM, and MLHD refer to the neural network, K-nearest neighbour, support vector machine, and maximum
likelihood classifier, respectively. (c)Schematic diagram of hybrid approach. Each approach incorporates the specific
search strategies and classifiers. Here, LDA, ROC, SU, MI, CI, and LVM, refer to the linear discriminant analysis classifier,
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receiver operating characteristic method, symmetrical uncertainty, mutual information, correlation information, and
latent variable model, respectively.

5. Common Problems

Most of the afore-mentioned search strategies, however, attempt to find solutions in FS that
range between sub-optimal and near optimal regions, since they use local search throughout
the entire process, instead of global search. On the other hand, these search algorithms uti‐
lize a partial search over the feature space, and suffer from computational complexity. Con‐
sequently, near-optimal to optimal solutions are quite difficult to achieve using these
algorithms. As a result, many research studies now focus on global search algorithms (or,
metaheuristics) [31]). The significance of global search algorithms is that they can find a sol‐
ution in the full search space on the basis of activities of multi-agent systems that use a glob‐
al search ability utilizing local search appropriately, thus significantly increasing the ability
of finding very high-quality solutions within a reasonable period of time[53]. To achieve
global search, researchers have attempted simulated annealing [54], genetic algorithm [35],
ant colony optimization ([49,50]), and particle swarm optimization [34] algorithms in solv‐
ing FS tasks.

On the other hand, most of the global search approaches discussed above do not use a
bounded scheme to decide the size of the constructed subsets. Accordingly, in these algo‐
rithms, the selected subsets might be larger in size and include a number of least significant
features. Furthermore, most of the ACO-based FS algorithms do not consider the random
and probabilistic behavior of ants during SCs. Thus, the solutions found in these algorithms
might be incomplete in nature. On the other hand, the above sequential search-based FS ap‐
proaches suffer from the nesting effect as they try to find subsets of salient features using a
sequential search strategy. It is said that such an effect affects the generalization perform‐
ance of the learning model [3].

6. A New Hybrid ACO-based Feature Selection Algorithm-ACOFS

It is found that, hybridization of several components gives rise to better overall performance
in FS problem. The reason is that hybrid techniques are capable of finding a good solution,
even when a single technique is often trapped with an incomplete solution [64]. Further‐
more, incorporation of any global search strategy in a hybrid system (called as hybrid meta-
heuristic approach) can likely provide high-quality solution in FS problem.

In this chapter, a new hybrid meta-heuristic approach for feature selection (ACOFS) has
been presented that utilizes ant colony optimization. The main focus of this algorithm is to
generate subsets of salient features of reduced size. ACOFS utilizes a hybrid search techni‐
que that combines the wrapper and filter approaches. In this regard, ACOFS modifies the
standard pheromone update and heuristic information measurement rules based on the
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above two approaches. The reason for the novelty and distinctness of ACOFS versus previ‐
ous algorithms (e.g., [11,31,42,49-52]) lie in the following two aspects.

Figure 4. Major steps of ACOFS, adapted from [64].

First, ACOFS emphasizes not only the selection of a number of salient features, but also the
attainment of a reduced number of them. ACOFS selects salient features of a reduced num‐
ber using a subset size determination scheme. Such a scheme works upon a bounded region
and provides sizes of constructed subsets that are smaller in number. Thus, following this
scheme, an ant attempts to traverse the node (or, feature) space to construct a path (or, sub‐
set). This approach is quite different from those of the existing schemes ([31,49,51]), where
the ants are guided by using the SFS strategy in selecting features during the feature subset
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construction. However, a problem is that, SFS requires an appropriate stopping criterion to
stop the SC. Otherwise, a number of irrelevant features may be included in the constructed
subsets, and the solutions may not be effective. To solve this problem, some algorithms
([11,42,50,52]) define the size of a constructed subset by a fixed number for each iteration for
all ants, which is incremented at a fixed rate for following iterations. This technique could be
inefficient if the fixed number becomes too large or too small. Therefore, deciding the subset
size within a reduced area may be a good step for constructing the subset while the ants tra‐
verse through the feature space.

Second, ACOFS utilizes a hybrid search technique for selecting salient features that com‐
bines the advantages of the wrapper and filter approaches. An alternative name for such a
search technique is “ACO search”. This technique is designed with two sets of new rules for
pheromone update and heuristic information measurement. The idea of these rules is based
mainly on the random and probabilistic behaviors of ants while selecting features during SC.
The aim is to provide the correct information to the features and to maintain an effective balance
between exploitation and exploration of ants during SC. Thus, ACOFS achieves a strong search
capability that helps to select a smaller number of the most salient features among a feature
set. In contrast, the existing approaches ([11,31,42,49-52]) try to design rules without distin‐
guishing between the random and probabilistic behaviors of ants during the construction of
a subset. Consequently, ants may be deprived of the opportunity of utilizing enough previ‐
ous experience or investigating more salient features during SC in their solutions.

The main structure of ACOFS is shown in Figure 4, in which the detailed description can be
found in [64]. However, at the first stage, while each of the k ants attempt to construct sub‐
set, it decides the subset size r first according to the subset size determination scheme. This
scheme guides the ants to construct subsets in a reduced form. Then, it follows the conven‐
tional probabilistic transition rule [31] for selecting features as follows,
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where j k is the set of feasible features that can be added to the partial solution, τi and ηi are
the pheromone and heuristic values associated with feature i (i 1, 2,…..,n), and α and β are
two parameters that determine the relative importance of the pheromone value and heuris‐
tic information. Note that, since the initial value of and for all individual features are equal,
Eq. (1) shows random behaviour in SC initially. The approach used by the ants in construct‐
ing individual subsets during SC can be seen in Figure 5.
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Figure 5. Representation of subset constructions by individual ants in ACO algorithm for FS. Here, n1, n2,..., n5 repre‐
sent the individual features. As an example, one ant placed in n1 constructed one subset { n1, n2, n3}.

ACOFS imposes a restriction upon the subset size determination in determining the subset
size, which is not an inherent constraint. Because, other than such restriction, likewise the
conventional approaches, the above determination scheme works on an extended boundary
after a certain range that results in ineffective solutions for FS. In order to solve another
problem, that is to say, incomplete solutions to ACO-based FS algorithms; our ACOFS incor‐
porates a hybrid search strategy (i.e., a combination of the wrapper and filter approaches) by
designing different rules to strengthen the global search ability of the ants. Incorporation of
these two approaches results in an ACOFS that achieves high-quality solutions for FS from a
given dataset. For better understanding, details about each aspect of ACOFS are now given
in the following sections.

6.1. Determination of Subset Size

In an ACO algorithm, the activities of ants have significance for solving different combinato‐
rial optimization problems. Therefore, in solving the FS problem, guiding ants in the correct
directions is very advantageous in this sense. In contrast to other existing ACO- based FS
algorithms, ACOFS uses a straightforward mechanism to determine the subset size r. It em‐
ploys a simpler probabilistic formula with a constraint and a random function. The aim of
using such a probabilistic formula is to provide information to the random function in such
a way that the minimum subset size has a higher probability of being selected. This is im‐
portant in the sense that ACOFS can be guided toward a particular direction by the choice of
which reduced-size subset of salient features is likely to be generated. The subset size deter‐
mination scheme used can be described in two ways as follows.

First, ACOFS uses a probabilistic formula modified from [32] to decide the size of a subset r
(≤n) as follows:
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Here, Pr is maximized linearly as r is minimized, and the value of r is restricted by a con‐
straint, namely, 2 ≤ r ≤ δ. Therefore, r 2, 3,……,δ, where δ = μ xn and l = n - r. Here, μ is a
user-specified parameter that controls δ. Its value depends on the n for a given dataset. If is
closed to n, then the search space of finding the salient features becomes larger, which cer‐
tainly causes a high computational cost, and raises the risk that ineffective feature subsets
might be generated. Since the aim of ACOFS is to select a subset of salient features within a
smaller range, the length of the selected subset is preferred to be between 3 and 12 depend‐
ing on the given dataset. Thus, is set as [0.1, 0.6]. Then, normalize all the values of Pr in such
a way that the summation of all possible values of Pr is equal to 1.

Second, ACOFS utilizes all the values of Pr for the random selection scheme mentioned in
Figure 6 to determine the size of the subset, r eventually. This selection scheme is almost
similar to the classical roulette wheel procedure [55].

Figure 6. Pseudo-code of the random selection procedure.

6.2. Subset Evaluation

Subset evaluation has a significant role, along with other basic operations of ACO for select‐
ing salient features in FS tasks. In common practices, filter or wrapper approaches are in‐
volved for evaluation tasks. However, it is found in [7] that the performance of a wrapper
approach is always better than that of a filter approach. Therefore, the evaluation of the
constructed subsets is inspired by a feed-forward NN training scheme for each iteration. Such
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a NN classifier is not an inherent constraint; instead of NN, any other type of classifier, such
as SVM, can be used as well for this evaluation tasks. In this study, the evaluation of the subset
is represented by the percentage value of NN classification accuracy (CA) for the testing set.
A detailed discussion of the evaluation mechanism integrated into ACOFS as follows.

First, during training the features of a constructed subset, the NN is trained partially for τp

epochs. Training is performed sequentially using the examples of a training set and a back-
propagation (BP) learning algorithm [56]. The number of training epochs, τp, is specified by
the user. In partial training, which was first used in conjunction with an evolutionary algo‐
rithm [17], the NN is trained for a fixed number of epochs, regardless of whether the algo‐
rithm has converged on a result.

Second, check the progress of training to determine whether further training is necessary. If
training error is reduced by a predefined amount, ε, after the τp training epochs (as men‐
tioned in Eq. (4)), we assume that the training process has been progressing well, and that
further training is thus necessary, and then proceed to the first step. Otherwise, we go to the
next step for adding a hidden neuron. The error, E, is calculated as follows:

2

1 1

1 ( ( ) ( ))
2

P C

c c
p c

E o p t p
= =

= -åå (3)

where oc(p) and tc(p) are the actual and target responses of the c-th output neuron for the
training example p. The symbols P and C represent the total number of examples and of out‐
put neurons in the training set, respectively. The reduction of training error can be described
as follows:

( ) ( ) ,    ,  2 ,  3 , .pE t E t tt e t t t- + > = ¼¼ (4)

On the other hand, in the case of adding the hidden neuron, the addition operation is guid‐
ed by computing the contributions of the current hidden neurons. If the contributions are
high, then it is assumed that another one more hidden neuron is required. Otherwise, freeze
the extension of the hidden layer size for further partial training of the NN. Computation of
the contribution of previously added hidden neurons in the NN is based on the CA of the
validation set. The CA can be calculated as follows:

100 vc

v

PCA
P

æ ö
= ç ÷

è ø
(5)

where Pvc refers to the number of examples in the validation set correctly classified by the
NN and Pv is the total number of patterns in the validation set.
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At this stage, the ACOFS measures error and CA in the validation set using Eqs. (3) and (5)
after every τp epochs of training. It then terminates training when either the validation CA
decreases or the validation error increases or both are satisfied for T successive times, which
are measured at the end of each of T successive τp epochs of training [16]. Finally, the testing
accuracy of the current NN architecture is checked with selected hidden neurons, using the
example of the testing set according to Eq. (5).

The idea behind this evaluation process is straightforward: minimize the training error, and
maximize the validation accuracy. To achieve these goals, ACOFS uses a constructive ap‐
proach to determine NN architectures automatically. Although other approaches, such as,
pruning [57] and regularization [58] could be used in ACOFS, the selection of an initial NN
architecture in these approaches is difficult [59]. This selection, however, is simple in the
case of a constructive approach. For example, the initial network architecture in a construc‐
tive approach can consist of a hidden layer with one neuron. On the other hand, an input
layer is set with r neurons, and an output layer with c neurons. More precisely, among r and
c neurons, one neuron for each feature of the corresponding subset and one neuron for each
class, respectively. If this minimal architecture cannot solve the given task, hidden neurons
can be added one by one. Due to the simplicity of initialization, the constructive approach is
used widely in multi-objective learning tasks [60].

6.3 Best Subset Selection

Generally, finding salient subsets with a reduced size is always preferable due to the low
cost in hardware implementation and less time consumed in operation. Unlike other exist‐
ing algorithms (e.g., [49,50]), in ACOFS, the best salient feature subset is recognized eventu‐
ally as a combination of the local best and global best selections as follows:

Local best selection: Determine the local best subset, Sl(t) for a particular t (t ∈ 1, 2, 3,…..)
iteration according to Max(Sk(t)), where Sk(t) is the number of subsets constructed by k ants,
and k 1, 2,…,n.

Global best selection: Determine the global best subset (Sg), that is, the best subset of salient
features from the all local best solutions in such a way that Sg is compared with the currently
decided local best subset, Sl(t) at every t iteration by their classification performances. If Sl(t)
is found better, then Sl(t) is replaced by Sg. One thing is that, during this selection process, if
the performances are found similar at any time, then select the one among the two, i.e., Sg

and Sl(t) as a best subset that has reduced size. Note that, at the first iteration Sl(t) is consid‐
ered as Sg.

6.4 Hybrid Search Process

The new hybrid search technique, incorporated in ACOFS, consists of wrapper and filter ap‐
proaches. A significant advantage of this search technique is that ants achieve a significant

Ant Colony Optimization - Techniques and Applications18



ability of utilizing previous successful moves and of expressing desirability of moves to‐
wards a high-quality solution in FS. This search process is composed of two sets of newly
designed rules, such as, the pheromone update rule and the heuristic information rule,
which are further described as follows.

6.4.1. Pheromone Update Rule

Pheromone updating in the ACO algorithm is a vital aspect of FS tasks. Ants exploit features
in SC that have been most suitable in prior iterations through the pheromone update rule,
consisting of local update and global update. More precisely, global update applies only to
those features that are a part of the best feature subset in the current iteration. It allows the
features to receive a large amount of pheromone update in equal shares. The aim of global
update is to encourage ants to construct subsets with a significant CA. In contrast to the
global update, local update not only causes the irrelevant features to be less desirable, but
also helps ants to select those features, which have never been explored before. This update
either decreases the strength of the pheromone trail or maintains the same level, based on
whether a particular feature has been selected.

In ACOFS, a set of new pheromone update rules has been designed on the basis of two basic
behaviors (that is to say, random and probabilistic) of ants during SCs. These rules have
been modified from the standard rule in [49] and [53], which aims to provide a proper bal‐
ance between exploration and exploitation of ants for the next iteration. Exploration is re‐
ported to prohibit ants from converging on a common path. Actual ants also have a similar
behavioral characteristic [61], which is an attractive property. If different paths can be ex‐
plored by different ants, then there is a higher probability that one of the ants may find a
better solution, as opposed to all ants converging on the same tour.

Random case: The rule presenting in Eq. (6) is modified only in the second term, which is
divided by mi. Such a modification provides for sufficient exploration of the ants for the fol‐
lowing constructions. The reason is that during the random behavior of the transition rule,
the features are being chosen to be selected randomly in practice, instead of according to
their experiences. Thus, to provide an exploration facility for the ants, the modification has
been adopted as follows:

τi(t + 1)= (1−ρ)τi(t) +
1
mi
∑
k=1

n
Δτi

k (t) + eΔτi
g(t)

Δτi
k (t)= {γ(S k (t)) if i∈S k (t)

0 otherwise

Δτi
g(t)= {γ(S l(t)) f i∈S l(t)

0 otherwise

(6)

Here, i refers to the number of feature (i 1, 2,……n), and mi is the count for the specific se‐
lected feature i in the current iteration. Δτi

k (t)is the amount of pheromone received by the
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local update for feature i, which is included in Sk(t) at iteration t. Similarly, the global up‐
date,Δτi

g(t) , is the amount of pheromone for feature i that is included in Sl(t). Finally, ρ and
e refer to the pheromone decay value, and elitist parameter, respectively.

Probabilistic case: Eq. (7) shows the modified pheromone rule for the probabilistic case. The
rule is similar to the original form, but actual modification has been made only for the inner
portions of the second and third terms.

τi(t + 1)= (1−ρ)τi(t) +∑
k=1

n
Δτi

k (t) + eΔτi
g(t)

Δτi
k (t)= {γ(S k (t))×λi f i∈S k (t)

0 otherwise

Δτi
g(t)= {γ(S l(t))×λi f i∈S l(t)

0 otherwise

(7)

Here, feature i is rewarded by the global update, and Δ τg is in the third term, where i � Sl(t)i.
It is important to emphasize that, i is maintained strictly here. That is, i at iteration i tti is
compared with i at iteration (tt -τp), where tt = t + τp, and τp 1, 2, 3,……In this regard, if
γ(Sl(tt)) max((γSl(ttpε)),), where ε refers to the number of CAs for those local best subsets that
maintain |Sl(tt)| = |Sl(ttp)|, then a number of features, nc are ignored to get Δτg, since those
features are available in Sl(tt), which causes to degrade its performance. Here, nc ∈Sl(tt) but
nc∉ Slb, where Slb provides max((γSl(ttp)),), and |Sl(tt)| implies the size of the subset Sl(tt).
Note that, the aim of this restriction is to provide Δτg only to those features that are actually
significant, because, global update has a vital role in selecting the salient features in ACOFS.
Distinguish such salient features and allow them to receive Δτg by imposing the above re‐
striction.

6.4.2. Heuristic Information Measurement

A heuristic value,η , for each feature generally represents the attractiveness of the features,
and depends on the dependency degree. It is therefore necessary to use ; otherwise, the algo‐
rithm may become too greedy, and ultimately a better solution may not be found [31]. Here,
a set of new rules is introduced for measuring heuristic information using the advantages of
wrapper and filter tools. More precisely, the outcome of subset evaluations using the NN is
used here as a wrapper tool, whereas the value of information gain for each feature is used
as a filter tool. These rules are, therefore, formulated according to the random and probabil‐
istic behaviors of the ants, which are described as follows.

Random case: In the initial iteration, while ants are involved in constructing the feature sub‐
sets randomly, the heuristic value of all features i can be estimated as follows:

Ant Colony Optimization - Techniques and Applications20



( )

1

1 ( ( ))(1 ) ( )
kS tn

k kn
i

ki

S t e if i S t
m

h g j
-

=

= + Îå (8)

Probabilistic case: In the following iterations, when ants complete the feature SCs on the ba‐
sis of the probabilistic behavior, the following formula is used to estimate for all features i :
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In these two rules, φi refers to the number of a particular selected feature i that is a part of
the subsets that are constructed within the currently completed iterations, except for the ini‐
tial iteration. The aim of multiplying mi and φi is to provide a proper exploitation capability
for the ants during SCs. λi refers to the information gain for feature i. A detailed discussion
on measurement of information gain can be seen in [64]. However, the aim of including is
based on the following two factors:

a. reducing the greediness of some particular feature i in n during SCs, and

b. increasing the diversity between the features in n.

Thus, different features may get an opportunity to be selected in the SC for different itera‐
tions, thus definitely enhancing the exploration behavior of ants. Furthermore, one addition‐
al exponential term has been multiplied by these rules in aiming for a reduced size subset.
Here, is the user specified parameter that controls the exponential term.

6.5. Computational Complexity

In order to understand the actual computational cost of a method, an exact analysis of com‐
putational complexity is required. In this sense, the big-O notation [62] is a prominent ap‐
proach in terms of analyzing computational complexity. Thus, ACOFS here uses the above
process for this regard. There are seven basic steps in ACOFS, namely, information gain
measurement, subset construction, subset evaluation, termination criterion, subset determina‐
tion, pheromone update, and heuristic information measurement. The following paragraphs
present the computational complexity of ACOFS in order to show that inclusion of different
techniques does not increase computational complexity in selecting a feature subset.

i. Information Gain Measurement: In this step, information gain (IG) for each feature
is measured according to [64]. If the number of total features for a given dataset is
n, then the cost of measuring IG is O(n × P), where P denotes the number of exam‐
ples in the given dataset. It is further mentioning that this cost is required only
once, specifically, before starting the FS process.
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ii. Subset Construction: Subset construction shows two different types of phenomena
according to Eq. (1). For the random case, if the total number of features for a given
dataset is n, then the cost of an ant constructing a single subset is O(r × n). Here,r
refers to the size of subsets. Since the total number of ants is k, the computational
cost is O(r × k × n) operations. However, in practice, r <n ; hence, the cost becomes
O(k × n) ≈ O(n2). In terms of the probabilistic case, ACOFS uses the Eq. (1) for select‐
ing the features in SC, which shows a constant computational cost of O(1) for each
ant. If the number of ants is k, then the computational cost becomes O(k).

iii. In ACOFS, five types of operations are necessarily required for evaluating a single
subset using a constructive NN training scheme: (a) partial training, (b) stopping
criterion, (c) further training, (d) contribution computation, and (e) addition of a
hidden neuron. The subsequent paragraphs describe these types in details.

a. Partial training: In case of training, standard BP [56] is used. During training each epoch
BP takes O(W) operations for one example. Here, W is the number of weights in the
current NN. Thus, training all examples in the training set for τp epochs requires O(τp ×
Pt × W) operations, where Pt denotes the number of examples in the training set.

b. Stopping criterion: During training, the stopping criterion uses either validation accura‐
cy or validation errors for subset evaluation. Since training error is computed as a part
of the training process, evaluating the termination criterion takes O(Pv × W) operations,
where Pv denotes the number of examples in the validation set. Since Pv< Pt, O(P × v ×
W) < O(p × kPt × W).

c. Further training: ACOFS uses Eq. (4) to check whether further training is necessary. The
evaluation of Eq. (4) takes a constant number of computational operations O(1), since
the error values used in Eq. (3) have already been evaluated during training.

d. Contribution computation: ACOFS computes the contribution of the added hidden neu‐
ron using Eq. (5). This computation takes O(Pv) operations, which is less than O(τp × Pt ×
W).

e. Addition of a hidden neuron: The computational cost for adding a hidden neuron is O(r
× c) for initializing the connection weights, where r is the number of features in the cur‐
rent subset, and c is the number of neurons in the output layer. Also note that O(r + c) <
O(p × Pt × W).

The aforementioned computation is done for a partial training session consisting of τp ep‐
ochs. In general, ACOFS requires a number, say M, of such partial training sessions for eval‐
uating a single subset. Thus, the cost becomes O(τp × M × Pt × W). Furthermore, by
considering all subsets, the computational cost required is O(k × τp × M × Pt × W) operations.

iv. Termination criterion: A termination criterion is employed in ACOFS for terminat‐
ing the FS process eventually. Since only one criterion is required to be executed (i.e.,
the algorithm achieves a predefined accuracy, or executes a iteration threshold, I), the
execution of such a criterion requires a constant computational cost of O(1).
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v. Subset determination: ACOFS requires two steps to determine the best subset,
namely, finding the local best subset and the global best subset. In order to find the
local best subset in each iteration t, ACOFS requires O(k) operations. The total com‐
putational cost for finding the local best subsets thus becomes O(k × t). In order to
find the global best subset, ACOFS requires O(1) operations. Thus, the total compu‐
tational cost for subset determination becomes O(k × t), which is less than O(k × τp ×
M × Pt × W).

vi. Pheromone update rule: ACOFS executes Eqs. (6) and (7) to update the pheromone
trails for each feature in terms of the random and probabilistic cases. Since the
number of features is n for a given learning dataset, the computation takes O(n)
constant operations, which is less than O(k × τp × M × Pt × W).

vii. Heuristic information measurement: Similar to the pheromone update operation,
ACOFS uses Eqs. (8) and (9) to update the heuristic value of n features. Thereafter,
the computational cost becomes O(n). Note that, O(n) O(k × τp × M × Pt × W).

In accordance with the above analysis, summarize the different parts of the entire computa‐
tional cost as O(n × P) + O(n2) + O(k) + O(k × τp × M × Pt × W). It is important to note here that
the first and second terms, namely, n × P and × n2, are the cost of operations performed only
once, and are much less than k × τp × M × Pt × P. On the other hand, O(k) << O(k × τp × M × Pt

× W). Hence, the total computational cost of ACOFS is O((τp × M × Pt × W), which is similar
to the cost of training a fixed network architecture using BP [56], and that the total cost is
similar to that of other existing ACO-based FS approaches [42]. Thus, it can be said that in‐
corporation of several techniques in ACOFS does not increase the computational cost.

7. Experimental Studies

The performance of ACOFS has been presented in this context on eight well-known bench‐
mark classification datasets, including the breast cancer, glass, vehicle, thyroid, ionosphere,
credit card, sonar, and gene datasets; and one gene expressional classification dataset, name‐
ly, the colon cancer dataset. These datasets have been the subject of many studies in NNs
and machine learning, covering examples of small, medium, high, and very high-dimen‐
sional datasets. The characteristics of these datasets, summarized in Table 1, show a consid‐
erable diversity in the number of features, classes, and examples. Now, the experimental
details, results, roles of subset size determination scheme in FS, the user specified parameter
μ in FS, and hybrid search in FS are described in this context. Finally, one additional experi‐
ment on ACOFS concerning performance for FS over real-world datasets mixed with some
noisy features, and comparisons of ACOFS with other existing works, are also discussed in
this context.

7.1. Experimental Setup

In order to ascertain the effectiveness of ACOFS for FS, extensive experiments have been carried
out on ACOFS that are adapted from [64]. To accomplish the FS task suitably in ACOFS, two
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basic steps need to be considered, namely,  dimensionality reduction of the datasets and
assigning values for user-specified parameters. In case of dimensionality reduction, in con‐
trast to other datasets used in this study, colon cancer is being very high-dimensional data‐
sets containing a very large number of genes (features). The number of genes of colon cancer
(i.e., 2000 genes) is too high to manipulate in the learning classifier and not all genes are useful
for classification [63]. To remove such difficulties, we first reduced the dimension of the colon
cancer dataset to within 100 features, using an information gain (IG) measurement techni‐
que. Ordinarily, IG measurement determines statistically those features that are informative
for classifying a target. On the basis of such a concept, we have used such a technique for
reducing the dimension of the colon cancer dataset. Details about IG measurement can be
found in [64].

In case of user-specified parameters, we used a number of parameters, which are common for
the all datasets, reported in the Table 2. It should be noted that, these parameters are not specific
to our algorithm, rather usual for any ACO-based FS algorithm using NN. We have chosen
these parameters after some preliminary runs. They were not meant to be optimal. It is worth
mentioning that, among the parameters mentioned in Table 2, proper selection of the values
of parameters and ,  is  helpful for achieving a level of balance between exploitation and
exploration of ants in selecting salient features. For example, if 0, then no pheromone infor‐
mation is used, that is to say, previous search experience is neglected. The search then changes
to a greedy search. If 0, then attractiveness, the potential benefit of moves, is neglected. In this
work, the values of and were chosen according to the suggestion of [53].

Parameter Value

Initial pheromone level for all features, τ 0.5

Initial heuristic value for all features, η 0.1

(,used in subset size determination 0.08 to 0.6

Strength of pheromone level, α 1

Strength of heuristic value, β 3

Pheromone decay parameter, ρ 0.4

Exponential term control parameter, φ 0.1

Iteration threshold, 10 to 18

Accuracy threshold Depends on dataset

Learning rate for BP algorithm 0.1 to 0.2

Momentum term for BP algorithm 0.5 to 0.9

Initial weights of NNs -1.0 to 1.0

The number of epochs for partial training, τ 20 to 40

Training error threshold, λ Depends on dataset

Training threshold for terminating NN training, T 3

Table 2. Common parameters for all datasets.
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7.2 Experimental Results

Tables 3 shows the results of ACOFS over 20 independent runs on nine real-world bench‐
mark classification datasets. The classification accuracy (CA) in Table 3 refers to the percent‐
age of exact classifications produced by trained NNs on the testing set of a classification
dataset. In addition, the weights of features for the above nine datasets over 20 independent
runs are exhibited in Tables 4-11. On the other hand, Figure 7 shows how the best solution
was selected in ACOFS for the glass dataset. In order to observe whether the internal proc‐
ess of FS in ACOFS is appropriately being performed, Figures. 8-11 have been considered.
Now, the following observations can be made from Tables 3-11 and Figures 7-11.

Dataset Avg. result with all features Avg. result with selected features

n SD CA (%) SD ns SD CA(%) SD

Cancer 9.00 0.00 97.97 0.42 3.50 1.36 98.91 0.40

Glass 9.00 0.00 76.60 2.55 3.30 1.14 82.54 1.44

Vehicle 18.00 0.00 60.71 11.76 2.90 1.37 75.90 0.64

Thyroid 21.0 0.00 98.04 0.58 3.00 1.34 99.08 0.11

Ionosphere 34.0 0.00 97.67 1.04 4.15 2.53 99.88 0.34

Credit card 51.0 0.00 85.23 0.67 5.85 1.76 87.99 0.38

Sonar 60.0 0.00 76.82 6.97 6.25 3.03 86.05 2.26

Gene 120.0 0.00 78.97 5.51 7.25 2.53 89.20 2.46

Colon cancer 100.0 0.00 59.06 5.75 5.25 2.48 84.06 3.68

Table 3. Performance of ACOFS for different classification datasets. Results were averaged over 20 independent runs.
Here, n and ns refer to the total number of original features and selected features, respectively. On the other hand, CA
and SD signify the classification accuracy and standard deviation, respectively.

i. As can be seen from Table 3, ACOFS was able to select a smaller number of fea‐
tures for solving different datasets. For example, ACOFS selected, on average, 3.00
features from a set of 21 features in solving the thyroid dataset. It also selected, on
average, 7.25 genes (features) from a set of 120 genes in solving the gene dataset.
On the other hand, a very large-dimensional dataset, that of colon cancer, was pre‐
processed from the original one to be utilized in ACOFS. In this manner, the origi‐
nal 2000 features of colon cancer were reduced to within 100 features. ACOFS then
obtained a small number of salient genes, 5.25 on average, from the set of 100 genes
for solving the colon cancer dataset. In fact, ACOFS selected a small number of fea‐
tures for all other datasets having more features. Feature reduction in such datasets
was several orders of magnitude (see Table 3).

ii. The positive effect of a small number of selected features (ns) is clearly visible when
we observe the CA. For example, for the vehicle dataset, the average CA of all fea‐
tures was 60.71%, whereas it had been 75.90% with 2.90 features. Similarly, ACOFS
produced an average CA of 86.05% with the average number of features of 6.25
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substantially reduced for the sonar dataset, while the average CA had been 76.82%
with all 60 features. Other similar types of scenarios can also be seen for all remain‐
ing datasets in ACOFS. Thus, it can be said that ACOFS has a powerful searching
capability for providing high-quality solutions. CA improvement for such datasets
was several orders of magnitude (see Table 3). Furthermore, the use of ns caused a
relatively small standard deviation (SD), as presented in Table 3 for each entry. The
low SDs imply robustness of ACOFS. Robustness is represented by consistency of
an algorithm under different initial conditions.

Figure 7. Finding best subset of the glass dataset for a single run. Here, the classification accuracy is the accuracy of
the local best subset.

Figure 8. Number of selections of each feature by different ants for different iterations in the glass dataset for a single
run.

iii. The method of determination for the final solution of a subset in ACOFS can be
seen in Figure 7. We can observe that for the performances of the local best subsets,
the CAs varied together with the size of those subsets. There were also several
points, where the CAs were maximized, but the best solution was selected (indicat‐
ed by circle) by considering the reduced size subset. It can also be seen in Figure 7
that CAs varied due to size variations of local best subsets in different iterations.
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Furthermore, different features that were included in different local best subsets
caused variations in CAs.

Figure 9. Distribution of pheromone level of some selected features of the glass dataset in different iterations for a
single run.

Figure 10. Distribution of heuristic level of some selected features of the glass dataset in different iterations for a sin‐
gle run.

iv. In order to observe the manner, in which how the selection of salient features in
different iterations progresses in ACOFS, Figure 8 shows the scenario of such infor‐
mation for the glass dataset for a single run. We can see that features 1, 7, 8, 6, and
2 received most of the selections by ants during SCs compared to the other fea‐
tures. The selection of features was basically performed based on the values of
pheromone update (τ) and heuristic information (η) for individual features. Ac‐
cordingly, those features that had higher values of τ and η ordinarily obtained a
higher priority of selection, as could be seen in Figures 9 and 10. For clarity, these
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figures represented five features, of which four (features 1, 7, 8, 6) had a higher rate
of selection by ants during SCs and one (feature 2) had a lower rate.

Dataset Feature

1 2 3 4 5 6 7 8 9

Cancer 0.186 0.042 0.129 0.142 0.129 0.2 0.115 0.042 0.015

Glass 0.258 0.045 0.258 0.107 0.06 0.015 0.182 0.06 0.015

Table 4. Weights of the features selected by ACOFS for the cancer and glass datasets.

Feature 1 2 4 7 9 10 11 12

Weight 0.189 0.103 0.069 0.051 0.086 0.086 0.103 0.086

Table 5. Weights of the features selected by ACOFS for the vehicle dataset.

Feature 1 7 17 19 20 21

Weight 0.052 0.052 0.332 0.1 0.069 0.15

Table 6. Weights of the features selected by ACOFS for the thyroid dataset.

Feature 1 3 4 5 7 8 12 27 29

Weight 0.108 0.036 0.036 0.036 0.06 0.12 0.06 0.12 0.036

Table 7. Weights of the features selected by ACOFS for the ionosphere dataset.

Feature 5 8 29 41 42 43 44 49 51

Weight 0.042 0.06 0.034 0.051 0.17 0.111 0.128 0.034 0.12

Table 8. Weights of the features selected by ACOFS for the credit card dataset.

Feature 2 9 10 11 12 15 17 18 44

Weight 0.037 0.046 0.056 0.084 0.112 0.037 0.037 0.037 0.06

Table 9. Weights of the features selected by ACOFS for the sonar dataset.

Feature 22 59 60 61 62 63 64 69 70 119

Weight 0.027 0.064 0.045 0.1 0.073 0.073 0.119 0.110 0.128 0.036

Table 10. Weights of the features selected by ACOFS for the gene dataset.
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Feature 47 72 249 267 493 765 1247 1325 1380 1843

Weight 0.051 0.038 0.051 0.038 0.051 0.038 0.038 0.038 0.051 0.051

Table 11. Weights of the features selected by ACOFS for the colon cancer dataset.

Figure 11. Training process for evaluating the subsets constructed by ants in the ionosphere dataset: (a) training error
on training set, (b) training error on validation set, (c) classification accuracy on validation set, and (d) the hidden neu‐
ron addition process.
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v. Upon completion of the entire FS process, the features that were most salient could
be identified by means of weight computation for individual features. That is to
say, features having higher weight values were more significant. On the other
hand, for a particular feature to have a maximum weight value implied that the
feature had the maximum number of selections by ants in any algorithm for most
of the runs. Tables 4-11 show the weight of features for the cancer, glass, vehicle,
thyroid, ionosphere, credit card, sonar, gene, and colon cancer datasets, respective‐
ly, over 20 independent runs. We can see in Table 4 that ACOFS selected features 6,
1, 4, 3, 5, and 7 from the cancer dataset very frequently, that these features had rela‐
tively higher weight values, and preformed well as discriminators. Similarly, our
ACOFS selected features 42, 44, 51, 43, 8, and 5 as most important from the credit
card dataset (Table 8), as well as features 70, 64, 69, 61, 63, 59, and 60 from the gene
dataset (Table 10). Note that, weights for certain features are reported in Tables
5-11, whereas weights that were of negligible value for the rest of each dataset are
not included.

vi. Finally, we wish to note that a successful evaluation function leads to finding high-
quality solutions for ACOFS in FS. Our ACOFS uses a constructive NN model that
evaluates the subsets constructed by ants in each and every step during training.
As training process progresses, the training error for the training set converges to a
certain limit (Figure 11(a)). However, there is an instance in which the training er‐
ror increases. This is due to the addition of one unnecessary hidden neuron. Such
an addition also hampers the training error on the validation set (Figure 11(b)).
Therefore, ACOFS deletes such an unnecessary hidden neuron (Figure 11(d)) from
the NN architecture, since it cannot improve the classification accuracy on the vali‐
dation set (Figure 11(c)).

7.3. Effects of Subset Size Determination

The results presented in Table 3 show the ability of ACOFS in selecting salient features.
However, the effects resulting from determining the subset size to control ants in such a
manner as to construct the subset in a reduced boundary were not clear. To observe such
effects, we carried out a new set of experiments. The setups of these experiments were al‐
most exactly the same as those described before. The only difference was that ACOFS had
not determined the subset size earlier using a bounded scheme; instead the size of the subset
for each ant had been decided randomly.

Dataset ACOFS without bounded scheme ACOFS

ns SD CA(%) SD ns SD CA(%) SD

Vehicle 6.05 4.76 75.73 0.48 2.90 1.37 75.90 0.64

Credit card 15.30 8.25 88.34 0.22 5.85 1.76 87.99 0.38

Table 12. Effect of determining subset size on the average performances of ACOFS.

Ant Colony Optimization - Techniques and Applications30



Table 12 shows the average results of the new experiments for vehicle and credit card data‐
sets over only 20 independent runs. The positive effects of determining the subset size dur‐
ing the FS process are clearly visible. For example, for the credit card dataset, the average
values of ns of ACOFS without and with subset size determination were 15.30 and 5.85, re‐
spectively. A similar scenario can also be seen for the other dataset. In terms of CAs, the
average CAs for ACOFS with subset size determination were either better than or compara‐
ble to ACOFS without subset size determination for these two datasets.

7.4. Effect of µ

The essence of the proposed techniques in ACOFS can be seen in Table 3 for recognizing the
subsets of salient features from the given datasets; however, the effects of the inner compo‐
nent μ of subset size determination (see Section 6.1) on the overall results were not clear.
The reason is that the size of the subsets constructed by the ants depended roughly on the
value of μ. To observe such effects, we conducted a new set of experiments. The setups of
these experiments were almost exactly the same as those described before. The only differ‐
ence was that the value of μ varied within a range of 0.2 to 0.94 by a small threshold value
over 20 individual runs.

Values of μ Average performance

Initial Final ns SD CA (%) SD

0.40 0.64 2.60 0.91 80.09 2.69

0.50 0.74 3.05 1.16 82.16 1.51

0.60 0.84 3.30 1.14 82.54 1.44

0.70 0.94 3.45 1.39 81.98 1.39

Table 13. Effect of varying the value of µ on the average performances of ACOFS for the glass dataset. The value is
incremented by a threshold value of 0.01 over 20 individual runs.

Values of μ Average performance

Initial Final ns SD CA (%) SD

0.20 0.30 4.70 2.59 99.54 0.83

0.23 0.33 3.65 2.32 99.65 0.63

0.26 0.36 4.15 2.53 99.88 0.34

0.29 0.39 6.00 3.78 99.48 0.76

Table 14. Effect of varying the value of µ on the average performances of ACOFS for the ionosphere dataset. The
value is incremented by a threshold value of 0.005 over 20 individual runs.
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Tables 13 and 14 show the average results of our new experiments over 20 independent
runs. The significance of the effect of varying μ. can be seen from these results. For example,
for the glass dataset (Table 13), the average percentage of the CA improved as the value of μ.
increased up to a certain point. Afterwards, the CA degraded as the value of μ. increased.
Thus, a subset of features was selected with a large size. A similar scenario can also be seen
for the ionosphere dataset (Table 14). It is clear here that the significance of the result of FS
in ACOFS depends on the value of μ. Furthermore, the determination of subset size in
ACOFS is an important aspect for suitable FS.

7.5. Effect of Hybrid Search

The capability of ACOFS for FS can be seen in Table 3, but the effect of using hybrid search
in ACOFS for FS is not clear. Therefore, a new set of experiments was carried out to ob‐
serve such effects. The setups of these experiments were almost exactly as same as those
described before. The only difference was that ACOFS did not use the modified rules of
pheromone update and heuristic value for each feature; instead, standard rules were used.
In such considerations, we avoided not only the incorporation of the information gain term,
but also the concept of  random and probabilistic  behaviors,  during SC for both specific
rules. Furthermore, we ignored the exponential term in the heuristic measurement rule.

Dataset ACOFS without hybrid search ACOFS

ns SD CA (%) SD ns SD CA(%) SD

Glass 4.05 1.35 81.22 1.39 3.30 1.14 82.54 1.44

Credit card 6.15 2.21 87.26 0.66 5.85 1.76 87.99 0.38

Sonar 6.50 2.80 84.42 3.03 6.25 3.03 86.05 2.26

Colon cancer 6.35 4.05 82.18 4.08 5.25 2.48 84.06 3.68

Table 15. Effect of considering hybrid search on average performances of ACOFS. Results were averaged over 20
independent runs.

Table 15 shows the average results of our new experiments for the glass, credit card, sonar,
and colon cancer datasets over 20 independent runs. The positive effects of using a hybrid
search in ACOFS are clearly visible. For example, for the credit card dataset, the average
CAs of ACOFS with and without hybrid search were 87.99% and 87.26%, respectively. A
similar classification improvement for ACOFS with hybrid search was also observed for the
other datasets. On the other hand, in terms of ns, for the glass dataset, the average values of
ns of ACOFS and ACOFS without hybrid search were 3.30 and 4.05, respectively. For the
other datasets it was also found that ACOFS selected a smaller number of salient features.
We used t-test here to determine whether the difference of classification performances be‐
tween ACOFS and ACOFS without hybrid search was statistically significant. We found that
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ACOFS performed significantly better than ACOFS without local search operation at a 95%
confidence level for all the datasets, except for the colon cancer dataset. On the other hand,
the t-test was also used here to determine whether the difference in performances between
the above two approaches with regard to selecting a reduced number of salient features was
statistically significant. We found that ACOFS was significantly better than ACOFS without
hybrid search at a 95% confidence level for all four datasets.

In order to understand precisely how hybrid search plays an important role in ACOFS for
FS tasks, a set of experiments was additionally conducted. The setups of these experiments
were similar to those described before, and different initial conditions were maintained con‐
stant between these two experiments. Figures 12 and 13 show the CAs of ACOFS without
and with hybrid search, respectively. These CAs were produced by local best subsets in dif‐
ferent iterations of a single run. The positive role of using hybrid local search in ACOFS can
clearly be seen in these figures. In Figure 12, we can see that a better CA was found only in
the initial iteration because of the rigorous survey by the ants in finding salient features. For
the next iterations, the CAs fluctuated up to a higher iteration, 19, but were not able to reach
a best state. This occurred due to the absence of hybrid search, which resulted in a weak
search in ACOFS. The opposite scenario can be seen in Figure 13, where the search was suf‐
ficiently powerful that by a very low number of iterations, 5, ACOFS was able to achieve the
best accuracy (99.42%) of the salient feature subset. Thereafter, ACOFS terminated the
searching of salient features. The reason for such a high performance of FS was just the in‐
corporation of the hybrid search.

Figure 12. Classification accuracies (CAs) of the cancer dataset without considering hybrid search for a single run.
Here, CA is the accuracy of a local best subset.
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Figure 13. Classification accuracies (CAs) of the cancer dataset in ACOFS for a single run. Here, CA is the accuracy of a
local best subset.

7.6. Performance on noisy features

The results presented in Table 3 exhibit the ability of ACOFS to select salient features from
real-valued datasets. In this study, we examine the sensitivity of ACOFS to noisy features
that have been synthetically inserted into a number of real-valued datasets. In order to gen‐
erate these noisy features, we followed the process discussed in [32]. Briefly, at first, we con‐
sidered four features, namely, fn1, fn2, fn3, fn4 and the values of these respective features were
generated randomly. Specifically, the values of fn1 and fn2 were bound up to [0, 1] and [-1,
+1], respectively. For the domains of fn3 and fn4, we first randomly selected two different fea‐
tures from the datasets. Subsequently, the data points of these two selected features were
taken as a random basis for use in the domains of fn3 and fn4.

Dataset With all features With selected features

ns S.D. CA (%) S.D. ns S.D. CA (%) S.D.

Cancer 13.00 0.00 97.80 0.89 3.80 1.80 98.74 0.46

Glass 13.00 0.00 73.86 2.81 4.45 1.71 81.69 2.31

Table 16. Performances of ACOFS for noisy datasets. Results were averaged over 20 independent runs.

Table 16 shows the average performances of ACOFS on the real-valued datasets of cancer
and glass mixed with noisy features over 20 independent runs. The ability of ACOFS for FS
over real-valued datasets can also be found in Table 3. In comparing Tables 3 and 16, the
following observations can be made. For the glass dataset, the average CAs with and with‐
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out noisy features were 81.69% and 82.54%, respectively. On the other hand, in terms of ns,
the average values were 4.45 and 3.30, respectively. A similar scenario can also be found for
the cancer dataset. Thus, it is clear that ACOFS has a strong ability to select the salient fea‐
tures from real-valued datasets even with a mixture of noisy features. We can observe that
ACOFS selected a slightly higher average number of salient features from the glass dataset
with noisy features. The reason is that adding the noisy features created confusion in the
feature space. This may assist our ACOFS in selecting a greater number of noiseless features
to resolve the confusion in the feature space caused by the noisy features.

7.7. Comparisons

The results of ACOFS obtained on nine real-world benchmark classification datasets are
compared here with the results of various existing FS algorithms (i.e., ACO-based and non
ACO-based) as well as with a normal ACO-based FS algorithm, as reported in Tables 17-19.
The various FS algorithms are as follows: ACO-based hybrid FS (ACOFSS[42]), ACO-based
attribute reduction (ACOAR[31]), genetic programming for FS (GPFS[32]), hybrid genetic al‐
gorithm for FS (HGAFS[23]), MLP-based FS method (MLPFS[4]), constructive approach for
feature selection (CAFS[47]), and artificial neural net input gain measurement approxima‐
tion (ANNIGMA[26]). The results reported in these tables are over 20 independent runs. In
comparing these algorithms, we have mainly used two parameters: classification accuracy
(CA) and the number of selected features ( ns).

7.7.1. Comparison with other works

The comparisons between eight FS algorithms represent a wide range of FS techniques. Five
of the FS techniques, namely, ACOFS, ACOFSS, ACOAR, GPFS, and HGAFS, use global
search strategies for FS. Among them, ACOFS, ACOFSS, and ACOAR use the ant colony op‐
timization algorithm. HGAFS uses a GA in finding salient features, and GPFS uses genetic
programming, a variant of GA. For the remaining three FS techniques, namely, MLPFS, AN‐
NIGMA and CAFS; MLPFS and ANNIGMA use backward selection strategy for finding sa‐
lient features, while CAFS uses forward selection strategy. For evaluating the feature subset,
ACOFS, ACOFSS, MLPFS, CAFS, and ANNIGMA use a NN for classifiers, while GPFS and
HGAFS use a decision tree and support vector machine, respectively, for classifiers, and
ACOAR uses rough set theory by calculating a dependency degree. ACOFS, and CAFS uses
a training set, validation set and testing set, while ACOFSS and ANNIGMA use only a train‐
ing set and testing set. MLPFS and GPFS use 10-fold cross-validation. A similar method, that
is, 5-fold cross-validation, is used in HGAFS, where k refers to a value ranging from 2 to 10,
depending on the given dataset scale. The aforementioned algorithms not only use different
data partitions, but also employ a different number of independent runs in measuring aver‐
age performances. For example, ANNIGMA and CAFS use 30 runs, ACOFS uses 20 runs,
and MLPFS and GPFS use 10 runs. It is important to note that no further information re‐
garding the number of runs has been mentioned in the literature for ACOFSS and HGAFS.
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Dataset Comparison

ACOFS ACOFSS ACOAR

Cancer ns 3.50 12.00

CA(%) 98.91 95.57

Thyroid ns 3.00 14.00 --

CA (%) 99.08 94.50 --

Credit card ns 5.85 - 8.00

CA (%) 87.99 - -

Colon cancer ns 5.25 - 8.00

CA(%) 84.06 - 59.5

Table 17. Comparisons between ACOFS, ACOFSS [42], ACOAR [31]. Here, “_” means not available.

We can see in Table 17 that ACOFS produced the best solutions in terms of a reduced num‐
ber of selected features, and the best CA in comparison with the two ACO-based FS algo‐
rithms, namely, ACOFSS and ACOAR, for all four datasets. Furthermore, the results produced
by ACOFS shown in Table 18 represented the best CA among the other algorithms for all four
datasets. For the remaining three datasets, while HGAFS achieved the best CA for two data‐
sets, GPFS achieved the best CA for one dataset. Note that, ACOFS and ANNIGMA jointly
achieved the best CA for the credit card dataset. In terms of ns, ACOFS selected the smallest
number of features for four out of seven datasets, and the second smallest for two dataset; that
is to say, CAFS and HGAFS. In a close observation, ACOFS achieved the smallest ns, which
resulted in the best CAs for the glass and ionosphere datasets in comparison with the other
five algorithms (see Table 18).

Dataset Comparison

ACOFS GPFS HGAFS MLPFS CAFS ANNIGMA

Cancer ns 3.50 2.23 3.00 8.00 6.33 5.80

CA(%) 98.91 96.84 94.24 89.40 98.76 96.50

Glass ns 3.30 -- 5.00 8.00 4.73 -

CA (%) 82.54 -- 65.51 44.10 76.91 -

Vehicle ns 2.90 5.37 11.00 13.00 2.70 -

CA(%) 75.90 78.45 76.36 74.60 74.56 -

Ionosphere ns 4.15 - 6.00 32 6.73 9.00

CA (%) 99.88 - 92.76 90.60 96.55 90.20

Credit card ns 5.85 - 1.00 - - 6.70

CA (%) 87.99 - 86.43 - - 88.00

Sonar ns 6.25 9.45 15.00 29.00 - -

CA (%) 86.05 86.26 87.02 59.10 - -

Colon cancer ns 5.25 - 6.00 - - -

CA (%) 84.06 - 86.77 - - -

Table 18. Comparisons between ACOFS, GPFS [32], HGAFS [23], MLPFS [4], CAFS [47], and ANNIGMA [26]. Here, “_”
means not available.
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Significantly, it can be said that FS improves the performance of classifiers by ignoring irrel‐
evant features in the original feature set. An important task in such a process is to capture
necessary information in selecting salient features; otherwise, the performance of classifiers
might be degraded. For example, for the cancer dataset, GPFS selected the smallest feature
subset consisting of 2.23 features, but achieved a lower CA. On the other hand, ACOFS se‐
lected a slightly larger feature subset that provided a better CA compared to others for the
cancer dataset. In fact, the results presented for other algorithms in Table 18 indicate that
having the smallest or largest feature subset did not guarantee performing with the best or
worst CA.

7.7.2. Comparison with normal ACO based FS algorithm

In this context, a normal ACO algorithm for solving FS is used, considering similar steps as
incorporated in ACOFS, except for a number of differences. We call this algorithm “NA‐
COFS”. In NACOFS, issues of guiding the ants and forcing the ants during SC were not con‐
sidered. Instead, the ants followed a process for SC where the size of subsets was fixed for
each iteration and increased at a fixed rate for following iterations. On the other hand, hy‐
brid search was not used here; that is to say, the concept of random and probabilistic behav‐
ior was not considered, including the incorporation of information gain in designing the
pheromone update rule and heuristic information measurement rule.

Dataset Comparison

ACOFS NACOFS

ns S.D. CA S.D. ns S.D. CA S.D.

Cancer 3.50 1.36 98.91 0.40 4.50 0.97 98.77 0.37

Glass 3.30 1.14 82.54 1.44 4.60 1.01 80.66 1.44

Ionosphere 4.15 2.53 99.88 0.34 11.45 6.17 99.88 0.34

Credit card 5.85 1.76 87.99 0.38 22.85 6.01 88.19 0.45

Table 19. Comparisons between ACOFS and NACOFS. Here, NACOFS refers to the normal ACO-based FS algorithm.

It is seen in Table 19 that the results produced by ACOFS achieved the best CA compared to
NACOFS for three out of four datasets. For the remaining dataset, NACOFS achieved the
best result. In terms of ns, ACOFS selected the smallest number of features for the all four
datasets, while NACOFS selected subsets of bulky size. Between these two algorithms, the
performances of the CAs seemed to be similar, but the results of the numbers of selected fea‐
tures were very different. The performance of ACOFS was also found to be very consistent,
exhibiting a low standard deviation (SD) under different experimental setups.
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7.8. Discussions

This section briefly explains the reason that the performance of ACOFS was better than those
of the other ACO-based FS algorithms compared in Table 17. There are three major differen‐
ces that might contribute to the better performance of ACOFS compared to the other algorithms.

The first reason is that ACOFS uses a bounded scheme to determine the subset size, while
ACOFSS, ACOAR, and other ACO-based FS algorithms (e.g., [11,49-52]) do not use such a
scheme. It is now clear that without a bounded scheme, ants are free to construct subsets of
bulky size. Accordingly, there is a high possibility of including a number of irrelevant fea‐
tures in the constructed subsets. Using the bounded scheme with assistance from other tech‐
niques, ACOFS includes the most highly salient features in a reduced number, although it
functioned upon a wide range of feature spaces. As shown in Table 17, ACOFS selected, on
average, 3.00 salient features, while ACOFSS selected 14.00 features, on average, from the
thyroid dataset. For the remaining other three datasets, ACOFS also selected a very small
number of salient features. The benefit of using the bounded scheme can also be seen from
the results of the selected subsets in ACOFS.

The second reason is the new hybrid search technique integrated in ACOFS. The algorithms
ACOFSS, ACOAR and others do not use such a hybrid search technique in performing pher‐
omone update and heuristic information measurement. The benefit of adopting the hybrid
search in ACOFS can clearly be seen in Figures 12 and 13. These figures show that ACOFS
achieved a powerful and faster searching capability in finding salient features in the feature
space. The above advantage can also be seen in Tables 17 and 18. We found that ACOFS had
a remarkable capability to produce significant classification performances from different da‐
tasets using a reduced number of salient features.

The third reason is that ACOFS used a constructive approach for determining appropriate
architectures, that is to say, an appropriate size of the hidden layer for the NN classifiers.
The NN then evaluated the subsets constructed by the ants in each iteration during train‐
ing. The existing ACO-based FS approaches (e.g., [42]) often ignored the above issue of the
NN classifiers. Furthermore, a number of other approaches (e.g., [49,50]) often ignored the
classifier portions to consider any heuristic methodology by which the activity of the clas‐
sifiers could be improved for evaluating the subsets effectively. Furthermore, most ACO-
based FS approaches performed the pheromone update rule based on classifier performances
in evaluating the subsets. In this sense, the evaluation function was one of the most cru‐
cial parts in these approaches for FS. However, the most common practice was to choose
the number of hidden neurons in the NN randomly. Thus, the random selection of hid‐
den neurons affected the generalization performances of the NNs. Furthermore, the entire
FS process was eventually affected, resulting in ineffective solutions in FS. It is also impor‐
tant to say that the performance of any NN was greatly dependent on the architecture [17,
57]. Thus, automatic determination of the number of hidden neurons’ lead to providing a
better solution for FS in ACOFS.
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8. Conclusions

In this chapter, an efficient hybrid ACO-based FS algorithm has been reported. Since ants
are the foremost strength of an ACO algorithm, guiding the ants in the correct directions is
an urgent requirement for high-quality solutions. Accordingly, ACOFS guides ants during
SC by determining the subset size. Furthermore, new sets of pheromone update and heuris‐
tic information measurement rules for individual features bring out the potential of the
global search capability of ACOFS.

Extensive experiments have been carried out in this chapter to evaluate how well ACOFS
has performed in finding salient features on different datasets (see Table 3). It is observed
that a set of high-quality solutions for FS was found from small, medium, large, and very
large dimensional datasets. The results of the low standard deviations of the average classi‐
fication accuracies as well as the average number of selected features, showed the robust‐
ness of this algorithm. On the other hand, in comparison with seven prominent FS
algorithms (see Tables 17 and 18), with only a few exceptions, ACOFS outperformed the
others in terms of a reduced number of selected features and best classification performan‐
ces. Furthermore, the estimated computational complexity of this algorithm reflected that
incorporation of several techniques did not increase the computational cost during FS in
comparison with other ACO-based FS algorithms (see Section 6.5).

We can see that there are a number of areas, where ACOFS failed to improve performances in
terms of number of selected features and classification accuracies. Accordingly, more suita‐
ble heuristic schemes are necessary in order to guide the ants appropriately. In the current
implementation, ACOFS has a number of user-specified parameters, given in Table 2, which
are common in the field of ACO-based algorithms using NNs for FS. Further tuning of the
user-specified parameters related to ACO provides some scope for further investigations in
future. On the other hand, among these parameters, μ, used in determining the subset size,
was sensitive to moderate change, according to our observations. One of the future improve‐
ments to ACOFS could be to reduce the number of parameters, or render them adaptive.
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