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1. Introduction

It is very important to consider simultaneous estimation of both system states and inaccessi‐
ble modes for hybrid systems with unknown modes [4,7,24,25]. This estimation is called hy‐
brid estimation. By the hybrid estimation we often want to know both a current mode and
system state at each time through information of observation. However there exist cases that
we want to know distributions of modes on long run time interval rather than each estimate
of the modes themselves at each time to grasp global performance over long time intervals,
for example, distributions of active modes in solar systems [5,21], distributions of active
agents on formation or consensus via hybrid systems representation and so on.

Much work has been done for smoothing theory for both of continuous- and discrete-time
systems ([1,2,3,6,8,9,10,12,13,14,15,18,19,20,22,23] and so on). Various researchers have stud‐
ied the smoothing problems by various approach, for example, maximum likelihood ap‐
proach [9,13,19], projection approach [14] and so on. It is well known that smoothers
(noncausal estimators) more effectively estimates the states than filters (causal estimators)
because of more information of observation.

It is well known that utilization of accumulated information of observation improves esti‐
mation performance. Nevertheless, on research of estimation for hybrid systems, little work
has been done from the point of view of the noncausal information of observation, i.e.,
smoothing. In [9] Helmick et al. have presented a fixed-interval smoothing algorithm for
discrete-time Markovian jump systems by maximum likelihood (ML) approach. However
they have considered only the case with fully accessible modes and their approach is based
on approximate approach to probability density functions (PDFs). Therefore they have pre‐
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sented only a nearly optimal smoothing algorithm. While it is significant that optimality is
guaranteed for estimation algorithms, in [4] and [7] Costa et al. have presented LMMSE (lin‐
ear minimum mean square estimate) filters to estimate both system states and inaccessible
modes for continuous- and discrete-time Markovian jump systems affected by wide sense
white noises, but in these LMMSE filters theory the optimality of estimation isn''t always
guaranteed in the meaning that these filters aren''t always MMSE (minimum mean square
estimate). To the best of the author''s knowledge the optimal smoothing problems in the cas‐
es with inaccessible modes have not yet fully investigated.

In this chapter we study hybrid estimation for linear discrete-time systems with non-Gaussi‐
an noises. The concerned systems are general hybrid systems given below which aren''t re‐
stricted to Markovian jump systems [4,5,7] and where added noises aren''t restricted to be
Gaussian. It is assumed that modes of the systems are not directly accessible throughout this
paper. We consider optimal estimation problems to find both estimated states of the systems
and an optimal candidate of the distributions of the modes over the finite time interval. We
adopt most probable trajectory (MPT) approach to guarantee the optimality of estimation
methods. On this approach, given information of observation, we consider optimal control
problems where we seek optimal control by which averaged noises energies are minimized
for averaged systems throughout the mode distributions. In [24,25] Zhang has presented hy‐
brid filtering algorithm by MPT approach for the continuous- and discrete-time hybrid sys‐
tems. We consider both filtering and smoothing problems for discrete-time hybrid systems
in this chapter. We can expect better estimation performance by taking into consideration
noncausal information of observations. The hybrid smoother is realized by two filters ap‐
proach [2,8,12,20,22,23]. Finally we give numerical examples and verify that we can obtain
better estimation performance by smoothing than filtering.

The organization of this chapter is as follows. In section 2 we describe the systems and prob‐
lem formulation. In section 3 we present the hybrid estimation algorithms by the MPT ap‐
proach over the finite time interval. In subsection 3.1 we review the hybrid filtering
algorithm and in subsection 3.2 we design the backward filters and present the hybrid
smoothing algorithm by the two filters approach. In section 4 we consider numerical exam‐
ples and verify the effectiveness of the estimation algorithms presented in this chapter. In
the Appendix we present the principles of hybrid optimality, which give the basis of validi‐
ty for the hybrid estimation algorithms presented in this chapter

2. Systems and Problems Formulation

Let (Ω, F, P) be a probability space and, on this space, we consider the following system
with mode transitions and noises which aren''t restricted to be Gaussian.
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x(k + 1)= Ad (k , θ(k))x(k ) + wd (k , θ(k )),
x(0)= x0, θ(0)= i0

y(k )= Hd (k , θ(k ))x(k ) + vd (k , θ(k ))
(1)

where x∈Rn is the state, wd∈Rn is the exogenous random noise, vd∈Rk is the measure‐

ment noise, and y∈Rk is the measured output. x0 is an unknown initial state and it is as‐
sumed that a distribution of initial modes i0 is given. The noises wd (⋅ , ⋅ ) and vd (⋅ , ⋅ ) aren''t
restricted to be Gaussian.

We assume that all these matrices are of compatible dimensions.

Let M={1, 2, ⋯ , m} denote the state space of θ(k). In this chapter it is assumed that the prob‐
ability distribution of θ(⋅) is unknown or inaccessible. But it is also assumed that a finite
number of candidate distributions and the true probability distribution is among the candi‐

date distributions. Let r∈N0 ={1, 2, ⋯ , n0}, and let P={ϕ (1)(⋅ ), ⋯ , ϕ (n0)(⋅ )} denote the set of

such candidate distributions on M, i.e., for r∈N0 and k∈ 0, N , ϕ (r )(k )= (ϕ1
(r )(k ), ⋯ , ϕm

(r )(k ))

with ϕi
(r )(k )≥0 and ∑

i=1

m
ϕi

(r )(k )=1.

The fixed-interval optimal hybrid estimation problems we address in this chapter for the
system (1) are to find the MPT (most probable trajectory) estimate of x(k), k∈ 0, N , over
the finite horizon [0,N], using the information available on the known part of the observa‐
tion y(⋅ ) for the given distributions of initial mode i0 and initial state x0. We define the fol‐
lowing performance indices for r∈N0 and k∈ 0, N :

J0k
(r )(x0, wd , vd ) : =∑

l=0

k−1
∑
i=1

m
ϕ (r )(l)(wd

' (l , i)Md (l , i)wd (l , i) + vd
' (l , i)Nd (l , i)vd (l , i))

+ (x0− x̂0)′D0(x0− x̂(0))
(2)

J0N
(r )(x0, wd , vd ) : =∑

l=0

N −1
∑
i=1

m
ϕ (r )(l)(wd

' (l , i)Md (l , i)wd (l , i) + vd
' (l , i)Nd (l , i)vd (l , i))

+ (x0− x̂0)′D0(x0− x̂(0))
+ (x(N )− x̂ N )′DN (x(N )− x̂ N )

(3)

where x̂0 is an initial estimate of x0 and x̂N is a terminal estimate of x(N). Md (l , i)>O ,
Nd (l , i)≥O , D0 >O  and DN >O  are symmetric matrices which reflect the uncertainties on the
noises wd (⋅ , ⋅ ) and vd (⋅ , ⋅ ) with the estimates x̂0 and x̂N. Thus these performance indices
mean the energies of noises, initial and terminal estimates under some uncertainties aver‐
aged by the mode distributions for each r∈N0. We consider the optimization problems to
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decide wd (⋅ , i), vd (⋅ , i) and r∈N0 minimizing J0k
(r ) and J0N

(r )  utilizing the known parts of the
observed information YN ={y(l)|0≤ l ≤N }.

Since the mode θ(k) at each time is inaccessible, we cannot directly design estimators for the
system (1) including the unknown modes. Also, even if the modes are accessible, the com‐
putational complexity can exponentially increase with k if we directly design the estimators
for the system (1) including θ(k) explicitly. Hence we introduce the system averaged
through the mode distributions for each r∈N0.

For notational simplicity, we adopt the following notation.

                                                     F¯ (r )(k )=∑
i=1

m
ϕi

(r )(k )F (k , i)

for a matrix function F(k,i) and r∈N0. Similarly F1F2
¯ (r )(k )=∑

i=1

m
ϕi

(r )(k )F1(k , i)F2(k , i) for matrix

functions F1(k,i) and F2(k,i) and so on. Using these notations, we can shift the drift term in the
system (1) to Ad

¯ (r )(k ) as follows:

                                                 x(k + 1)= Ad
¯ (r )(k )x(k ) + wd (k )

where

                                                 wd (k )=wd
(r )(k )= (Ad (k , θ(k ))−Ad

¯ (r )(k ))x(k ) + wd (k , θ(k)).

By replacing the system noise wd (k , i) by (Ad
¯ (r )(k )−Ad (k , i))x(k ) + wd (k ) and the observation

noise vd (k , i) by y(k )−Hd (k , i)x(k ) in the performance indices (2) and (3), we define

                               

L (r )(k , x, wd , y)

:=∑
i=1

m
ϕi

(r )(k )( (Ad
¯ (r )(k )−Ad (k , i))x + wd

′

×Md (k , i) (Ad
¯ (r )(k )−Ad (k , i))x + wd

+ (y −Hd (k , i)x)′Nd (k , i)(y −Hd (k , i)x)).

Then we can define the following performance indices:

J f
(r )(k , x, wd (⋅ )) :=∑

l=0

k−1
L (r )(l , x(l), wd (l), y(l)) + Φ0(x(0)) (4)

Jb
(r )(k , x, wd (⋅ )) :=∑

l=k

N −1
L (r )(l , x(l), wd (l), y(l)) + ΦN (x(N )) (5)

                         Js
(r )(k , x, wd (⋅ )) := J f

(r )(k , x, wd (⋅ )) + Jb
(r )(k , x, wd (⋅ ))

where Φ0(x(⋅ ))= (x(⋅ )− x̂0)′D0(x(⋅ )− x̂0) and ΦN (x(⋅ ))= (x(⋅ )− x̂ N )′DN (x(⋅ )− x̂ N ).
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We consider the optimal control problems to minimize J f
(r ) and Js

(r ) = J f
(r ) + Jb

(r ) for the given

parts of YN . Let V f
(r )(k , x) and V b

(r )(k , x) be the value functions of these control problems as
follows:

                               

V f
(r )(k , x) : = inf

wd (⋅)
J f

(r )(k , x, wd )

V b
(r )(k , x) : = inf

wd (⋅)
Jb

(r )(k , x, wd )

V s
(r )(k , x) : =V f

(r )(k , x) + V b
(r )(k , x)

wd , f
(r )*(k ) : =arg min{J f

(r )(k , x, wd (k )) :w∈R n}
wd ,b

(r )*(k ) : =arg min{Jb
(r )(k , x, wd (k )) :w∈R n}

wd ,s
(r )*(k ) : =arg min{Js

(r )(k , x, wd (k )) :w∈R n}
Then define

                                            
x̂ f

(r )(k ) : =arg min {V f
(r )(k , x) : x∈R n},

V f
(r )(k ) : =V f

(r )(k , x̂ f
(r )(k ))

and

                                          r̂ f (k ) : =argmin{V f
(r )(k ) : r∈N0}.

Then the most probable distribution is ϕ (r̂ f (k ))(⋅ ). Let x̂ f (k )= x̂ f
(r̂ f (k ))(k ) and we have

                               
V f

(r̂ f (k ))(k , x̂ f (k ))≤V f
(r )(k , x̂ f

(r )(k ))
≤V f

(r )(k , x)= J f
(r )(k , x, wd , f

(r )*(k ))≤ J f
(r )(k , x, wd (k )).

Also define

                               
x̂s

(r )(k ) : =argmin{V s
(r )(k , x) : x∈R n},

V s
(r )(k ) : =V s

(r )(k , x̂s
(r )(k ))

and

                               r̂ s(k ) : =argmin{V s
(r )(k ) : r∈N0}.

Then the most probable distribution is ϕ (r̂ s(k ))(⋅ ). Let x̂s(k )= x̂s
(r̂ s(k ))(k ) and we have

                               
V f

(r̂ f (k ))(k , x̂ f (k ))≤V f
(r )(k , x̂ f

(r )(k ))
≤V f

(r )(k , x)= J f
(r )(k , x, wd , f

(r )*(k ))≤ J f
(r )(k , x, wd (k )).

Now we define the following optimal estimators in the sense of most probable trajectory (MPT).
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2.1 Definition

Given the matrices Md, Nd, D0 and DN, (r̂ f (k ), x̂ f (k )), k ≥0, is called an optimal filter (in the

MPT sense) if it minimizes V f
(r )(k , x). (r̂ s(k ), x̂s(k )), 0≤k ≤N  is called an optimal smoother (in

the MPT sense) if it minimizes V s
(r )(k , x).

Then we formulate the following optimal hybrid estimation problems for the performance
indices (4) and (5).

The Optimal Hybrid Filtering Problem for Linear Discrete-Time Systems:

Find the pair (r̂ f (l), x̂ f
(r̂ f (l ))(l)), l∈ 0, k  minimizing the performance index (4) based on the

causal part Yk ={y(l)|0≤ l ≤k } of the observed information YN .

The Optimal Hybrid Smoothing Problem for Linear Discrete-Time Systems:

Find the pair (r̂ s(k ), x̂s
(r̂ s(k ))(k )), k∈ 0, N  minimizing the performance index (4)+(5) based on

the whole observed information YN .

Remark 2.1. In general, if we directly adopt dynamic programming (DP) method for mode-depend‐
ent systems, it can arise that computational complexity increases exponentially with time k ([5,11]).
On the other hand in this chapter we consider the averaged systems and averaged performance indices
for them with regard to the candidates of the mode distributions. Note that this introduction of the
averaged systems and performance indices prevents the computational complexity from increasing ex‐
ponentially by applying the dynamical programming (DP) method as seen in the next section.

3. Hybrid Estimation Algorithms

We assume the following condition:

                              A1: The matrices Ad
¯ (r )(k ),  k =0, 1, ⋯  are invertible.

Remark 3.1. As described in [24], note that A1 is the reasonable assumption in the discrete-time
models. First we consider the following continuous-time model:

                                        ẋc(t)= Ac(t , θc(t))xc(t) + wc(t , θc(t))

where θc(t)∈M, t ≥ 0 is the switching mode process. If we discretize this model with stepsize h ≥ 0,
let x(k) = xc(kh ) and the following discretized equation holds:

                                            x(k + 1)= I + h Ac(kh , θc(kh )) x(k ) + wd (k , θ(k ))

where wd (k , θ(k)) = h wc(kh , θc(kh )). Let

                                            Ad (k , i)= I + Ac(kh , i)

and then we obtain
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Ad
¯ (r )(k )=∑

i=1

m
ϕi

(r )(k )Ad (k , i)

=∑
i=1

m
ϕi

(r )(k ) I + h Ac(kh , i)

= I + h∑
i=1

m
ϕi

(r )(k )Ac(kh , i).

If we assume that Ac(t, i) is uniformly bounded, then Ad
¯ (r )(k), k = 0, 1, ⋯  is invertible for h small

enough.

3.1 Optimal Hybrid Filtering

The dynamic programming (DP) equations associated with the forward control problem to
minimize J f

(r ) with regard to wd (⋅ ) are given as follows:

          
V f

(r )(k + 1, x)=min
wd

{L (r )(k , Ad
¯ (r ),−1(k )(x −wd ), wd , y(k )) + V f

(r )(k , x)}

V f
(r )(0, x)=Φ0(x),  r∈N0

Let

V f
(r )(k , x)= x ′K f

(r )(k )x + 2(pf
(r )(k ))′x + qf

(r )(k ) (6)

for some functions K f
(r ) and qf

(r ) with appropriate dimensions. Then we obtain the following
minimizing wd (⋅ ).

                                      wd , f
(r )∗(k , x)= x −Ad

¯ (r )(k )Sd
(r )(k )(Ad

′Md
¯ (r )(k )x + Hd

′Nd
¯ (r )(k )y(k )− pf

(r )(k ))

where

                                      Sd
(r )(k )= Ad

′Md Ad
¯ (r )(k ) + Hd

′Nd Hd
¯

+ K f
(r )(k ) −1.

Then we obtain the following matrix difference equations, forward vector equations and
scalar equations with initial conditions:

K f
(r )(k + 1)=Md

¯ (r )(k )−Md Ad
¯ (r )(k )Sd

(r )(k )Ad
′Md
¯ (r )(k ), K f

(r )(0)= D0 (7)

pf
(r )(k + 1)= −Md Ad̄

(r )(k )Sd
(r ) Hd

' Nd
¯ (r )(k )y(k)− pf

(r )(k ) , pf
(r )(0)= −D0x̂0 (8)

qf
(r )(k + 1)= − Hd

' Nd
¯ (r )(k )y(k )− pf

(r )(k ) 'Sd
(r )(k ) Hd

' Nd
¯ (r )(k )y(k )− pf

(r )(k )

+ y '(k )N d̄
(r )(k )y(k ) + qf

(r )(k ), qf
(r )(0)= x̂0D0x̂0

(9)
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For any given k, by letting ∂V f
(r )/ ∂x =0, we obtain

                                                            K f
(r )(k )x + pf

(r )(k )=0.

Since it can be shown that the matrix K f
(r )(k ) is positive-definite, we obtain

                                                            x̂ f
(r )(k )= − (K f

(r )(k ))−1pf
(r )(k )

as the minimizer of V f
(r )(k , x). Then we obtain

x̂ f
(r )(k + 1)= − (K f

(r )

(
k

+
1

)
)
pf

(r )(k + 1)

= − M d̄
(r )(k )−Md Ad̄

(r )(k )Sd
(r )(k )Ad

' Md
¯ (r )(k ) −1Md Ad̄

(r )(k )Sd
(r )

× Hd
' Nd
¯ (r )(k )y(k ) + K f

(r )(k )x̂ f
(r )(k ) , x̂ f

(r )(0)= x̂0

(10)

and

qf
(r )(k + 1)= − Hd

' Nd
¯ (r )(k )y(k ) + K f

(r )(k )x̂ f
(r )(k ) 'Sd

(r )(k )

× Hd
' Nd
¯ (r )(k )y(k) + K f

(r )(k )x̂ f
(r )(k )

+ y '(k )N d̄
(r )(k )y(k ) + qf

(r )(k ), qf
(r )(0)= x̂0D0x̂0

(11)

We also obtain

                                                 V f
(r )(k )= − (x̂ f

(r )(k ))'K f
(r )(k )x̂ f

(r )(k ) + qf
(r )(k ).

Now we have the following filtering algorithm, which gives the solution of the Optimal Hy‐
brid Filtering Problem for Linear Continuous-Time Systems.

***Optimal hybrid filtering algorithm***

Step 1) Obtain K f
(r )(k ), x̂ f

(r )(k ) and qf
(r )(k ) for r∈N0 and k∈ 0, N  by solving (7), (10) and (11)

with initial conditions.

Step 2) Choose r̂ f (k ) that minimizes

                                                            V f
(r )(k )= − (x̂ f

(r )(k ))'K f
(r )(k )x̂ f

(r )(k ) + qf
(r )(k ).

Then the most probable distribution is ϕ (r̂ f (k ))(k ) and the optimal filter is given by

                                                            (r̂ f (k ), x̂ f (k ))= (r̂ f (k), x̂ f
(r (k ))(k )).

3.2 Optimal Hybrid Smoothing

The dynamic programming (DP) equations associated with the backward control problem to
minimize Jb

(r ) with regard to wd (⋅ ) are given as follows:
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V b

(r )(k , x)=min
wd

{L (r )(k , x, wd , y(k )) + V b
(r )(k + 1, A¯ d

(r )(k )x + wd )}

V b
(r )(N , x)=ΦN (x),  r∈N0

Let

V b
(r )(k , x)= x ′Kb

(r )(k )x + 2(pb
(r )(k ))′x + qb

(r )(k ) (12)

for some functions Kb
(r ), pb

(r ) and qb
(r ) with appropriate dimensions. Then we obtain the fol‐

lowing minimizing wd (⋅ ).

                                   wd ,b
(r )∗(k , x)= {−Ad

¯ (r )(k ) + Td
(r )(k )Md Ad
¯(k)}x(k)−Td

(r )(k )pf
(r )(k + 1)

where

                                                   Td
(r )(k )= Md

¯ (r )(k ) + Kb
(r )(k + 1) −1.

Let

V b
(r )(k , x)= x ′Kb

(r )(k )x + 2(pb
(r )(k ))′x + qb

(r )(k ) (13)

for some functions Kb
(r ), pb

(r ) and qb
(r ) with appropriate dimensions. Then we obtain the fol‐

lowing matrix difference equations, backward vector equations and scalar equations with
terminal conditions:

Kb
(r )(k )= Ad

′Md Ad
¯ (r )(k )−Ad

′Md
¯ (r )(k )Td

(r )(k )Md Ad
¯ (r )(k ) + Hd

′Nd Hd
¯ (r )(k ),

Kb
(r )(N )= DN

(14)

pb
(r )(k )= Ad

′Md
¯

(k )Td
(r )(k )pb

(r )(k + 1) - Hd N d̄
(r ) (k)y(k ) ,  pb

(r )(N )= −DN x̂ N (15)

qb
(r )(k )= − pb

(r )′
(k + 1)Td

(r )(k )pb
(r )(k + 1) + qb

(r )(k + 1)

+ y ′(k )Nd
¯ (k + 1)y(k ),  qb

(r )(N )= x̂ N
' DN x̂ N

(16)

For any given k, by letting ∂V b
(r )/ ∂x =0, we obtain

                                                   Kb
(r )(k )x + pb

(r )(k )=0.

Since it can be also shown that the matrix Kb
(r )(k ) is positive-definite, we obtain

                                                   x̂b
(r )(k )= − (Kb

(r )(k ))−1pb
(r )(k )

as the minimizer of V b
(r )(k , x). Then we obtain
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x̂b
(r )(k )= − (Kb

(r )(k ))−1pb
(r )(k )

= Ad
′Md Ad
¯ (r )(k )−Ad

′Md
¯ (r )(k )Td

(r )(k )Md Ad
¯ (r )(k ) + Hd

′Nd Hd
¯ (r )(k )

−1

× Ad
′Md
¯

(k )Td
(r )(k )Kb

(r )(k + 1)x̂b
(r )(k + 1) + Hd

′Nd
¯ (r )(k )y(k ) ,  x̂b

(r )(N )= x̂ N

(17)

and

qb
(r )(k )= − x̂b

(r )′
(k + 1)Kb

(r )(k + 1)Td
(r )(k )Kb

(r )(k + 1)x̂b
(r )(k + 1)

+ qb
(r )(k + 1) + y ′(k )Nd

¯ (k + 1)y(k ),  qb
(r )(N )= x̂ N

′DN x̂ N .
(18)

We also obtain

                                                   V b
(r )(k )= − (x̂b

(r )(k ))′Kb
(r )(k )x̂b

(r )(k ) + qb
(r )(k ).

Using (6) and (12), we can express V s
(r )(k , x) as

                        V s
(r )(k , x)= x ′ K f

(r )(k ) + Kb
(r )(k ) x + 2 pf

(r )(k ) + pb
(r )(k ) ′x + qf

(r )(k ) + qb
(r )(k )

Let

                                                   ∂V s
(r )/ ∂x =0

and we obtain the following form.

                                                   x̂s
(r )(k )= − K f

(r )(k ) + Kb
(r )(k ) −1(pf

(r )(k ) + pb
(r )(k ))

Since pf
(r )(k )= −K f

(r )(k )x̂ f
(r )(k ) and pb

(r )(k )= −Kb
(r )(k )x̂b

(r )(k ), for each candidate r of given distri‐
butions, we can obtain the following form of smoothed estimate at time k by the forward
and backward filtered estimates.

                        x̂s
(r )(k )= Ks

(r )(k ) K f
(r )(k )x̂ f

(r )(k ) + Kb
(r )(k )x̂b

(r )(k )

where Ks
(r )(k )= K f

(r )(k ) + Kb
(r )(k ) −1.

Now we have the following smoothing algorithm, which gives the solution of the Optimal
Hybrid Smoothing Problem for Linear Continuous-Time Systems.

***Optimal hybrid smoothing algorithm***

Step 1) Obtain Kb
(r )(k ), x̂b

(r )(k ) and qb
(r )(k ) for r∈N0 and k∈ 0, N  by solving (14), (17) and

(18) with terminal conditions.

Step 2) Choose r̂ s(k ) that minimizes

                                             V s
(r )(k )=V f

(r )(k ) + V b
(r )(k )

where
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                                             V b
(r )(k )= − x̂b

(r )′
(k )Kb

(r )(k )x̂b
(r )(k ) + qb

(r )(k ).

Then the most probable distribution is ϕ (r̂ s(k ))(k ) and the optimal smoother is given by

                                             
(r̂ s(k ), x̂s(k ))= (r̂ s(k ), x̂s

(r̂ s(k ))(k ))

= (r̂ s(k ), Ks
(r̂ s(k ))(k ) K f

(r̂ s(k ))(k )x̂ f
(r̂ s(k ))(k ) + Kb

(r̂ s(k ))(k )x̂b
(r̂ s(k ))(k ) )

where Ks
(r̂ s(k ))(k )= K f

(r̂ s(k ))(k ) + Kb
(r̂ s(k ))(k ) −1.

Remark 3.2. Note that, if the system (1) is a single mode system, i.e., the system (1) is independent of
θ(k), the forms of the filter and smoother presented in this section are reduced to the well-known ones
of the Kalman filter and smoother.

4. Numerical Examples

In this section, we study numerical examples to demonstrate the effectiveness of the present‐
ed design algorithms.

We consider the following two mode systems and assume that the system parameters are
as follows:

x(k + 1)= Ad (k , θ(k))x(k ) + wd (k , θ(k )),
x(0)= x0, θ(0)= i0

y(k)= Hd (k , θ(k ))x(k) + vd (k , θ(k ))
(19)

where

                                             
⋅ Mode 1: ⋅ Mode 2:

A1 =
0 1
−0.8 0.6 , A2 =

0.5 1
−0.4 0.6 ,

                                             H = 1, 0

and

                                             M (t , i)=
1 0
0 1 ,  N (t , i)=1,  D0 =

1 0
0 1

for i=1,2. We set x̂0 =col(−0.1, 0) and the distribution of the initial mode i0 as (1/ 2, 1/ 2).
wd (⋅ , ⋅ ) and vd (⋅ , ⋅ ) are stochastic noises which aren''t restricted to be Gaussian white. The
candidates of mode distributions are given as follows:

                                             ϕ (1) = ( 2
5 ,

3
5 ), ϕ (2) = ( 1

2 ,
1
2 ), ϕ (3) = ( 3

5 ,
2
5 )
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The paths of θ(k) are generated randomly, and the performances are compared under the

same circumstance, that is, the same set of the paths so that the performances can be easi‐

ly compared.

We consider the whole system (19) with the true mode distribution ϕ (3) over the time inter‐

val k∈ 0, 100 . We verify the effectiveness of the presented hybrid estimation algorithms

and compare the estimation performances for the optimal filtering and smoothing algo‐

rithms. In order to carry out these algorithms we solve the forward or backward triplet of

the difference equations (7)(10)(11) or (14)(17)(18) with the initial or terminal conditions for

given observation y(⋅ ) and each candidate r=1,2,3 of given distributions, and obtain the pair

(r̂ f (k ), x̂ f (k )) minimizing V f
(r )(k , x) in the filtering case or the pair (r̂ s(k ), x̂s(k )) minimizing

V s
(r )(k , x) in the smoothing case for k∈ 0, 100 .

Filtered and smoothed values of the first components of the whole system states are given

by Fig. 1 and Fig. 2 respectively. Fig. 3 and Fig. 4 show the square errors between the states

and filtered values, and the states and smoothed values respectively. The mean square er‐

rors over the time interval [0, 100] are 0.0276 in the filtering case, and 0.0151 in the smooth‐

ing case respectively. From these figures and calculation results it is shown that the

smoother gives better estimation than the filter. Filtered and smoothed values of the second

components of the whole system states are given by Fig. 5 and Fig. 6 respectively. Fig. 7 and

Fig. 8 show the square errors between the states and filtered values, and the states and

smoothed values respectively. The mean square errors over the time interval [0, 100] are

0.0151 in the filtering case, and 0.0118 in the smoothing case respectively. From these figures

and calculation results it is shown that the smoother gives better estimation than the filter.

Filtered and smoothed mode distributions are given by Fig. 9 and Fig. 10. Notice that the

vertical axes show the candidates of the mode distributions not the modes themselves. In

Fig. 9 the filtered values of the mode distributions rapidly change to be left undecided. To

the contrary in Fig. 10 the smoothed values of the mode distributions are firmly decided.

Through these ten figures it is shown that the optimal smoother presented in this chapter

gives better estimate performance than the optimal filter presented in the previous work [24]

from the point of view of both state and modes estimation.
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Figure 1. The state of the system and filtered values: 1st
components

Figure 2. The state of the system and smoothed values:
1st components

Figure 3. The square errors between the state and filtered
values: 1st components

Figure 4. The square errors between the state and
smoothed values: 1st components

Figure 5. The state of the system and filtered values: 2nd
components

Figure 6. The state of the system and smoothed values:
2nd components
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Figure 7. The square errors between the state and filtered
values: 2nd components

Figure 8. The square errors between the state and
smoothed values: 2nd components

Figure 9. The filtered mode distributions Figure 10. The smoothed mode distributions

5. Concluding Remarks

In this chapter we have studied the state and mode estimation problems for linear discrete-
time hybrid systems over the fixed time interval. The systems aren''t restricted to the Marko‐
vian jump systems and the added noises aren''t restricted to be Gaussian. With regard to
concrete examples of the systems considered in this chapter, refer to [24,25]. Those examples
show that the systems and estimation algorithms presented in this chapter cover extreme
broad classes of dynamical systems affected by the noises not to be restricted to be Gaussian.
We have adopted the MPT approach. The state and mode estimation approach adopted in
this paper guarantees the optimality of estimation performance in the meaning of MPT dif‐
ferent from the previous work ([4,7]).

In this chapter we have considered the problems that both system state and modes are esti‐
mated. However we have considered the problems that the distributions of the modes over
the fixed time interval not the modes themselves are estimated to grasp the global behavior
of the hybrid systems over the long time intervals. In order to estimate both the system state
and distributions of the modes we have introduced the averaged performance indices with
respect to the candidates of the mode distributions for the averaged systems. This introduc‐
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tion of the averaged systems and performance indices prevents the computational complexi‐
ty from increasing exponentially with time passage. For these performance indices we have
formulated the optimal filtering and smoothing problems based on the available observed
information. The estimation problems have been reduced to the optimal control problems to
find the noises minimizing the introduced performance indices. We have derived the for‐
ward and backward matrix difference equations and the forward and backward filter equa‐
tions with the initial and terminal conditions respectively, which give the necessary
conditions for the solvability of the optimal estimation problems. Then we have presented
the optimal hybrid smoothing algorithm by the two filters approach. Finally we have stud‐
ied the numerical examples to compare the estimation performances by filtering and
smoothing. We have obtained the better estimation performance by the smoothing algo‐
rithm than the filtering algorithm from the point of view of both state and modes estimation.

With regard to continuous-time cases, refer to [16,17,25]. In particular, in [17,25], the cases
that concerned systems are assumed to be Markovian jump systems is also considered. In
these papers the concept of quasi-stationary distributions is introduced for the Markovian
mode processes and near optimality of limiting estimators with the quasi-stationary distri‐
butions is shown. It is well known that the concept of quasi-stationary distribution is very
important and highly practical to grasp behavior of stochastic processes over long run time.
As a further research issue it is very significant that the quasi-stationary distributions of sto‐
chastic mode processes and estimator with these distributions are investigated for the dis‐
crete-time hybrid systems.

Appendix: Principle of Hybrid Optimality

With regard to the optimal control problems considered in this chapter, it is obvious that
principle of optimality does not hold for the optimal trajectory x ∗(⋅ ) with optimal control
input wd

(r )∗(⋅ ) and each performance index for each mode distribution candidate r∈N0.
However, for the pair (r̂(⋅ ), x(⋅ )) of the optimal mode distribution candidate and optimal
trajectory with the optimal control inputs wd

(r )∗(⋅ ), the following principles of hybrid opti‐
mality hold. These principles give a basis of validity for the hybrid estimation algorithms
presented in this chapter.

Consider the following system

x(k + 1)= Ād
(r )(k )x(k ) + wd (k ) (20)

                                                       y(k )= Hd (k , θ(k))x(k ) + vd (k , θ(k ))

and the performance indices
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J f
(r )(k , x, wd (⋅ ))=∑

l=0

k−1
L (r )(l , x(l), wd (l), y(l)) + Φ0(x(0)) (21)

Jb
(r )(k , x, wd (⋅ ))=∑

l=k

N −1
L (r )(l , x(l), wd (l), y(l)) + ΦN (x(N )) (22)

Js
(r )(k , x, wd (⋅ ))= J f

(r )(k , x, wd (⋅ )) + Jb
(r )(k , x, wd (⋅ )) (23)

where

                                                  

L (r )(k , x, wd , y)

=∑
i=1

m
ϕi

(r )(k )( (Ad
¯ (r )(k )−Ad (k , i))x + wd

′

×Md (k , i) (Ad
¯ (r )(k )−Ad (k , i))x + wd

+ (y −Hd (k , i)x)′Nd (k , i)(y −Hd (k , i)x)).

We consider the following three optimal control problems for the system (20) and the per‐
formance indices (21)-(23):

Problem (A): Forward Optimal Control Problem

Consider the system (20) with the initial state x(0). Find the pair (r̂ f (l), wd , f
(r̂ f (l ))*(l)) , l∈ 0, k

minimizing the value of the performance index (21) based on the causal part
Yk ={y(l)|0≤ l ≤k } of the observed information YN  .

Problem (B): Backward Optimal Control Problem

Consider the system (20) with the initial state x(k). Find the pair (r̂ b(l), wd ,b
(r̂ b(l ))*(l)), l∈ k , N

minimizing the value of the performance index (22) based on the anti-causal part
Ȳ k ={y(l)|k ≤ l ≤N } of the observed information YN  .

Problem (C): Fixed-Interval Optimal Control Problem

Consider the system (20) with the initial state x(0). Find the pair (r̂ s(k ), wd ,s
(r̂ s(k ))*(k )) ,

k∈ 0, N  minimizing the value of the performance index (23) based on the whole observed
information YN  .

Proposition A (Principle of Hybrid Optimality (A)) Consider the optimal control problem (A) on
the time interval [0,k]. Also consider the optimal control problem minimizing the performance index

J f
(r )(τ, x, wd (⋅ ))=∑

l=0

τ−1
L (r )(l , x(l), wd (l), y(l)) + Φ0(x(0)), 1<τ <k (24)
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for the system (20) with the initial state x(0) on the partial time interval [0,τ] and then let the pair of
optimal control inputs be ( r̂

^
f (l) wd , f

( r̂̂ f (l ))**(l).), l∈ 0, τ . Then ( r̂ f (l), wd , f
( r̂ f (l ))*(l))=

( r̂
^

f (l), wd , f
( r̂̂ )**(l)) , l∈ 0, τ  holds.

Proposition B (Principle of Hybrid Optimality (B)) Consider the optimal control problem (B) on
the time interval [k,N]. Also consider the optimal control problem minimizing the performance index

Jb
(r )(τ, x, wd (⋅ ))=∑

l=τ

N −1
L (r )(l , x(l), wd (l), y(l)) + ΦN (x(N )), k <τ < N −1 (25)

for the system (20) with the initial state x(τ) on the partial time interval τ, N  and then let the pair
of optimal control inputs be ( r̂

^
b(l)wd ,b

( r̂̂ b(l ))**(l)) , l∈ τ, N . Then

( r̂ b(l), wd ,b
( r̂ b(l ))*(l)) = ( r̂

^
b(l)wd ,b

( r̂̂ b(l ))**(l)) , l∈ τ, N  holds.

Theorem C (Principle of Hybrid Optimality (C)) Consider the optimal control problem (C) on the
fixed time interval [0,N]. Split the performance index (23) into the two parts (21) and (22) and also
consider the optimal control problems (A) on [0,k] and (B) on [k,N] for the system (20) with initial state
x(0) and x(k) respectively. Then at each time k( r̂ f (l) wd , f

( r̂ f (l ))*(l)) , l∈ 0, k  and ( r̂ b(l), wd ,b
( r̂ b(l ))*(l)),

l∈ k, N  are optimal input minimizing the values of the (21) and (22) to be used in order to compose
the  solution  of  the  fixed-interval  optimal  control  problem  (C),  i.e.,  any  time  k∈ 0, N
(r̂ s(l), wd ,s

( r̂ f (l ))*(l)) = ( r̂ f (l), wd , f
( r̂ f (l ))*(l)), l ∈ 0, k  and

(r̂ s(l), wd ,s
( r̂ f (l ))*(l)) = ( r̂ b(l), wd , f

( r̂ b(l ))*(l)), l ∈ k + 1, N  hold.

In this appendix we give only a proof of Proposition 7.1. The others can be shown by the
similar arguments.

(Proof of Proposition A) We split the pair (r̂ f (l)wd , f
(r̂ f (l ))*(l)), l∈ 0, k  of the optimal control

inputs into the following two parts:

                                         
(r̂ f ,1, wd , f ,1

(r̂ f ,1)*)= (r̂ f (l), wd , f
(r̂ f (l ))*(l)) l∈ 0, τ

(r̂ f ,2, wd , f ,2
(r̂ f ,2)*)= (r̂ f (l), wd , f

(r̂ f (l ))*(l)) l∈ τ + 1, k

Now we assume

                                         (r̂ f ,1, wd , f ,1
(r̂ f ,1)*)≠ (r̂

^
f , wd , f

(r̂̂ f )**) on 0, τ

Then there exists the pair of control inputs (r̂^ f , wd , f
(r̂ f )**) giving less value of the performance

index (24) than (r̂ f ,1, wd , f
(r̂ f,1,)*) and so the pair of control inputs consisting of (r̂^ f ,wd , f

(r̂̂ f ,)**) and

(r̂ f ,2, wd , f ,2
(r̂ f ,2)*) gives less value of the performance index (21) than (r̂ f (l), wd , f

(r̂ f ,(l ))*(l)) ,

l∈ 0, k . This contradicts with the optimality of (r̂ f (l), wd , f
(r̂ f ,(l ))*(l)), l∈ 0, k . Therefore

(r̂ f (l), wd , f
(r̂ f )*)= (r̂

^
f (l), wd , f

(r̂̂ f (l ))**) , l∈ 0, τ  holds. (Q.E.D.).
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